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________________________________________________________________________ 
 

A key issue in using machine learning to classify tutorial dialogues is how to represent time-varying data.  
Standard classifiers take as input a feature vector and output its predicted label.  It is possible to formulate 

tutorial dialogue classification problems in this way. However, a feature vector representation requires mapping 

a dialogue onto a fixed number of features, and does not innately exploit its sequential nature.  In contrast, this 
paper explores a recent method that classifies sequences, using a technique new to the Educational Data Mining 

community – Hidden Conditional Random Fields [Quattoni et al., 2007].  We illustrate its application to a data 

set from Project LISTEN's Reading Tutor, and compare it to three baselines using the same data, cross-

validation splits, and feature set.  Our technique produces state-of-the-art classification accuracy in predicting 

reading task completion. We consider the contributions of this paper to be (i) introducing HCRFs to the EDM 

community, (ii) formulating tutorial dialogue classification as a sequence classification problem, and (iii) 
evaluating and comparing dialogue classification. 
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1. INTRODUCTION  

Researchers in education have long distinguished a student trait, a characteristic that is 

relatively constant, from a student state, a characteristic that changes thorough time 

[Reigeluth, 1983].  In this paper, we discuss how to train a classifier to represent time-

varying characteristics of student states.  

We illustrate our discussion with an example. Suppose we are classifying computer-

student dialogues using the single feature “turn duration”.  Figure 1 shows the duration of 

each of the turns in a dialogue (9s, 8s, 5s, 7s, and 6s respectively).  Conventional 

classifiers, like logistic regression or decision trees, rely on a fixed-size feature vector as 

an input; hence, we have to decide a priori how many features we are going to include. 

But, how to map into a fixed-size feature vector a dialogue that may vary in number of 

turns? One approach is to extract features from a window, either from the beginning or 

the end of the dialogue  [González-Brenes and Mostow, 2011]. There are (at least) two 

alternative approaches: (i) averaging the value of the features in the window – in our 

example, it would be a single feature with value 6.0; or (ii) having a feature for every turn 

– in our example, three features with values 5, 7 and 6.  Once we transform dialogues into 

feature vectors, we can train conventional classifiers on them.  

 
Mapping dialogues into feature vectors does not innately capture or exploit the 

sequential nature of dialogue.  Furthermore, it is not clear how appropriate the window 

strategy is, since short windows may exclude important information, whereas long 

windows may have too many missing values. In this paper, we consider the alternative 

approach of classifying over the entire dialogue using sequences, by applying Hidden 

Markov Models, and we introduce a recent technique, Hidden Conditional Random Field 

(HCRF) [Quattoni et al., 2007]. 

Figure 1: Dialogue described by a single feature 
window 
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The rest of this paper is organized as follows. Section 2 discusses relation to prior work. 

Section 3 describes the different feature vector and sequence classifiers we consider to 

classify dialogues. Section 4 presents empirical results on a classification task to predict 

whether a student will complete a reading task. Section 5 concludes. 

2. RELATION TO PRIOR WORK 

Previous work on representations of data in language technologies has relied on feature 

vectors using bag of word representations, n-grams, or their projections into latent space 

[Wallach, 2006].  Alternatively, kernels have allowed richer representations.  For 

example, for text classification, the String Kernel [Lodhi et al., 2002], represents 

documents in a feature space of all of the substrings of length k.  A similar feature vector 

representation would involve a prohibitive amount of computation, since the size of the 

feature vector space grows exponentially with k. Sequence Kernels have been used for 

speaker verification to map the audio signal sequence into a single feature vector using 

polynomial expansions [Louradour et al., 2006]. We are unaware of alternative 

classification approaches for dialogue other than using feature vectors. 

 Classification of sequences can be categorized in three different ways [Xing et al., 

2010]:  feature vector based classification, model based classification, and distance based 

classification.  In the rest of this section, we discuss previous approaches to dialogue 

classification in these categories. 

2.1 Feature Vector Based Dialogue Classification 

As discussed earlier, sequences can be mapped into fixed-size feature vectors.  As far as 

we know, all of the previous approaches in classification of tutorial dialogue have 

ignored the sequential nature of dialogue, constraining dialogue into a fixed-size 

representation.  For example, predicting dialogue completion has been studied 

extensively in the literature, relying on a feature vector representation [González-Brenes 

et al., 2009; González-Brenes and Mostow, 2010; González-Brenes and Mostow, 2011; 

Hajdinjak and Mihelic, 2006; Möller et al., 2008; Möller et al., 2007; Walker et al., 2001]. 

2.2 Model Based Dialogue Classification 

Model based classification models sequences directly, for example using Hidden Markov 

Models (HMMs).  In this paper, we advocate for model based approaches over using 

feature vectors.  

HMMs have been used extensively in language technologies, for example in topic 

segmentation [Eisenstein et al., 2008]. In the dialogue community, to our knowledge, 

HMMs have been used only to segment dialogue [Stolcke et al., 2000], but not to classify 

it as we do here.   A growing body of work has investigated how to use policy learning to 

improve tutorial effectiveness [Ai et al., 2007; Beck, 2004; Beck and Woolf, 2000; Boyer 

et al., 2010; Chi et al., 2008; Chi et al., 2010]. Policy learning often relies on Markov 

Decision Processes (MPDs) [Singh et al., 1999] to learn a strategy that maximizes the 

expected value of a specified reward function.   MDPs are very similar to HMMs in that 

the input is a sequence.  However, learning a strategy for what to do at each point in a 

dialogue is a different problem than learning a classifier. Although speech is traditionally 

modeled as a sequence of phonemes [Gunawardana et al., 2005], we believe we are the 

first to model  dialogues without using feature vectors. We do not know of any previous 

use of HCRFs in the Educational Data Mining community. 

2.3 Distance Based Classification 

Distance-based methods for sequence analysis rely on a distance function to measure the 

similarity between two sequences.  Dialogue System Difference Finder [González-Brenes 



 

et al., 2009] defines a distance function between dialogues described by feature vectors. 

We are unaware of distance functions between dialogues that model dialogues as 

sequences.   

3. DIALOGUE CLASSIFICATION 

In this section, we discuss the classification algorithms we considered to model tutorial 

dialogue behavior using either feature vectors or sequences. For feature vector 

classification we considered Maximum Entropy Classification [Berger et al., 1996] and 

Random Forest [Breiman, 2004]. We used Maximum Entropy Classification, often called 

Logistic Regression, as a baseline because of its recent success in classifying tutorial 

dialogue [González-Brenes and Mostow, 2011].  Random Forest, often called Ensemble 

of Decision Trees, has provided good empirical results in the EDM community, having 

being used in the winning submission of the Educational Data Mining Challenge at 

SIGKDD 2010.  

Alternatively, for classifying sequences, we use the popular Hidden Markov Model 

(HMM) approach [Rabiner, 1989]. We also introduce to the EDM community a recent 

technique called Hidden Conditional Random Fields (HCRFs), which have been applied 

to other domains [Gunawardana et al., 2005; Sy Bor, 2006]; for details of their 

implementation, see [Quattoni et al., 2007]. 

Maximum Entropy, and HCRF can be formulated under an approach called risk 

minimization [Obozinski et al., 2007], where the parameters are estimated by maximizing 

the fit to the training data while penalizing model complexity (number of features).  

Better fit to the training data favors classification accuracy in the training set, but risks 

over-fitting the model to the data.  Conversely, low model complexity sacrifices 

classification accuracy on the training set in hopes of generalizing better to unseen data. 

Both Maximum Entropy and HCRF are log-linear and discriminative – they model the 

differences between class labels without inferring generative models of the training data. 

However, they differ in the way they calculate the fit to the training data: HCRFs use a 

latent variable (a hidden state) to model input sequences, while logistic regression uses 

feature vectors.  To penalize complexity, they both rely on regularization penalties.  The 

two most popular regularization penalties are the L1 norm and the L2 norm of the feature 

vector [Ng, 2004].  The L1 norm selects fewer features than the L2 norm, and hence it is 

used when interpretability of the model is desired, or when the number of features 

exceeds the number of data points. Conversely, when the number of features is small 

compared to the training data, the L2 norm offers better predictive power [Zou and Hastie, 

2005]. The trade-off between fit to the training data and model complexity is controlled 

by a so-called regularization hyper-parameter, often optimized during cross-validation 

using a held-out set of development data. 

Random Forest is an ensemble of decision trees. To avoid over-fitting, each tree is 

grown using only a random subset of the features and a random subset of the training data. 

The training procedure grows each tree greedily, selecting the best decision split at each 

node, and stopping when each leaf has five data points, with no pruning.  During testing, 

Random Forest returns the class predicted by the largest number of decision trees. 

Random Forest does not assume that the data belongs to any particular distribution, and 

hence it is considered a non-parametric approach. 

An HMM is a generative classifier.  Thus to distinguish between two classes, it requires 

two models:  one for the positive class, and one for the negative class. Like an HCRF, an 

HMM models its input as a sequence, and uses a latent variable to model hidden state.  

Using hidden variables in HCRFs and HMMs converts the learning problem into non-

convex optimization.  Consequently, the parameters used to initialize the model in the 

training procedure affect its final performance. 



 

 

In Table II, we show a summary of the differences between the classifiers we described. 

The plate diagrams of Maximum Entropy, HCRFs, and HMMs follow the convention of 

coloring the circles of the variables that are observable during training.  The outcome 

variable y is the class label we want to learn. For example, we may label dialogues with 

y=+1 if they were completed successfully, and y=-1 otherwise. For feature vector 

classification, x is a feature vector describing an entire dialogue. In contrast, for sequence 

classification, xt is the value of the features at time t. For example, x can represent the 

duration of each turn in the dialogue.  The hidden discrete variable st is not directly 

observed. Figure 2 expands the plate notation of Table II for HCRFs. The undirected 

graphical model notation indicates that a variable is independent of all the other variables 

given its neighbors.  For example, the hidden state sT is independent of all other variables 

given y, xT, and sT-1. Instead of drawing each repeated variable, a plate is used to group 

repeated variables. The class label y depends only on the hidden states.  The directed 

graph notation to represent HMMs uses a conventional Bayesian Network representation. 
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Figure 2: Graphical representation of a Hidden Conditional Random Field 

 

Table II: Bird’s-eye View of the Classifiers Considered 
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Input  Feature vector Feature vector Sequences  Sequences 

Classifier 

type 

Non-parametric Parametric / 

discriminative 

Parametric / 

discriminative 

Parametric / 

generative 

Convex? No explicit 

objective function 

Yes No No 

Random? Subset of training 

and features 

No Initialization Initialization 

Distribution Non-linear Log-linear  Log-Linear (in 

latent space)  

Gaussian  

Overfitting 

protection 

Randomization  Regularization 

penalty 

Regularization 

penalty 

Prior on emission 

distribution 

4. EXPERIMENTAL EVALUATION 

We compared the methods on data logged by Project LISTEN’s Reading Tutor, which 

listens to a child read aloud, and takes turns picking stories to read [Mostow and Aist, 

2001]. The Reading Tutor adapts the Sphinx-II speech recognizer [Huang et al., 1993] to 

analyze the students’ oral reading, and intervenes when it notices the reader makes a 

mistake, get stuck, click for help, or encounter difficulty. Figure 3 shows a screenshot of 

the 2005 Reading Tutor. The current sentence is in boldface, and the tutor is giving help 

on the highlighted word teach.  The Reading Tutor is an atypical dialogue system, in the 

sense that it is not designed to answer questions by a user.  However, it addresses such 



 

dialogue phenomena as turn-taking, backchanneling, mixed initiative, and multimodal 

interactions (speech and mouse). 

 

 

Figure 3: Project LISTEN’s Reading Tutor screenshot 

We demonstrate our approach using a previously studied prediction problem 

[González-Brenes and Mostow, 2010; González-Brenes and Mostow, 2011]. We count 

the interaction of a student reading a story with the tutor as one dialogue. We consider 

dialogues to be composed of one or more sentence encounters in which the Reading 

Tutor displays a sentence for the student to read. We want to classify each dialogue at 

runtime, based on the sentence encounters so far, according to whether the student will 

finish reading the story or is about to stop reading. 

We calculate all features using only information available at prediction time. Thus for 

positive training examples, we truncate each finished story to a random number of 

sentence encounters before calculating features. For negative training examples, we use 

unfinished stories, but we do not truncate them. Table II summarizes the sorts of dialogue 

features used.  We extract features only from the student’s sentence encounters, not from 

the tutor’s utterances, because we want to base our predictions on the student’s behavior. 

Table II: Features considered 

Prosodic Features: Various duration, pitch and intensity features, as 

described in [Duong and Mostow, 2010]. 

Sentence Features: Properties of a sentence to be read, such as percentage 

of story read so far, number of word types and tokens, number of clicks for 

help, and statistics on word length and frequency 

4.1 Dataset 

The data set we used was logged by Project LISTEN’s Reading Tutor while used 

regularly at elementary schools during the 2005‐2006 school year.  To obtain a balanced 

data set of 2,112 dialogues with 162 children, we randomly selected half of them from 

dialogues where the students completed the reading, and the other half where they did not. 

We only included dialogues with at least four sentence encounters, to provide some basis 

for prediction. The selected dialogues average 18 sentences encounters. 

Training and testing on the same students can risk relying on peculiarities of individual 

students.  Hence, we separated the data such that the development and testing sets had no 

students from the training set. We report all results using 10‐fold cross‐validation across 

students. Because the folds can vary in size, we report an average weighted by the 

number of data points in each individual fold. We take this variation into consideration 

when we report significance in our statistical tests, weighting each fold accordingly, as 

described previously [Bland and Kerry, 1998]. We split each fold into four non-

overlapping sets:  training set (70% of the students), two development sets (each with 10% 

of the students), and test set (with 10% of the students). 



 

 

4.2 Data preparation 

When using HMMs with continuous feature values, the initialization of the parameters is 

very important. One of the parameters of a continuous HMM, the covariance matrix of 

the emission probability, cannot be initialized with just any random numbers. In fact, at 

every point of training, it should adhere to some rules:  it must be non-singular (invertible) 

and positive semi-definite.  On preliminary experiments with HMMs, the large size of the 

feature set relative to the amount of training data resulted in non-singular covariance 

matrices that assign infinite likelihood to sequences. 

To avoid such problems in training HMMs, we reduced the feature space by eliminating 

features that are “usually the same value.” For this purpose we used a statistical property 

of distributions called kurtosis, also referred as the fourth standardized moment. Gaussian 

distributions have zero kurtosis, “peakier” distributions than the Gaussian have positive 

kurtosis, and conversely, flatter distributions have negative kurtosis. To make our results 

comparable across classifiers, we want all classifiers to have access to exactly the same 

set of features. Hence, we use the training data in each cross-validation fold to remove 

features that have kurtosis greater or equal than 100, so all other classifiers are on a level 

playing field with HMMs.  We also perform the standard transformation of centering the 

feature values as z-scores with mean zero and standard deviation one.  

The value of our features changes thorough time. But what’s the minimum unit of time?  

Our methods depend on discrete time-steps, and so we considered the following 

alternatives:  one second, a word uttered by the student, or a sentence encountered. For 

simplicity we decided to use a sentence encounter as the minimum time unit, since it was 

the easiest to map from the format of the tutor logs. Hence, to map dialogues into feature 

vectors, we extract features from a window of w sentences from the end of the dialogue. 

In the case of predicting task completion, the last dialogue turns are the most informative 

[González-Brenes and Mostow, 2011].  Sequences are computed by calculating the 

values of the features for each sentence encounter. 

4.3 Describing Dialogues as Feature Vectors 

In this subsection we explore the shortcomings of using feature vectors to describe 

tutorial dialogue.  For this purpose, we compared the following feature vector classifiers: 

 Random Forest, as implemented by the Statistics Toolbox of Matlab. We used 

300 decision trees in each forest. 

 Maximum Entropy classifier with L1 and with L2 regularization. We used  

PMTK for Matlab [Murphy, 2012, in preparation], February 28
th, 

 2011 

release
1
.  

We now analyze the effect of the window size on classification accuracy. Figure 4 

shows the average cross-validation accuracy of the classifiers tested on the Development 

Set 2. The classifiers were trained using the Training Set portion of each fold. For 

Maximum Entropy, we tuned the regularization hyper-parameters using the Development 

Set 1 within each fold independently.  The left panel of the figure shows the accuracy of 

classifiers averaging the values of the features across different window sizes, and the 

right panel shows the accuracy of classifiers using a different feature at each time step 

(for example, the “duration” would be represented with different features if it is 

computed over the last sentence, or the second to last sentence, and so on). All of the 

classifiers significantly outperform the expected value of a classifier that randomly picks 

class labels (the “guess” line), as determined by a one-sample t-test at the 5% 

significance level.  

                                                           
1
 http://code.google.com/p/pmtk3/ 



 

 
Figure 4: Classification accuracy of different dialogue to feature vector strategies 

The strategy of aggregating features achieves approximately 67% classification 

accuracy across all different window sizes regardless of the classifier used – the 

differences between classifiers are not significant at p < .05. On the other hand, in the 

right panel of Figure 4, when features are not aggregated within time steps, there is a 

trend of increasing classification accuracy with larger windows. The best classifiers use 

the largest window size:  Random Forest achieves 69.2% classification accuracy, 

followed by L1-regularized Maximum Entropy with 68.3% accuracy and L2-regularized 

Maximum Entropy with 67.0% accuracy.   

We observe that when modeling individual features for each time step individually, 

longer windows have better classification accuracy.  This finding supports the hypothesis 

that a representation that includes the whole dialogue is desirable. Because the size of a 

dialogue is unbounded, it is impossible to define a feature vector that could describe each 

of the time steps of any dialogue without aggregation. Furthermore, feature vector 

classifiers do not know that some features represent a value that is changing through time, 

and hence do not exploit any temporal relation.  In the next subsection, we explore a 

more natural way to model tutorial dialogue as sequences. 

4.4 Describing Dialogues as Sequences 

We study modeling tutorial dialogue as sequences directly. For this purpose we compared 

the following sequence classifiers: 

 Hidden Markov Models, using the PMTK toolkit mentioned earlier. 

 Hidden Conditional Random Fields, using the HCRF Library,
2
 version 2.0b. 

We chose the option of using L-BFGS as the optimizer. 

The classifiers were trained using the training set portion of each fold.  For HMMs, we 

used five random restarts, picking the best initialization using Development Set 1. To 

initialize the parameters, we chose the library’s default initialization, which uses a prior 

to favor a diagonal covariance matrix for the emission probability.  We used the 

conventional Expectation Maximization (EM) algorithm to estimate the transition and 

emission probabilities.  We did not perform random restarts for the HCRFs due to time 

constraints. 

Since sequential models rely on hidden states, we want to understand the effect of the 

number of hidden states on classification accuracy. Figure 5 shows the average cross-

validation accuracy of the classifiers tested on the Development Set 2. For HCRFs, the 

regularization hyper-parameters tuned were tuned with the Development Set 1 within 

each fold independently. All of the classifiers significantly outperform the expected value 

of a classifier that randomly picks class labels (the “guess” line), as determined by a one-

sample t-test at the 5% significance level.   We observe that using L1 regularization does 

                                                           
2
 http://sourceforge.net/projects/hcrf/ 



 

 

not affect the classification accuracy across the number of hidden states, as it stays 

relatively constant around 69%.   L2 regularization is more prone to overfitting, and hence 

the addition of extra hidden states reduces classification accuracy, from 69% with two 

hidden states, to 65% with three. HMMs are the worst performing models, with a 

classification accuracy of 61% with two hidden states, which gets a small gain with three 

hidden states to 62%, and then decreases again to 61% with four hidden states. 

 

 
Figure 5: Classification accuracy across different number of hidden states 

4.5 Feature Vectors versus Sequences 

We now investigate whether classifying over entire sequences offers better classification 

accuracy than using feature vectors.  For this comparison, we select the best classifiers 

from the two previous subsections, and test them on the unseen test set of each fold.  That 

is, we compare HCRF with L1 regularization, Random Forest, Maximum Entropy (using 

individual features for time steps) with L1 regularization, and HMM. 

Table 1 shows the classification accuracy of the best classifiers described earlier with 

their 95% confidence intervals.  We observe that HCRFs using L1 regularization 

outperforms all other classifiers, with a classification accuracy of 69.32%.  Although the 

confidence intervals overlap, a t-test at the 5% level reveals that HCRFs are significantly 

better than Maximum Entropy (accuracy = 66.57%) and HMMs (accuracy = 62.50%).   

Table 1 Classifier Comparison 

 Accuracy Precision Recall 

HCRF (L1) .6932 ± .03 .6909 .6890 

Random Forest .6799 ± .03 .6709 .7172 

Maximum Entropy (L1) .6657 ± .03 .6669 .6704 

HMM .6250 ± .03 .5932 .8000 

Random Baseline .5000 ± .03 .5000 1 

 Random Forest is a strong contender, because unlike the other methods we compared, 

it does not assume any particular distribution of the data. However, a t-test reveals that its 

classification accuracy is not significantly different  (p>0.05) from the Maximum Entropy 

baseline used in previous work [González-Brenes and Mostow, 2011]. The t-test does not 

reject the null hypothesis that HCRFs and Random Forest (accuracy = 67.99%) have the 

same classification accuracy.  This finding may suggest that the HCRF model allows 

more consistent results, but further experimentation is required to understand when and 

why each method works better than the other one. HCRF and Random Forests took a few 

hours to train, without making use of the parallelization options available. 

5. CONCLUSION 

We consider the contributions of this paper to be (i) introducing HCRFs to the EDM 

community, (ii) formulating tutorial dialogue classification as a sequence classification 



 

problem, and (iii) evaluating and comparing dialogue classification algorithms to predict 

completion of a reading task by children using Project LISTEN’s Reading Tutor.  A 

limitation of our approach is that we did not perform explicit feature selection before 

learning a classifier.  This omission may had a negative impact on the classification 

accuracy of models more prone to over-fitting, particularly HMMs. 

Although HMMs can also classify tutorial dialogue using sequences, they do not 

achieve good classification accuracy, presumably because they do not scale well to large 

feature sets. HCRF allows state-of-the-art results for predicting reading task completion. 

Moreover, HCRF allows modeling tutorial dialogues as sequences, which is a more 

natural representation than feature vectors. 

Future work should study how the hidden states of HCRF segment the dialogues.  We 

hypothesize that the hidden states of the model are related to the motivational states of 

the students. Additionally, we believe that further improvement in classification accuracy 

could be gained with a model that combines the strength of using a sequence 

representation with a non-parametric approach such as Random Forest.  
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