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Abstract.   A basic question of instruction is how much students will actually 
learn from it.  This paper presents an approach called learning decomposition, 
which determines the relative efficacy of different types of learning 
opportunities.  This approach is a generalization of learning curve analysis, and 
uses non-linear regression to determine how to weight different types of 
practice opportunities relative to each other.  We analyze 346 students reading 
6.9 million words and show that different types of practice differ reliably in 
how efficiently students acquire the skill of reading words quickly and 
accurately.  Specifically, massed practice is generally not effective for helping 
students learn words, and rereading the same stories is not as effective as 
reading a variety of stories.  However, we were able to analyze data for 
individual student’s learning and use bottom-up processing to detect small 
subgroups of students who did benefit from rereading (11 students) and from 
massed practice (5 students).  The existence of these has two implications:  1) 
one size fits all instruction is adequate for perhaps 95% of the student 
population using computer tutors, but as a community we can do better and 2) 
the ITS community is well poised to study what type of instruction is optimal 
for the individual. 
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1 Introduction  
The goal of this paper is to investigate how different types of practice affect a 

student’s progress in learning a skill.  Specifically, we utilize an approach, learning 
decomposition [1], as a means of leveraging fine-grained interaction data collected by 
computer tutors and present a case study of applying the technique to the domain of 
reading.  The goal is twofold:  1) Be able to make claims that are interesting to 
domain researchers, and 2) Develop a technique for analyzing tutor log data that 
applies to other domains and tutors.  The first goal should not be underestimated; if 
we make discoveries about how students learn a domain that remain limited to those 
students using computer tutors that would be an unfortunate result.  Only a small 
minority of students use computer tutors, so if we wish our research to have broad 
impact then finding a means of explaining our results to those outside of the ITS 
community is essential.  To address these issues we present an approach that uses 
learning curves to measure the relative impact of various types of learning events.    



 The two most common types of learning curves are exponential and power 
curves.  In this paper we discuss exponential curves as they have been shown to more 
accurately model individual observations [2] and are  simpler analytically.  However, 
the approach we present can be trivially adapted to work with power curves.  The 
standard form of the exponential learning curve can be seen in Equation 1a.  The free 
parameter A represents how well students perform on their first trial performing the 
skill; e is the numerical constant (2.718), the free parameter b represents how quickly 
students learn the skill, and t is the number of practice trials the learner has had at this 
skill.  This model can be solved with any non-linear regression package (we use SPSS 
11.0).   

Equation 1. (a) Exponential model of practice, (b) Learning decomposition model 
of practice 

By simply using one parameter, t, to represent the number of prior trials, learning 
curves assume that all types of practice are equally valuable.  But what if all types of 
practice are not equally valuable?  For example, we could believe that the subject will 
learn better the first time he practices the skill that day, and rather than simply 
lumping all of the learning opportunities together as t, we can create two new 
variables t1 and t2. The variable t1 represents the number of learning opportunities 
where it was the first time the learner practiced the skill that day; t2 represents the 
number of practice opportunities where the learner has already practiced the skill that 
day.  This method of factoring learning opportunities into various types of practice 
does not change the amount of prior practice to student has had; t= t1+t2 since 
learning opportunities are either the first one of the day or are not.   

 The basic idea of learning decomposition is to find how to weight two types 
of learning opportunities to construct a best fitting learning curve.  Equation 1b shows 
a learning curve model designed to find how to weight the two types of practice.  
Similar to standard learning curves, we estimate the A and b parameters.  However, 
we also estimate a new parameter, B, that represents the relative impact of the first 
learning opportunity of a day relative to learning opportunities occurring later in the 
same day.  Note that t2 does not receive a weight of its own, as it is assumed to be 
worth 1.0 learning opportunities.  That t2 has this implicit weight does not affect the 
conclusions we draw from the model as our goal is only to estimate relative efficacy 
the two types of practice.    

 The parameter B is very interpretable: it is how many trials that learning 
opportunities of type t1 are worth relative to those of type t2.  If B>1 then learning 
opportunities of type t1 are better for learning than those of type t2.  If B<1 then the 
opposite is true, and if B=1 then neither type of learning opportunity is preferable.  
Although the example presented is about first practice opportunity of the day vs. later 
ones, it is possible to split the data in any way that may be interesting.  We could split 
learning opportunities by those that occur on Monday, Wednesday, or Friday vs. those 
that occur on Tuesday and Thursday.  For this decomposition we would hopefully get 
B≈1, as we have no reason to believe the day of the week matters for learning.  Thus, 
the technique of learning decomposition is broadly applicable. 
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 The remainder of this paper explores applying learning decomposition to 
answer some questions about how children acquire reading skills.  However, the 
approach itself is applicable to a variety of learning tasks and possible ways to 
decompose learning.   

2 A case study:  applying learning decomposition to the domain 
of reading 

The goal of this case study is to show how to apply learning decomposition to an 
actual data set and draw scientifically useful conclusions.  We are trying to better 
understand how students learn to read by analyzing performance data about individual 
words recorded by the Reading Tutor [3] during the 2003-2004 school year.  Rather 
than have explicit experimental and control groups, our approach is to examine how 
student progress in reading words quickly and accurately varies based on which type 
of practice he has had at the word.  These data include 346 students from the 
Pittsburgh area attempting to read 6.9 million words.  The student readings were 
scored by an automated speech recognizer (ASR).  The ASR is far from perfect, and 
for that year detected approximately 25% of student misreadings and scored 4% of 
student correct readings as incorrect [4].  The ASR also records how long students 
took to read a word.  Our general logging mechanism also records when students 
request help.  Furthermore, all entries are time stamped so we know the relative 
temporal relations between events.   Students used the tutor from September 2003 
through May 2004 with a median usage of 5.9 hours. 

 We now show how we integrate student help, speed, and correctness into a 
single outcome measure of learning; explain what we believe constitutes a learning 
opportunity for a word; and finally show how we decomposed the learning 
opportunities into their component parts.   

2.1 Creating an outcome to measure learning 

There are a variety of approaches for representing student performance at reading 
fluency.  We choose to model the student’s reading time since it is a continuous 
variable and best able to track student progress; help requests and accuracy are binary 
and so cannot improve smoothly.  Although it is possible to aggregate help requests 
and accuracy to create a continuous learning curve, we did not perform such 
aggregations as one goal of the research is to use individual observations (rather than 
aggregate descriptions) to construct our learning curves.  It is a known potential pitfall 
that aggregate learning curves may not describe the learning trajectory of actual 
individual learners [5].  Therefore, fitting individual data points can produce a more 
authentic model of student learning 

  Although reading time is continuous, it is misleading to use it as an outcome 
and ignore accuracy and help requests.  Our approach was to use the student’s reading 
time as an outcome measure.  However, when the student either asked for help or 
skipped the word, or the word was scored as incorrect by the ASR, then that word was 
assigned a reading time of 3.0 seconds.  Also, words whose reading time was greater 
than 3.0 seconds were capped at 3.0 seconds.  The penalty of 3.0 seconds is on the 
high end of reading times as only 0.1% of time exceeded this threshold, but not overly 
so as to be an unfair penalty.  



2.2 What constitutes a learning opportunity? 

Given that help can cause a short-term boost in student performance, a natural 
question is what other types of events can cause a similar effect?  If our goal is to 
measure student learning, we should try to exclude such data from our learning curve 
construction.  One example of such short-term scaffolding is that if a student reads a 
word and then shortly thereafter reads that same word again, we should be skeptical 
that the second reading really demonstrates the student’s knowledge of the word (as 
opposed to just retrieving it from short term memory).  Therefore, to model student 
reading development we only consider as an outcome variable his first encounter with 
a word on a particular day.   

 However, we do count subsequent encounters later in the day as 
opportunities to learn the word.  Table 1 illustrates our approach.  For the first 
encounter, the student requests help and then reads the word quickly.  Since the 
student requested help, the outcome is set to 3.0 seconds.  For the next learning 
opportunity, since it is the same day, that reading does not count as an outcome.  
Similarly, the next learning opportunity’s performance is also ignored.  However, 
note that column labeled “Overall” in the prior encounters field, which tracks the 
student’s experience with this word, has been incremented to account for these two 
exposures.   

2.3 Learning components of fluency development 

For reading, what types of practice are likely to be more (or less) effective for 
students’ fluency development?  There are many possible ways to think about what 
are ways of factoring apart learning opportunities at learning to read a word.  We start 
with a known psychology principle:  distributed practice is generally superior to 
massed practice for long term retention [6].  This general rule suggests a 
decomposition:  we consider a learning opportunity as distributed practice if the 
student has not encountered the word in the preceding 16 hours.  Massed practice 
would be times when the student encountered the word in the prior 16 hours 
(effectively during the same day).  Table 1 shows how we decompose the prior 
encounters based on massed vs. distributed practice.     

 The other type of learning decomposition we performed was to examine 
whether reading the same story multiple times provides the same benefits as students 
reading different stories.  This debate of wide- vs. re-reading has been ongoing in the 
reading community.  We therefore decompose prior practice into learning 
opportunities where this student encounters this word while reading new material vs. 
rereading old stories.  Since students can memorize a particular story, we only permit 
as an outcome variable the first time a student reads a particular story.  However, 
analogous to how we handled massed practice learning opportunities, repeated 
readings of the same story count as learning opportunities for learning (in particular, 
the variable for rereading would be increased in each case).   

 To summarize, we only count the first opportunity each day as an outcome 
variable, and only if the student has not read this story in the past.  However, we 
count all exposures to words as possible learning opportunities.  To estimate the 
learning caused by different types of learning opportunities, we created four types:   



1. RM represents rereading-massed learning opportunities.  I.e. cases where the 
student has already read the story in the past and is seeing the word a second 
(or greater) time today.   

2. RD represents rereading-distributed learning opportunities.  I.e. cases where 
the student is rereading the story but has not seen the word earlier today.   

3. NM represents new-massed learning opportunities; cases where students are 
reading a story for the first time and have read the word previously today. 

4. ND represents new-distributed learning opportunities; students have not seen 
this story before and have not read the word previously today.   

Table 1 .  Decomposing prior learning opportunities as massed and distributed 
practice 

Prior encounters 
Day Helped? Reading time 

(seconds) Overall Distributed Massed 
Outcome 
(seconds) 

1 Yes 0.5 0 0 0 3.0 

1 Yes 1.5 1 1 0 - 
1 No 1.3 2 1 1 - 
2 No 3.8 3 1 2 3.0 
3 No 1.7 4 2 2 1.7 
3 No 1.2 5 2 3 - 
 
Our model of reading development is shown in Equation 2.  The term A, represents 

first trial performance, and b is the rate of learning.  For brevity, the model presented 
omits some terms such one to control for word length (since reading time is correlated 
with word length) and another to control for amount of prior assistance.  The 
remainder of the model is a learning decomposition model to simultaneously estimate 
the impact of massed- vs. distributed-practice and wide- vs. re-reading.  Note that 
RM, RD, NM, and ND account for all possible trials, and are thus equal to t.  The goal 
is to find best-fitting values of the r and m parameters to find the relative impact of 
rereading and massed practice, respectively, on student reading development.   

)*****(* NDNMmRDrRMmrbeAereadingTim +++−=  

Equation 2.  Simplified model for examining effect of practice schedule and type 
of reading 

Again, there are many possible ways to decompose learning opportunities.  We 
chose two that were motivated by existing theories of learning and a current debate in 
the reading literature.     

3 Results 
To train the model, we had 959,455 learning opportunities (i.e. a student’s first 

attempt at reading a word on a particular day) and a total of 6.9 million words read.  
For each of the 346 students in our data set who read at least 20 words in the Reading 
Tutor during the 2003-2004 school year, we fit the model shown in Equation 2 to 
each student’s data (i.e. we had 346 estimates of each parameter—one for each 



student).  Table 2 shows the median parameter estimates for the effects of rereading 
and massed practice.  The column labeled “overall” contains the median for the entire 
population.  The next three columns are estimates by the bottom third (reading pretest 
score below a beginning first grader), middle third, and upper third (reading pretest 
above that of a second grader at mid year) of the student population.   

 Main effects.  We found that rereading had a coefficient of 0.49 for the 
entire student population.  In other words, rereading a story only results in 49% as 
much learning as reading a story for the first time.  So if a student reread a story twice 
that would result in as much learning as reading a new story for the first time (2 * 
0.49 = 0.98 ≈ 1.0).  Therefore, our results suggest that students learn to read words 
better when they read a wide selection of stories rather than read the same story 
multiple times, and this trend holds for all of the levels of student proficiency that we 
examined.  For massed practice, the picture was even more bleak.  Overall, students 
learned very little from multiple opportunities to practice a word on the same day, 
with high proficiency students deriving almost no benefit at all from the exposure.  
Seeing the word again is almost a complete waste of time for these students.   

Table 2.  Median parameter estimates for learning decomposition model  

 Overall 
(N=346) 

Low proficiency 
(N=118) 

Medium proficiency 
(N=106) 

High proficiency 
(N=122) 

Reread (r) 0.49 0.71 0.42 0.33 
Massed (m) 0.19 0.36 0.28 0.02 
 We report median rather than mean scores due to difficulties with accounting 

for outliers.  For example, student rereading parameters range from -1754 to 14211.  
Clearly those extreme value are outliers and would bias the mean.  However, it is 
difficult to determine exactly what constitutes an outlier.  For example, 3.0 is an 
unlikely level of benefit from rereading, should we disallow that?  How about 2.0?  
Rather than inventing an arbitrary cutoff, we instead use the median and treat 
improbably high values as a vote that the true value of the parameter is higher than 
1.0. 

 For the rereading parameter, 95 students had an r parameter that was reliably 
less than 1.0, while only 7 had a parameter estimate that was reliably greater than 1.0.  
Using a sign test gives p≈10-17, thus the majority of students have less effective 
learning as a result of rereading.  For massed practice, 177 students had an m 
parameter that was reliably less than 1.0, with only 6 students having an m parameter 
reliably greater than 1.0 (p≈10-35).  Thus, the majority of students benefit less from 
massed practice.  This result for massed practice is not novel, as there has been ample 
research in psychology investigating spaced practice effects.  However, it serves as a 
sanity check on our results:  if this aspect our investigation disconfirmed 120 years of 
psychology research we should be hesitant about accepting our other results.   

 Which students benefit from rereading and massed practice?  One 
benefit of estimating a per-student parameter for the effect of rereading and massed 
practice is that it enables fine-grained detection of student subgroups who benefit.  
Although Table 2 shows that low proficiency students do not benefit from rereading 
or from massed practice, there is a definite trend with weaker readers receiving 
relatively more benefit than more proficient readers.  Perhaps there are subgroups of 



low proficiency students who are benefiting, but we cannot detect them since they are 
averaged in with a larger group?   

 Our approach is to treat the problem as one of classification via logistic 
regression.  For our dependent variable, if the student’s r parameter exceeded 1.1, we 
treated that student as benefiting from rereading; if it was below 0.9 the student is 
considered to benefit from wide reading.  Values between 0.9 and 1.1 were not 
considered conclusive evidence either way, and those students were not used for the 
classification process.  By compressing the student’s r parameter into a single bit of 
information, we greatly reduce the inaccuracy of poorly estimated per-student 
parameters, and instead focus on the simpler task of finding commonalities between 
students whose r parameter indicates they would benefit from rereading.  The act of 
creating a classifier results in a smoothing of the noisy data, and any reliable 
predictors are indicative of a subgroup that benefits.  (We performed the identical 
procedure for the m parameter to determine if students would benefit from massed 
practice.)  For the independent variables, we used the student’s gender, grade, 
learning support status (yes, no, or not known), and words read correctly per minute 
in a paper-based fluency pretest.  We chose these variables as they are easily available 
to classroom teachers or other classroom policy makers.     

 Of the 235 students for whom we had complete demographic and testing 
data, the rereading classifier found a subgroup of 11 students for whom it thought 
rereading would benefit.  The student’s learning support status (p=0.00003) and 
fluency (p=0.04) were both reliable predictors in the model.  Only 24 students were 
noted as having learning support, of those the model felt 4 would benefit from 
rereading (as opposed to predicting benefit for 7 of 122 for students who were known 
to not be receiving learning support).  The students who would benefit from rereading 
also had a sharply lower fluency:  44 words per minute as opposed to 56 words per 
minute for those who would not benefit.  There were similar trends for the students 
who would benefit from massed practice.  The classifier found a subgroup of just 5 
students who would benefit from massed practice, with the only reliable differences 
being the student’s grade, with a mean of 2.15 from those who do not benefit vs. 4.6 
for those who do (p=0.013) and fluency, with a mean reading rate of 55 wpm for 
those who do not benefit vs. 47 for those who do (p=0.04).  Although not statistically 
reliable, it is interesting to note that all 5 of these students were categorized as 
receiving learning support.  As a general trend, those who benefited from massed 
practice and from repeated reading were older, less proficient readers who were 
tagged as requiring learning support (but who were still able to operate the Reading 
Tutor software effectively).  Gender was not a reliable predictor in either model.  

4 Limitations and future work 
 This paper explored two learning decompositions, but there is a large space 

of possible ways of splitting the data.  Automating the construction and evaluation of 
possible decompositions is a fruitful avenue of research.  One crucial problem that 
must be overcome is finding some method for seeding this search space with expert 
knowledge.  Expert knowledge both reduces the size of the space and biases the 
results so that it better fits with what is known.  The output of educational data mining 
can certainly improve computer tutors, but if that is all it does that would be 



unfortunate.  As a field, we have several novel methodological hammers that are 
unavailable to domain researchers who aren’t using these approaches.  We must find 
ways to transfer what we learn to the broader research community.  By hand selecting 
two major hypotheses of learning and reading, we manually biased the search to have 
output that will (hopefully) have high impact.  Can we have automated search that 
produces results that are equally shareable?   

 Given that we have a set of high-level decompositions to perform, we still 
need to operationalize them.  For our analysis, massed practice was equated with 
seeing a word a 2nd time on the same day.  However, there are many ways to view 
“massed practice.”  Perhaps it means more than 5 practice attempts within 3 minutes?  
Maybe the first 2 attempts on the same day aren’t massed but subsequent ones are?  
There is a wide space of possible ways to instantiate the theory.  How do we know 
which is best?  Searching across instantiations of distributed practice is itself a large 
search space.  Can we afford to search both the space of good decompositions and the 
ways to instantiate the decompositions? 

 One hybrid approach is to accept that the high-level decompositions should 
come from humans who will (hopefully) use existing theory (e.g. mass vs. distributed 
practice) to generate decompositions, and spend computational resources on exploring 
that search space to find a good way to operationalize the decompositions.  Such an 
approach would seem to draw on the strengths of humans and computers.  Science is 
a social process and we need results that fit with existing theory (perhaps to 
disconfirm it) for domain researchers to take it seriously [7].  Spending time searching 
for new theory may not be productive if no one understands the results.  However, a 
specific instantiation of an expert generated decomposition should be understandable.  
For example, if instead our model of reading used the “5 practice attempts within 3 
minutes” definition of massed practice, the results wouldn’t be any harder or easier 
for others to understand.  Such a hybrid approach seems a promising route forward.     

 We would like to make statements of the form “Rereading is less helpful for 
developing reading proficiency than wide reading.”  Unfortunately, our data were not 
gathered from randomized trials, but rather are observational in nature.  However, by 
estimating practice effects per-student, we are able to make stronger claims than 
might be expected.  For example if Chris has a rereading parameter of 0.8, that means 
when rereading he learns 80% as much as Chris would normally learn.  By having the 
student act as his own control, we remove other constant factors that could act as 
confounds for our result.  For example, if less proficient students are the ones doing 
more rereading, our result would not be biased by the fact.  In general, by building 
per-student models we control for all trait information about the learner such as 
language aptitude, memory capacity, interest in learning, etc.  However, we do not 
control for transitory state information.  For example, if students only reread when 
they are tired after a poor night’s sleep (and are presumably less able to learn), that is 
a possible confound for our results.   

 Finally, our results were based on a set of assumptions about which words 
(first attempt at reading a word for the day) and which stories (first time the student 
read the story) were most indicative of learning.  These assumptions represent a best-
effort on the part of the authors.  However, a sensitivity analysis of specific the results 
are to our assumptions would be helpful.  We performed one such analysis and found 



that, qualitatively, the results were similar whether we looked at the first time a word 
was read in a day or the first time in a week.   

5 Contributions and conclusions 
This paper makes several contributions both methodologically and scientifically.  

From a methodology standpoint, learning decomposition extends learning curve 
analysis to enable estimation of the impact of various types of learning opportunities.  
The learning decomposition approach is broadly applicable to a wide variety of 
learning phenomena and is not specific to reading.  Furthermore, it is fast 
computationally and can be applied via a variety of off the shelf software packages.  
Finally, the output is easy to interpret and share with other researchers.   

 From a scientific standpoint, this work may resolve a debate in the reading 
community (is wide- or re-reading better and for whom).  If the goal of our work is to 
have impact beyond our own tutors, finding modeling approaches that are easily 
understandable by other communities must be a priority.  Our results on what type of 
reading practice helps the most have not yet been fully disseminated to the reading 
community so it is premature to comment on whether this approach will result in 
conclusions understandable to domain researchers.  However, an earlier version of 
this work was presented at the 2005 and 2006 Scientific Studies of Reading 
Conferences and was well received.   

 The closest related research is learning factors analysis (LFA) (e.g. [8]) Both 
LFA and learning decomposition are concerned with better understanding student 
learning.  LFA focuses on modifying the domain representation by adding, removing, 
or combining skills to create better fitting learning curves where the impact of various 
types of practice is assumed to be constant.  Learning decomposition focuses on 
determining the impact of various types of practice, and assumes the domain 
representation is constant.  A unified framework that simultaneously allows both the 
skills and impact of practice to vary would be desirable.   

 In conclusion, we have shown how learning decomposition can be applied to 
use observational data to estimate the effectiveness of different types of learning 
opportunities.  Our analyses show that in the domain of reading, different types of 
practice are more effective than others.  Specifically, reading new stories and spacing 
exposure to words is good for long-term learning.  Although our case-study was in the 
domain of reading, there is nothing domain specific about the learning decomposition 
approach, and it is broadly applicable to a variety of ITS.  Furthermore, the massed 
practice result has implications both for sequencing instruction and for student 
modeling in an ITS.  If a student model is not discounting learning opportunities that 
are temporally near each other, it is probably overestimating student knowledge.   
Finally, our bottom-up approach of using classification to detect important student 
subgroups, rather than relying on a priori beliefs about what disaggregation are 
important, was able to detect a subpopulation of students who benefits from an 
otherwise less effective treatment.  If fully realized, this capability to truly adapt an 
ITS’s instruction to meet the needs of learners would be a large step forward an ITS.   
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