
A Unified 5-Dimensional Framework for Student Models
Yanbo Xu and Jack Mostow

Carnegie Mellon University Project LISTEN
RI-NSH 4103

5000 Forbes Ave, Pittsburgh, PA 15213
{yanbox, mostow}@cs.cmu.edu

ABSTRACT
This paper defines 5 key dimensions of student models: whether
and how they model time, skill, noise, latent traits, and multiple
influences on student performance. We use this framework to
characterize and compare previous student models, analyze their
relative accuracy, and propose novel models suggested by gaps in
the multi-dimensional space. To illustrate the generative power of
this framework, we derive one such model, called HOT-DINA
(Higher Order Temporal, Deterministic Input, Noisy-And) and
evaluate it on synthetic and real data. We show it predicts student
performance better than previous methods, when, and why.

Keywords

Knowledge tracing, Item Response Theory, temporal models,
higher order latent trait models, multiple subskills, DINA.

1. Introduction
Morphological analysis [1] is a general method for exploring a
space of possible designs by identifying key attributes, specifying
possible values for each attribute, and considering different
combinations of choices for the attributes. Structuring the space
in this manner compares different designs in terms of which
attribute values they share, and which ones differ. Characterizing
the space of existing designs in terms of these attributes exposes
gaps in the space, suggesting novel combinations to explore.

Some prior work on student modeling has used this approach to
characterize spaces of possible knowledge tracing models.
Knowledge tracing (KT) [2] generally has 4 or 5 parameters: the
probability slip of failing on a known skill; the probability guess
of succeeding on an unknown skill; the probability knew of
knowing a skill before practicing it; the transition probability
learn from not knowing the skill to knowing it; and sometimes the
transition probability forget from knowing the skill to not
knowing it, usually assumed to be zero.

Mostow et al. [3] defined a space of alternative parameterizations
of a given KT model, based on whether they assigned each
knowledge tracing parameter a single overall value, a distinct
value for each individual student and/or skill, or different values
for different categories of students and/or skills. Thus the number
of values to fit is 4 if using a single global value for each
parameter, but with separate probabilities for each <student, skill>
pair, the number of values to fit is 4 × # students × # skills. This
work ordered the space of possible parameterizations of a single

model by the number of values to fit.

Xu and Mostow [4] factored the space of different knowledge
tracing models in terms of three attributes: how to fit their
parameters, how to predict students’ performance from their
estimated knowledge, and how to update those estimates based on
observed performance. We will use this factoring in Section 3.2.

Section 2 introduces the proposed framework. Section 0 describes
HOT-DINA, a novel knowledge tracing method that the
framework inspired. Sections 4 and 5 evaluate HOT-DINA on
synthetic and real data, respectively. Section 6 concludes.

2. A Unified 5-Dimensional Framework
We characterize student models in terms of these five dimensions:
Temporal effect: skills time-invariant vs. time-varying.

• Static, e.g. IRT [5] and PFA [6]
• 2 or more fixed time points, e.g. at pre- and post-test
• Dynamic, e.g. KT [2]

Skill dimensionality: single skill vs. multiple skills at a step.
Credit assignment: how credit (or blame) is allocated among
influences on the observed success (or failure) of a step. Mostow
et al. [3] define a space of KT parameterizations. Corbett and
Andersen [2] originally fit KT per skill. Pardos and Heffernan [7]
individualized KT and fit parameters per student. Wang and
Heffernan [8] simultaneously fit KT per student and per skill. In
contrast, multiple-skills models require combination functions to
assign credit or blame among the skills. Product KT [9] assigns
full responsibility to each skill and multiplies the estimates.
Conjunctive KT [10] assigns fair credit or blame to skills and
multiplies the estimates. Weakest KT [11] credits or blames the
weakest skill and takes the minimum of the estimates. LR-DBN
[12] apportions credit or blame and performs logistic regression
over the estimates. We summarize credit assignment methods as:

• Contingency table
o Per student
o Per skill
o Per <student, skill>
o Per student + per skill

• Binary or probabilistic
o Conjunctive (min)
o Independent (product)
o Disjunctive (max)

• Other
o Compensatory (+)
o Mixture (weighted average)
o Logistic regression (sigmoid)

Higher order: treat static student properties as latent traits or not.
We say IRT [5] models “higher order” effects because it estimates
static student proficiencies independent of skill properties such as
skill difficulty in 1PL (1 Parameter Logistic), skill discrimination
in 2PL, and skill guess rate in 3PL. De la Torre [13] first
combined IRT with static Cognitive Diagnosis Models such as

mailto:mostow%7d@cs.cmu.edu

NIDA (Noisy Inputs, Deterministic And Gate) [14-16] and DINA
(Deterministic Inputs, Noisy And Gate), and proposed higher
order latent trait models (HO-NIDA and HO-DINA). Xu and
Mostow [17] used IRT to estimate the probability of knowing a
skill initially in a higher order knowledge tracing model (HO-KT).
Noise: how to represent errors in model, or discrepancies between
what a student knows versus does. KT assumes students may
guess a step correctly even though they don’t know its underlying
skill(s), or slip at a step even though they know its skill(s). Such
“noise” is also characterized in other models, including single-
skill KT variants such as PPS (Prior Per Student) [7] and SSM
(Student Skill Model) [8], and IRT models such as 3PL. NIDO

and DINO respectively add noise either before or after combining
estimates of multiple skills. We refer to these noise modeling
methods as:

• None
• Slip/Guess
• NIDO (noisy input, deterministic output)
• DINO (deterministic input, noisy output)

Table 1 summarizes student models in the proposed unified 5-
dimensional framework. Note that we only discuss known
cognitive models (e.g. Q-matrix) in this paper, so we omit
methods that discover unknown cognitive models [18, 19].

Table 1. A unified 5-dimensional framework for student models

Student models Temporal
effect

Skill
dimensionality

Credit
assignment

Higher order
effect Noise model

IRT 1PL (Rasch model) [5]
IRT 2PL (2 Parameter Logistic) [5]

Static

Single skill Per student +
per skill Latent trait None

IRT 3PL (3 Parameter Logistic) [5] Slip/Guess
LLM (Linear Logistic Model) [16]

Multiple skills

Sigmoid
No latent trait

None LFA (Learning Factor Analysis) [20]
PFA (Performance Factor Analysis) [6]
NIDA [14-16] Product NIDO
DINA [14-16] DINA
LLTM (Linear Logistic Test Model) [21] Sigmoid

Latent trait
None

HO-NIDA [13] Product NIDO
HO-DINA [13] DINO
KT [2]

Dynamic

Single skill

Per skill
No latent trait

Slip/Guess
PPS (Prior Per Student) [7] Per student
SSM (Student Skill Model) [8]

Per student +
Per skill HO-KT [17] Latent trait

DIR (Dynamic IRT 1PL) [22] None
KT+NIDA [23]

Multiple skills

Product

No latent trait
NIDO Product KT [9]

CKT [10]
Weakest KT [11] Minimum
KT+DINA [23] Product DINO LR-DBN [12] Sigmoid
HOT-NIDA [Section 0] Product Latent trait NIDO
HOT-DINA [Section 0] DINO

Table 2. Comparative framework to train, predict and update multiple-skills models

Student models Train Predict Update

CKT

Train skills separately.
Assign each skill full

responsibility.

Multiply skill estimates.
Update skills together. Bayes’
equations assign responsibility.

Product KT

Update skills separately, each with
full responsibility.

Weakest KT
(Blame weakest,

credit rest) Minimum of skill
estimates.

Weakest KT
(Update weakest

skill) Update only the weakest skill. HOT-NIDA
HOT-DINA
[Section 3.2]

Train skills together.
Assign each skill full

responsibility.
Multiply skill estimates.

KT+NIDA/DINA Update skills together, each with
full responsibility.

LR-DBN Train skills together. Logistic
regression assigns responsibility.

Logistic regression on
skill estimates.

Update skills together. Logistic
regression assigns responsibility.

Table 2 (adapted from [4]) expands Credit assignment in terms
of how to train, predict and update skills, e.g. to assign full
responsibility to every skill, blame the weakest skill and credit
the rest, update only the weakest skill, or use logistic function.

The tables suggest transformations of models along the
dimensions in the framework. For example, Dynamic IRT [22]
varies student proficiency by time, transforming static IRT to
dynamic. KT+NIDA/DINA [23] varies skill estimates by time,
transforming static NIDA/DINA to dynamic. HO-
NIDA/DINA/KT adds latent traits, transforming
NIDA/DINA/KT to higher order. LLM [16] and LLTM [21]
change the combination function, transforming conjunctive
models to logistic models. In Section 0 we generate a novel
student model by transforming HO-KT to a multi-skill model.

3. A Higher-Order Temporal Student Model
to Trace Multiple Skills: HOT-DINA
Xu and Mostow [17] extended the static IRT model into HO-KT
(Higher Order Knowledge Tracing), which accounts for skill-
specific learning by using the static IRT model to estimate the
probability Pr(knew) of knowing a skill before practicing it. By
generalizing to steps that require conjunctions of multiple skills,
we arrive at a combined model we call HOT-DINA (Higher
Order Temporal, Deterministic Input, Noisy-And). Note we can
transform it into HOT-NIDA simply by changing its noise type.

3.1 HOT-DINA = IRT + KT + DINA
Let {Y(0), Y(1) , …, Y(t), …} denote a sequential dataset recorded
by an intelligent tutor system, where Ynj

(t) = 1 iff student n
correctly performs a step that requires skill j at time t. KT is a
Hidden Markov Model (HMM) that models a binary hidden
state K(t) indicating if the student knows the skill at time t. The
probability of knowing the skill is knew at time t = 0, and then
changes based on the student’s observed performance on the
skill, according to the standard KT parameters slip, guess, learn,
and forget (usually set to zero).

KT can fit these four parameters (taking forget = 0) for each
<student, skill> pair, but the resulting large number of values to
fit is likely to cause over-fitting. Thus, Corbett and Andersen [2]
originally proposed to estimate knew per student, and learn,
guess and slip per skill. IRT assumes a latent trait that represents
a student’s underlying proficiency in all the skills. For example,
the Two Parameters Logistic (2PL) IRT model assumes that the
probability of a student’s correct response is a logistic function
of a unidimensional student proficiency θ with two skill-specific
parameters: discriminability a and difficulty b (see Equation 1).

𝑃(𝑌 = 1) =
1

1 + exp (−1.7𝑎(𝜃 − 𝑏))

Equation 1. The logistic function of 2PL model
The two skill parameters determine the shape of the IRT curve.
As a student’s proficiency increases beyond the skill difficulty,
the student’s chance of performing correctly surpasses 50%. The
skill discriminability reflects how fast the logit (log odds)
increase or decrease when the proficiency changes. Thus IRT
fits parameters individually on each dimension, without losing
the information from the other. HO-KT uses 2PL to estimate
knew in KT, by fitting student specific proficiency θn, skill
discriminability aj and skill difficulty bj. It then uses KT to trace
each skill, by fitting skill-specific learnj, guessj and slipj. Thus,
HO-KT models students’ initial overall knowledge before they
practice any skills; then it updates its estimates of students’

knowledge of each individual skill by observing additional
practice on the skill. It also models two attributes of the skills,
difficulty and discriminability, which are assumed to be
constants that do not change over time.

To incorporate DINA into HO-KT, we still model a hidden
binary state in each step to indicate whether a student knows the
overall skill used in the step, denoted as ηnj

(t) for student n with
skill j at time t. However, we also model a hidden binary state
αnk

(t) to indicate whether student n knows skill k at time t. Given
a matrix Q = {Qjk}, indicating whether the overall skill j
requires skill k, we conjoin the skills as follows:

𝜂𝑛𝑗
(𝑡) = �(𝛼𝑛𝑘

(𝑡))𝑞𝑗𝑘
𝐾

𝑘 = 1

Equation 2. Conjunction of skills in HOT-DINA
This formula gives us the DINA (Deterministic Input, Noisy-
And gate) structure [15], with the conjunction as the “and” gate
and guess and slip as the noise. Thus by combining HO-KT with
DINA, we obtain the HOT-DINA higher order temporal model
to trace multiple skills. Figure 1 shows how the plate diagram
for HOT-DINA integrates IRT, KT, and DINA.

Figure 1. Graphical representation of Higher-Order

Temporal DINA (HOT-DINA) to trace multiple skills

Equation 3 shows the formula for using 2PL to estimate the
probability knew of a student knowing a skill at time t = 0:

𝑃(𝑘𝑛𝑒𝑤𝑛𝑘) = 𝑃 �𝛼𝑛𝑘
(0) = 1� =

1
1 + exp (−1.7 𝑎𝑘(𝜃𝑛 − 𝑏𝑘))

Equation 3. 2PL to estimate knew in HOT-DINA
Equation 4 shows the formula for tracing the skills with skill-
specific learn and zero forget:

𝑃�𝛼𝑛𝑘(𝑡) = 1�𝛼𝑛𝑘(𝑡−1) = 0� = 𝑙𝑒𝑎𝑟𝑛𝑘

𝑃�𝛼𝑛𝑘(𝑡) = 0�𝛼𝑛𝑘(𝑡−1) = 1� = 𝑓𝑜𝑟𝑔𝑒𝑡𝑘 = 0

Equation 4. Knowledge tracing of skills in HOT-DINA
Equation 5 shows the likelihood of a student’s performance
given the hidden state η(t) and the skill-specific guess and slip:

𝐿 �𝑌𝑛𝑗
(𝑡) = 1| 𝜂𝑛𝑗

(𝑡)� = 𝑔𝑢𝑒𝑠𝑠𝑗
�1−𝜂𝑛𝑗

(𝑡)� × (1 − 𝑠𝑙𝑖𝑝𝑗)𝜂𝑛𝑗
(𝑡)

𝐿 �𝑌𝑛𝑗
(𝑡) = 0| 𝜂𝑛𝑗

(𝑡)� = (1 − 𝑔𝑢𝑒𝑠𝑠𝑗)�1−𝜂𝑛𝑗
(𝑡)� × 𝑠𝑙𝑖𝑝𝑗

𝜂𝑛𝑗
(𝑡)

Equation 5. Likelihood in HOT-DINA

3.2 How to Train, Predict, and Update
Following the organization of Table 2, Section 3.2.1 details how
HOT-DINA trains the skills together and assigns each skill full
responsibility; Section 3.2.2 specifies how HOT-DINA predicts
student performance by using a product of skill estimates; and
Section 3.2.3 shows how HOT-DINA updates the weakest skill.

3.2.1 Training the model with MCMC
We estimate the parameters of HOT-DINA using Markov Chain
Monte Carlo (MCMC) methods, which require that we specify
the prior distributions and constraints for every parameter. We
assume that student general proficiency θn is normally
distributed with mean 0 and standard deviation 1. The skill
discrimination an is positive and uniformly distributed between 0
and 2.5, while the skill difficulty bn is also normally distributed
with mean 0 and standard deviation 1. Learn has prior Beta
(1,1), whereas guess and slip have uniform prior from 0 to 0.4.

Thus, the priors on each parameter are:

𝜃𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)

𝑏𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)

𝑎𝑘 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5)

𝑙𝑒𝑎𝑟𝑛𝑘 ~ 𝐵𝑒𝑡𝑎(1, 1)

𝑔𝑢𝑒𝑠𝑠𝑗 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4)

𝑠𝑙𝑖𝑝𝑗 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4)

We use the following conditional distributions for each node:

𝛼𝑛𝑘
(0)|𝜃𝑛 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖({1 + exp�−1.7 𝑎𝑘(𝜃𝑛 − 𝑏𝑘)�}−1)

𝛼𝑛𝑘(𝑡)| 𝛼𝑛𝑘(𝑡−1) = 0 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑒𝑎𝑟𝑛𝑘)

𝛼𝑛𝑘(𝑡)| 𝛼𝑛𝑘(𝑡−1) = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1)

𝑌𝑛𝑗(𝑡)|𝜂𝑛𝑗(𝑡) = 0 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑔𝑢𝑒𝑠𝑠𝑗)

𝑌𝑛𝑗(𝑡)|𝜂𝑛𝑗(𝑡) = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑠𝑙𝑖𝑝𝑗)

Given η as a conjunction of α, the likelihood of Y given η, the
conditional independence of α(0) given θ, and of α(t) given α(t-1),

the posterior distribution of θ, a, b, α, η, learn (l), guess (g) and
slip(s) given Y is

𝑃(𝜽,𝒂,𝒃,𝜶,𝜼, 𝒍,𝒈, 𝒔|𝒀) ∝ 𝐿(𝒀|𝒈, 𝒔,𝜼,𝜶)𝑃�𝜶(0)�𝜽,𝒂,𝒃�

(� 𝑃�𝜶(𝑡)�𝜶(𝑡−1), 𝒍�)𝑃(𝜽)𝑃(𝒂)𝑃(𝒃)𝑃(𝒍)𝑃(𝒈)𝑃(𝒔)
𝑇

𝑡 = 1

3.2.2 Predicting student performance
For inference, we introduce uncertainty to ηnj, and rewrite the
Equation 2 as follows:

𝑃 �𝜂𝑛𝑗
(0) = 1� = ��

1
exp�−1.7𝑎𝑘(𝜃𝑛 − 𝑏𝑘)�

�
𝑞𝑗𝑘𝐾

𝑘 = 1

𝑃 �𝜂𝑛𝑗
(𝑡) = 1� = ∏ (𝑃(𝛼𝑛𝑘

(𝑡) = 1))𝑞𝑗𝑘)𝐾
𝑘 = 1 for t = 1,2,3…

Equation 6. Conjunction of skills in HOT-DINA inference

Then we predict student performance by using Equation 7:

𝑃�𝑌𝑛𝑗
(𝑡) = 1� = �1− 𝑠𝑙𝑖𝑝𝑗�𝑃�𝜂𝑛𝑗

(𝑡) = 1� + 𝑔𝑢𝑒𝑠𝑠𝑗(1

− 𝑃�𝜂𝑛𝑗
(𝑡) = 1�)

Equation 7. Prediction in HOT-DINA

3.2.3 Updating estimated skills
We update the estimates of latent states η and α after observing
actual student performance. The estimate of knowing a skill or a
subskill should increase if the student performed correctly at the
step. It is easy to update a skill by using Bayes’ rule, as shown in
Equation 8. The posterior P(ηnj

(t) = 1|Ynj
(t) = 1) should be higher

than P(ηnj
(t) = 1) if and only if (1-slipj) > guessj.

𝑃 �𝜂𝑛𝑗
(𝑡) = 1�𝑌𝑛𝑗

(𝑡) = 1�

=
𝑃�𝑌𝑛𝑗

(𝑡) = 1� 𝜂𝑛𝑗
(𝑡) = 1) 𝑃�𝜂𝑛𝑗

(𝑡) = 1�

𝑃 �𝑌𝑛𝑗
(𝑡) = 1�

 =
(1−𝑠𝑙𝑖𝑝𝑗) 𝑃�𝜂𝑛𝑗

(𝑡) = 1�

(1−𝑠𝑙𝑖𝑝𝑗) 𝑃�𝜂𝑛𝑗
(𝑡) = 1�+𝑔𝑢𝑒𝑠𝑠𝑗�1− 𝑃�𝜂𝑛𝑗

(𝑡) = 1��

Equation 8. Bayes’ rule to update η in HOT-DINA
Although we could update HOT-DINA by assigning full
responsibility to each skill, it would be interesting to update the
weakest (or say hardest) skill since HOT-DINA fits the
parameter ‘difficulty’ for each skill. Thus, we update the skill
that is the hardest among all the required skills in a step:

𝑃 �𝜂𝑛𝑗
(𝑡) = 1�𝑌𝑛𝑗

(𝑡) = 1�

= 𝑃 �𝛼𝑛𝑘′
(𝑡) = 1|𝑌𝑛𝑗

(𝑡) = 1�� 𝑃(𝛼𝑛𝑘
(𝑡)

𝑘≠𝑘′
= 1)

for 𝑘 = arg max𝑘: 𝑄𝑗𝑘 = 1 𝑏𝑘.

Equation 9. Update the hardest skill in HOT-DINA
In short, we extend HO-KT to the HOT-DINA higher order
temporal model, which traces multiple skills. We use the
MCMC algorithm to estimate the parameters, and update the
estimates of a student knowing a skill given observed student
performance. How well does the HOT-DINA model work? To
evaluate it, we performed a simulation study. Section 4 now
describes the study and reports its results.

4. Simulation Study
To study the behavior of HOT-DINA, we generated synthetic
training data for it according to the priors and conditional
distributions defined in Section 3.2.1. Section 4.1 describes the
synthetic data. One purpose of this experiment was to test how
accurately MCMC can recover the parameters of HOT-DINA,
as Section 4.2 reports. It is important not only to test how well a
method works, but to analyze when and why. Thus another
purpose was to determine how many students and observations
are needed to estimate the difficulty and discriminability of a
given number of skills, as Section 4.3 explains.

4.1 Synthetic Data
We use the following procedure to generate the synthetic data,
with all the variables as defined in Section 3.2:

1. We chose K = 4 and J = 14, which results in a 14 × 4 Q
matrix. The Q matrix, as shown below, indicates that we
generate the skills by combining all the possible skills.
𝐐T

= �
1 0 0
0 1 0

0 1 1
0 1 0

1 0 0 0 1 1 1 0
0 1 1 0 1 0 1 1

0 0 1
0 0 0

0 0 1
1 0 0

0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1

�

2. We randomly generated θn from Normal (0,1) for n = 1,..,N.

3. We chose a, b and l as shown in Table 3.

Table 3. True value of skill-specific discrimination, difficulty
and learning rate in synthetic data simulation

k 1 2 3 4
a 1.5 1.2 1.9 1.0
b -0.95 1.42 -0.66 0.50

learn 0.8 0.6 0.5 0.3

4. We randomly generated g and 1-s from Unif(0,0.4) and

Unif (0.6,1) respectively, as shown in Table 4.

Table 4. True value of skill-specific guess and not slip
parameters in synthetic data simulation

j 1 2 3 4 5 6 7
guess 0.35 0.40 0.13 0.15 0.29 0.39 0.10
1-slip 0.67 0.66 0.67 0.90 0.65 0.60 0.61

j 8 9 10 11 12 13 14
guess 0.40 0.15 0.16 0.38 0.11 0.26 0.35
1-slip 0.81 0.74 0.76 0.73 0.83 0.89 0.85

5. We chose N = 100, T = 100, randomly picked one skill at
each step, and simulated sequential data with size of 10,000.

4.2 Results
We used OpenBUGS [24] to implement the MCMC algorithm
of HOT-DINA. We chose 5 chains starting at different initial
points. We monitored the estimates of skill discrimination 𝒂� and
difficulty 𝒃� to check their convergence, when all the chains
appear to be overlapping each other. As a result, we ran the
simulation for 10,000 iterations with a burn-in of 3000.

Table 5 reports the sample means and their 95% confidence
interval for parameter estimates 𝒂� , 𝒃� and le𝒂�rn respectively.
We also report the Monte Carlo error (MC error) and sample
standard deviation (s.d.) to assess the accuracy of the posterior
estimates for each parameter. MC error, which is an estimate of
the difference between the estimated posterior mean (i.e. the

sample mean) and the true posterior mean, should be less than
5% of the s.d. in order to obtain an accurate posterior estimate.

Table 5. Estimates of skill-specific discrimination, difficulty,
and learning rate (N = 100, T = 100, K = 4, J = 14)

k a 𝒂� (95% C.I.) s.d. MC_error
1 1.50 1.33 (0.36, 2.43) 0.65 0.03216
2 1.20 1.23 (0.12, 2.43) 0.72 0.03561
3 1.90 1.85 (0.22, 2.73) 0.64 0.03146
4 1.00 0.98 (0.19, 2.12) 0.58 0.02870
k b 𝒃� (95% C.I.) s.d. MC_error
1 -0.95 -0.95 (-2.15, -0.04) 0.50 0.02339
2 1.42 1.51(0.90, 2.21) 0.45 0.01936
3 -0.66 -0.69 (-1.81, -0.63) 0.42 0.01990
4 0.5 0.5 (0.05,1.18) 0.38 0.01691
k learn 𝒍𝒆𝒂�𝒓𝒏 (95% C.I.) s.d. MC_error
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04

We calculated Root Mean Squared Error (RMSE) of the
estimates of the continuous variables 𝒈𝒖𝒆�𝒔𝒔 , 1- 𝒔𝒍�̂�𝒑 , and
𝜽�. We report the accuracy of recovering the true value of the
latent binary variable α in Table 6.

Table 6. Estimation RMSE of skill-specific guess, not slip,
and student specific proficiency; Prediction accuracy of a

student mastering a subskill (N = 100, T = 100, K = 4, J = 14)

 𝒈𝒖𝒆�𝒔𝒔 1-𝒔𝒍�̂�𝒑 𝜽�
RMSE 0.0103 0.0196 0.9183
 𝜶�
Accuracy 99.38%

From the results, we can see that the MCMC algorithm
accurately recovered the parameters we used in generating the
synthetic data for HOT-DINA. In addition to seeing how
accurately it can estimate the parameters, we are also interested
in finding out how many observations would be sufficient for
the training algorithm to recover the hidden variables. Therefore,
we conducted the study we now describe in Section 4.3.

4.3 Study Design
HOT-DINA requires data from enough students to rate the
difficulty and discriminability of each skill, and data on enough
skills to estimate the proficiency of each student. So we fixed
the number of skills at K = 4, and varied the number of students
N or the number of steps observed from each student T, to
discover how many observations would be sufficient to estimate
the parameters. In particular, we evaluated each model on how
accurately it estimated the latent binary state α¸ which indicates
if a student masters a skill. We generated the data by using the
same parameters as in Section 4.1. Besides the general HOT-
DINA model that accounts for multiple skills, we also studied
the single-skill model by shrinking the number of skills J to
equal K, and set Q as an identity matrix. Thus we specified the
HOT-DINA model to be a HO-KT model alternatively.

We increased N, the number of students, from 10 to 1000, and
T, the number of observations per student, from 5 to 100. Table
7 and Table 8 respectively show the accuracy of estimating the
latent state α in HO-KT and HOT-DINA. Both tables show a

trend of increasing accuracy when N or T increases (though at
the cost of longer training time, roughly O(N2×T)).

Table 7. Accuracy of estimating the latent binary states α
with different N and T (K = J = 4)

T
N

5 10 20 50 100

10 71.01% 80.81% 83.01% 93.11% 96.16%

20 72.32% 82.74% 86.52% 94.06% 97.33%

50 73.58% 83.79% 87.34% 95.27% 98.90%

100 77.55% 84.43% 88.08% 95.81% 99.41%

200 76.52% 84.02% 89.48% 97.26% NA

500 78.13% 84.34% 92.50% NA NA

1000 80.10% 84.59% NA NA NA

Due to the lack of sampling ability of OpenBUGS for high
dimensional dynamic models, we have no available scores to
show for N×T bigger than 10,000. We can see that the multiple
skill model predicts better than the single-skill model because
the average number of observations per skill in the former one is
larger than the latter. As observed in both tables, it is more
efficient to increase T, than N, to get a better estimate. Both of
the models reach the best prediction accuracy score (> 99%)
when N = 100 and T = 100. In order to obtain an accuracy >
90% for K = 4 skills, the least amount of data we need for HO-
KT is N = 10 with T ≈ 50 observations as shown in Table 7, for
HOT-DINA is N = 10 with T > 20 observations, as shown in
Table 8.

Table 8. Accuracy of estimating the latent binary states α

with different N and T (K = 4, J = 14)
T

N
5 10 20 50 100

10 72.07% 75.57% 91.14% 96.90% 98.10%

20 74.32% 83.60% 91.56% 97.46% 98.53%

50 76.55% 84.71% 92.62% 97.52% 98.98%

100 77.80% 86.82% 93.83% 97.67% 99.82%

200 79.92% 88.78% 94.26% 99.41% NA

500 82.15% 89.95% 98.61% NA NA

1000 83.58% 92.34% NA NA NA

Next we apply the proposed model to real data logged by an
algebra tutor. We evaluate the model fit and compare it against
two baselines.

5. Evaluation on Real Data
We apply HOT-DINA to a real dataset from the Algebra
Cognitive Tutor® [25]. Because of limited time, we chose a
subset of the data, by crossing out the “isolated” algebra tutor
steps. An “isolated” step here means a step that requires one
skill all its own. We grouped the remaining steps that require the
same multiple skills into one skill, resulting in J = 15 distinct
skills that require K = 12 subskills. Following the study design
in Section 4.3, we randomly chose N = 50 students with T = 100
in order to obtain enough data for the MCMC estimation.

Table 9. Data split of the Algebra Tutor data: training on I
and IV, and testing on II and III

 Skill group A Skill group B
Student group A I II
Student group B III IV

We split the 50 students into two groups of 25, and split the 15
skills into two groups of 8 and 7. As shown in Table 9, we
combine data from I (student-group-A practicing on skill-group-
A) and IV (student-group-B practicing on skill-group-B) to
obtain the training data. Accordingly, we combined the data
from II and III to obtain the test data. As a benefit of the data
split, we are able to test the models on unseen students for the
same group of skills, and also test on the unseen skills for the
same group of students.

We compared HOT-DINA with the conjunctive minimum KT
model [11] since it showed the best prediction accuracy among
all the previous KT based methods [4]. It fits KT parameters by
blaming each skill that is required at a step, predicts student’s
performance by the weakest skill, and updates only the weakest
skill. Accordingly, we updated the most difficult skill in HOT-
DINA as discussed in Section 3.2.3. As two baseline models, we
fit per-skill KT and per-student KT. Comparing HOT-DINA
with these two baselines also allows us to discuss some more
interesting research questions later in this section.

Table 10 and Table 11 respectively show the models’ prediction
accuracy and log-likelihood on the test data. We report the
majority class because of the unbalanced data. HOT-DINA beat
the two baselines in predicting the student performance, and also
obtained the maximum log-likelihood on the test data. The per-
student KT model obtained the worst scores on both measures. It
predicted student performance almost as poorly as majority class
because it misclassified almost all the data in the minority class.

Table 10. Comparison of prediction accuracy on real test
data

 Overall
Accuracy

Accuracy on
Correct Steps

Accuracy on
Incorrect Steps

HOT-DINA 82.48% 96.63% 27.27%
Per-skill KT 80.87% 94.02% 29.60%
Per-student KT 79.63% 99.74% 1.20%
Majority class 79.60% 100.00% 0.00%

Table 11. Comparison of log-likelihood on real test data

 Log-likelihood
HOT-DINA -2021.04
Per-skill KT -2075.67
Per-student KT -2464.74

We are also interested in three other hypotheses comparing
HOT-DINA with KT. We describe them, test them, and show
the results as follows.

1. HOT-DINA should predict early steps more accurately than
KT since its estimate of knew reflects both skill difficulty
and student proficiency, not just one or the other. In fact
HOT-DINA beat KT throughout, as Figure 2 shows.

Figure 2. Accuracy on student’s 1st, 2nd, 3rd, … test steps

2. HOT-DINA should beat KT on sparsely trained skills
thanks to student proficiency estimates based on other
skills. As Figure 3 shows, HOT-DINA tied or beat KT
throughout.

Figure 3. Skills sorted by amount of training data

3. HOT-DINA should beat KT on sparsely trained students
thanks to skill difficulty and discriminability estimates
based on other students. As Figure 4 shows, HOT-DINA
beat KT throughout.

Figure 4. Students sorted by amount of training data

Thus, HOT-DINA outperformed the two baselines in model fit.
It also beat them as specified by the three hypotheses above.

6. Contributions, limitations, future work
In this paper we make several contributions. We defined a 5-
dimensional framework for student models. We showed how
numerous student models fit into it. We described the new
combination of IRT, KT, and DINA it suggests in the form of
HOT-DINA. We specified how to train HOT-DINA by using
MCMC, how to test it by predicting student performance, and
how to update estimated skills based on observed performance.

HOT-DINA uses IRT to estimate knew based on student
proficiency and skill difficulty. Thus it does not need training
data on every <student, skill> pair, since it can estimate student
proficiency based on other skills, and skill difficulty and
discriminability based on other students. Likewise, it should
estimate knew more accurately than KT for skills and students
with sparse training data. HOT-DINA uses KT to model
learning over time, and DINA to model combination of multiple
skills underlying observed steps (unlike conventional KT and
with fewer parameters than CKT [10] or LR-DBN [12]).

Tracing multiple skills underlying an observed step requires
allocating responsibility among them for its success or failure.
DINA simply conjoins them, a common method but inferior to
others. Future work includes using the best known method [4],
which we didn’t use here because the logistic regression it
performs is non-trivial to integrate with MCMC.

We evaluated HOT-DINA on synthetic and real data, not only
showing that it predicts student performance better than previous
methods, but analyzing when and why.

We reported a simulation study to test if training could recover
model parameters, and to determine the amount of data needed.
HOT-DINA requires data on enough students and skills to
estimate their proficiency and difficulty, respectively. We
explored how its accuracy varies with the number of test steps
and the amount of training data per student and per skill. These
analyses were correlational, based on variations that happened to
occur in the training data. Future work should invest in the
computation required to vary the amount of training data to
establish its true causal effect on accuracy.

Evaluation on real data from an algebra tutor showed that HOT-
DINA achieved higher predictive accuracy and log likelihood
than KT with parameters fit per student or per skill. This
evaluation was limited to a single data set and two baselines (not
counting majority class). Future work should compare HOT-
DINA to other methods – notably the Student Skill model [8],
which is similar in spirit – and on data from other tutors.

We assumed that student proficiency is one-dimensional. Future
work can test if k dimensions capture enough additional variance
to make it worthwhile to fit k times as many parameters.

Finally, our choice of 5 dimensions is useful but limiting.
Additional dimensions may provide useful finer-grained insights
into the models covered by the current framework, and expand it
to encompass other types of student models, e.g. where the
cognitive model is unknown and must be discovered [18, 19].

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation through Grants 1124240 and 1121873 to Carnegie
Mellon University. The opinions expressed are those of the
authors and do not necessarily represent the views of the
National Science Foundation or U.S. government. We thank
Ken Koedinger for his algebra tutor data.

70%

75%

80%

85%

90%

95%

1 2 5 8 10 12 15 18 20 25 30 40 50 100150

Per-student KT Per-subskill KT

HOT-DINA Majority class

0%
20%
40%
60%
80%

100%

21 40 64 72 72 10
4

16
8

17
0

25
7

26
6

33
4

33
4

38
0

81
1

18
64

Per-subskill KT HOT-DINA

Majority class

60%
65%
70%
75%
80%
85%
90%
95%

100%

16 51 75 84 88 91 99 10
2

10
5

10
9

11
1

11
4

11
6

11
7

12
1

12
6

13
0

Per-student KT HOT-DINA Majority class

REFERENCES
[1] Zwicky, F. Discovery, Invention, Research - Through the
Morphological Approach. 1969, Toronto: The Macmillian
Company.

[2] Corbett, A. and J. Anderson. Knowledge tracing: Modeling
the acquisition of procedural knowledge. User modeling and
user-adapted interaction, 1995. 4: p. 253-278.

[3] Mostow, J., Y. Xu, and M. Munna. Desperately Seeking
Subscripts: Towards Automated Model Parameterization.
Proceedings of the 4th International Conference on Educational
Data Mining, 283-287. 2011. Eindhoven, Netherlands.

[4] Xu, Y. and J. Mostow. Comparison of methods to trace
multiple subskills: Is LR-DBN best? [Best Student Paper
Award]. Proceedings of the Fifth International Conference on
Educational Data Mining, 41-48. 2012. Chania, Crete, Greece.

[5] Hambleton, R.K., H. Swaminathan, and H.J. Rogers.
Fundamentals of Item Response Theory. Measurement Methods
for the Social Science. 1991, Newbury Park, CA: Sage Press.

[6] Pavlik Jr., P.I., H. Cen, and K.R. Koedinger. Performance
factors analysis - a new alternative to knowledge tracing.
Proceedings of the 14th International Conference on Artificial
Intelligence in Education (AIED09), 531-538. 2009.

[7] Pardos, Z. and N. Heffernan. Modeling individualization in
a Bayesian networks implementation of knowledge tracing.
Proceedings of the 18th International Conference on User
Modeling, Adaptation and Personalization, 255-266. 2010. Big
Island, Hawaii.

[8] Wang, Y. and N.T. Heffernan. The student skill model.
Intelligent Tutoring Systems - 11th International Conference,
399-404. 2012. Chania, Crete, Greece. Springer.

[9] Cen, H., K.R. Koedinger, and B. Junker. Comparing Two
IRT Models for Conjunctive Skills. Ninth International
Conference on Intelligent Tutoring Systems, 796-798. 2008.
Montreal.

[10] Koedinger, K.R., P.I. Pavlik, J. Stamper, T. Nixon, and S.
Ritter. Avoiding problem selection thrashing with conjunctive
knowledge tracing. In Proceedings of the 4th International
Conference on Educational Data Mining. 2011: Eindhoven, NL,
p. 91-100.

[11] Gong, Y., J.E. Beck, and N.T. Heffernan. Comparing
knowledge tracing and performance factor analysis by using
multiple model fitting procedures. Proceedings of the 10th
International Conference on Intelligent Tutoring Systems, 35-44.
2010. Pittsburgh, PA. Springer Berlin / Heidelberg.

[12] Xu, Y. and J. Mostow. Using logistic regression to trace
multiple subskills in a dynamic Bayes net. Proceedings of the
4th International Conference on Educational Data Mining, 241-
245. 2011. Eindhoven, Netherlands.

[13] de la Torre, J. and J.A. Douglas. Higher-order latent trait
models for cognitive diagnosis. Psychometrika 2004. 69(3): p.
333-353.

[14] Junker, B. and K. Sijtsma. Cognitive assessment models
with few assumptions, and connections with nonparametric item
response theory. Applied Psychological Measurement, 2001.
25(3): p. 258-272.

[15] de la Torre, J. DINA Model and Parameter Estimation: A
Didactic Journal of Educational and Behavioral Statistics, 2009.
34(1): p. 115-130.

[16] Maris, E. Estimating multiple classification latent class
models. Psychometrika, 1999. 64(2): p. 197–212.

[17] Xu, Y. and J. Mostow. Using item response theory to
refine knowledge tracing. In Proceedings of the 6th
International Conference on Educational Data Mining, S.K.
D’Mello, R.A. Calvo, and A. Olney, Editors. 2013, International
Educational Data Mining Society: Memphis, TN, p. 356-357.

[18] González-Brenes, J.P. and J. Mostow. What and when do
students learn? Fully data-driven joint estimation of cognitive
and student models. In Proceedings of the 6th International
Conference on Educational Data Mining, S.K. D’Mello, R.A.
Calvo, and A. Olney, Editors. 2013, International Educational
Data Mining Society: Memphis, TN, p. 236-239.

[19] González-Brenes, J.P. and J. Mostow. Dynamic cognitive
tracing: towards unified discovery of student and cognitive
models. Proceedings of the Fifth International Conference on
Educational Data Mining 2012. Chania, Crete, Greece.

[20] Cen, H., K. Koedinger, and B. Junker. Learning factors
analysis – a general method for cognitive model evaluation and
improvement. Proceedings of the 8th International Conference
on Intelligent Tutoring Systems, 164-175. 2006. Jhongli,
Taiwan.

[21] Fischer, G.H. The linear logistic test model. In G.H.
Fischer and I.W. Molenaar, Editors, Rasch Models:
Foundations, Recent Developments, and Applications, 131-155.
Springer: New York, 1995.

[22] Wang, X., J.O. Berger, and D.S. Burdick. Bayesian
analysis of dynamic item response models in educational testing.
Annals of Applied Statistics, 2013. 7(1): p. 126-153.

[23] Studer, C. Incorporating Learning Over Time into the
Cognitive Assessment Framework. Unpublished PhD, Carnegie
Mellon University, Pittsburgh, PA, 2012.

[24] Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. The
BUGS project: Evolution, critique and future directions.
Statistics in Medicine, 2009. 28: p. 3049–306.

[25] Koedinger, K.R., R.S.J.d. Baker, K. Cunningham, A.
Skogsholm, B. Leber, and J. Stamper. A data repository for the
EDM community: the PSLC DataShop. In C. Romero, et al.,
Editors, Handbook of Educational Data Mining, 43-55. CRC
Press: Boca Raton, FL, 2010.

	1. Introduction
	2. A Unified 5-Dimensional Framework
	3. A Higher-Order Temporal Student Model to Trace Multiple Skills: HOT-DINA
	3.1 HOT-DINA = IRT + KT + DINA
	3.2 How to Train, Predict, and Update
	3.2.1 Training the model with MCMC
	3.2.2 Predicting student performance
	3.2.3 Updating estimated skills

	4. Simulation Study
	4.1 Synthetic Data
	4.2 Results
	4.3 Study Design

	5. Evaluation on Real Data
	6. Contributions, limitations, future work
	ACKNOWLEDGMENTS
	REFERENCES

