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Abstract

Kearns, Mansour, and Singh (2000) pre-
sented an algorithm, called Iterated Gradi-
ent Ascent(IGA), for two-player, two-action
general-sum games, for which they proved
that the average reward converges to that of a
Nash equilibria. In this paper, we extend this
algorithm to m-action games, and establish
that IGA is a marginal best response against
a large class of algorithms. We also compare
and contrast marginal best response, Nash
equilibria, and correlated equilibria, in order
to compare IGA with other algorithms.

1 Introduction

Matrix games are an excellent forum in which to
study several aspects of machine learning. Hannan
(1957), Fudenberg and Levine (1997), Foster and
Vohra (1997), Hart and Colell (1999), and Freund and
Schapire (1999) have developed algorithms that have
guarantees against an arbitrary opponent.(Foster &
Vohra, 1997) and (Hart & Mas-Colell, 2000) have de-
veloped algorithms with guarantees that imply conver-
gence to the set of correlated equilibria, a generaliza-
tion of Nash equilibria introduced by Aumann (1974),
in self-play.

Kearns, Mansour, and Singh (2000) developed an algo-
rithm called Iterated Gradient Ascent. They proved in
two-player, two-action games, in self play the marginal
probability distributions of both players converge to a
Nash equilibrium, and that the average expected re-
ward converges to the value of that Nash equilibrium.
In this paper, we show that the continuous version of
Iterated Gradient Ascent does well interacting with a
wide variety of agents in an m-person, n-action game.
We also show that in very general circumstances, the
marginal probability distribution of two agents using
the IGA algorithm converge to a Nash equilibrium in 2
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person, n-action games. It is our belief that the algo-
rithm converges in general to Nash equilibria, but we
do not at present have a proof of this. We also provide
some examples to distinguish between these guaran-
tees: in particular, we show that some games can have
correlated equilibria with values that for some player
are lower than the lowest Nash equilibrium value.

Throughout the remainder of this section, we present
the definitions necessary to state our results and the
results of others more formally.

1.1 Finite Games in Strategic Form

An N-player, finite game in strategic form has for each
player ¢, a finite set of pure strategies S;. These are
also referred to as actions. The set of all joint ac-
tions is S = []; Si, the cartesian product of the ac-
tion sets of the players. Consider —¢ to be the set
of players without ¢, —i = {1,...,n} — {i}. We de-
fine S_; = Hje—iSJ" The game also possesses for
each player a reward function defined over the set of
joint actions u; : S — R. X; refers to the set of all
probability distributions over S;, or A(S;), and if it is
represented as a subset of RISl it is a standard closed
n-simplex. A mixed strategy profile is a member of
Y = Hl ¥;. We also define ¥_; to be the set of all
probability distributions over S_;. Observe that some
of these probability distributions over S_; may have
correlations between the actions of different players.
As is customary, we will be quite liberal with our us-
age of u;. For example, for a o € X, for all 7, we will
define u;(o) = ), 5 o(s)u(s). For all i, for all & € X,
for all ¢/ € X; The notation o|;c’ represents the mixed
strategy profile where all players but i play according
to o and i plays according to ¢’.

Definition 1 An element o/ € X; is a best-
response to a mized strateqy o € X if u;(o)io’) =
maxs,es, Ui (o|s—;). In other words, player i can do
no better than play o' if the rest of the players play
according to o. o is a Nash equilibria if for all i, o; s



Game 1
L R
T [52 ]| 1,1
M |[4,1]3.2
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a best response to o.

1.2 Marginal Best Response

In Nash equilibria, the actions of the players are un-
correlated. In other words, for all ¢, for all j # ¢, for
all s € S; and all ' € S;, the event that player ¢ plays
strategy s is independent of the event that player j
plays strategy s’. However, it is conceivable that the
actions of the players are not independent. We define
A(S) to be the set of all probability distributions over
S.

Definition 2 A probability distribution yu € A(S) has
a regret for i of:

Ri(p) = maxu;(p_i, si) — uip)

Si€S:
W is a marginal best response (Fudenberg & Levine,

1995) for i if Ri(p) < 0.

Observe that if one compares the performance of a
player with the best mixed or pure strategy, the defi-
nitions of regret and marginal best response remain the
same. So if the players play according to g € A(S),
we can also write the regret for a player 7 as:

Ri(p) = max ui(p_;, 0;) — ui(p)

0;€%;
This will be a convenient form later. Regret is a useful
concept in repeated games. Marginal best response is
a type of static optimality: if ¢ played one strategy
independent of the actions of the other players, and
they played as before, then i would not get any more
reward than it did.

If each player independently plays according to the
same Nash equilibrium, then they all have played a
marginal best response. If there existed a better static
strategy for ¢ than the one it is using, it would not be
a Nash equilibrium. However, observe that in a two-
player game where both players play a marginal best
response, one player may obtain a reward lower than
the lowest Nash equilibrium value.

For example, consider Game 1. The “row player”
chooses a row, Top, Middle, or Bottom, and the “col-
umn player” choose a column, Left or Right. The row
player receives a reward equal to the first number in
the cell, and the column player receives a reward equal
to the second number.

Joint Probabilities for Game 1

L R
T [2/5]1/5
M [1/5[1/5
B [0 |0

There are two Nash equilibria in pure strategies and
one in mixed strategies. The two pure Nash equilibria
are at (T,L) and (B,R). In the mixed Nash equilibria,
the row player plays T with a probability 1/2 and M
with a probability of 1/2, and the column player plays
L with a probability of 2/3 and R with a probability
of 1/3. The lowest value the row player receives in
a Nash equilibrium is 11/3, and the lowest value the
column player receives in a Nash equilibrium is 3/2.

Consider when the players play according to the fol-
lowing joint probability distribution: with a proba-
bility of 2/5 they play (T,L), with a probability of
1/5 they play (T,R), with a probability of 1/5 they
play (M,L), and with a probability of 1/5 they play
(M,R). The probability distribution is a marginal best
response for both players. However, the expected re-
ward of the row player is 18/5, which is less than 11/3.
Thus, even if a probability distribution is a marginal
best response for both, they do not necessarily achieve
the value of a Nash equilibrium value.

At this point, is important to note that two-player,
two-action games are deceptive with regards to the
relationship between marginal best response and Nash
equilibrium value. In this case, it can be shown that
a marginal best response for both players implies that
both players receive a reward at least as great as the
minimum Nash equilibrium value.

The main theorem of this paper is that, if one player
plays according to the IGA algorithm and the strate-
gies of the other players satisfy certain integrability
conditions, then the average joint probability distri-
bution over time will approach the set of distributions
which are marginal best responses.

2 Related Work

As stated before, the algorithm we will introduce in
this paper is a generalization of the IGA algorithm in
Kearns, Mansour, and Singh (2000). There have been
previous results regarding other algorithms and classes
of algorithms with regards to Hannan-consistency, an
operational type of marginal best response (Hannan,
1957), and convergence to a set of joint probability
distributions called correlated equilibria.



The Battle of The Sexes
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2.1 Hannan-Consistency

An algorithm is Hannan-consistent if almost surely
the empirical joint probability distribution converges
to the set of joint probability distributions which are
marginal best responses for all players.

In Freund and Schapire (1999), they show how their
algorithm achieves Hannan consistency in the limit
against any opponent. Also, Hart and Mas-Colell
(1999) prove that a large class of algorithms which
explicitly attempt to reduce Hannan regret do so ef-
fectively!. Before we refer to related work with re-
gards to achieving coordination guarantees, we must
first present the definition of correlation achieved in
these papers.

2.2 Correlated Equilibria

The empirical joint probability distribution of several
algorithms approach a type of joint probability dis-
tribution called a correlated equilibrium. Here, we
present the definition of correlated equilibria.

Here we paraphrase the introduction of correlated
equilibria in Aumann (1987). Suppose there exists
a referee. It wants the players to play a certain
joint probability distribution. It privately, randomly
chooses a cell, and privately tells each player what to

play.

One of the players is considering whether or not it
should listen to the referee. It knows that all of the
other players will listen to the referee. Also, it knows
the probability distribution with which the referee se-
lects a cell. Will the player obey the referee?

Consider the battle of the sexes. Suppose the ref-
eree wishes to benefit each player “equally”? by hav-
ing them play (T,L) and (B,R) with equal probability.
Will they agree to his instructions? If the row player
is told to play T, then it knows that the column player
has been told to play L, and the best thing he can
do is play T. If the row player is told to play B, it
must grudgingly play B. It is conceivable that the row
player would attempt to convince the column player

'IGA is not in this class of algorithms. See the conclu-
sion for more details

20f course, since the rewards of any two players may
not be comparable, this may or may not be truly equal.
However, for the sake of this example, it is only important
that the referee wishes the players to play this distribution.

The Prisoner’s Dilemma

L R
T [-10,10 | 0,5
B [ 5,0 11

that he is willing to sacrifice his own reward to force
the column player to always play the pure Nash equi-
libria (T,L), but he knows that the column player will
listen to the referee, so this attempt will fail.

Convinced of its omnipotence, the referee attempts
to solve the Prisoner’s Dilemma. The referee selects
with a probability of 1 the joint action (B,R). The row
player assumes that the column player will play R,
and plays T. The column player assumes that the row
player will play B, and plays L. Thus, neither player
will listen to the referee. In general, the referee cannot
instruct players to play a strictly dominated strategy3.

So, in general, if a single player has no incentive to
disobey the referee, given that the player knows the
probability distribution and that all other players will
obey the referee. Let us formalize this concept:

Definition 3 A correlated equilibrium is a joint prob-
ability distribution v such that for all i, for all s € S;:

ui(Y(s")) = max ui(¢(s')]is")

s1eS;
where ¥(s') is Pryey[s|s; = §'].

There exists similar results for several algorithms, in-
cluding those of Foster and Vohra (1997), Fudenberg
and Levine (1997), and Hart and Mas-Colell (2000).
In these papers, they establish that their algorithms
approach correlated equilibria with high probability.

3 Relating Correlated Equilibria to
Mixed Best Response and Nash
Equilibria

It has been proven in (Aumann, 1974) that there ex-
ists games where a correlated equilibrium does strictly
better for every player than any Nash equilibria for
that game. Does this mean that it is actually better
to guarantee convergence to a correlated equilibrium?
Consider Game 1. If the referee selects a joint action
according to the above distribution, and both players
are aware of this;, will they listen? Suppose he tells
the row player to play T. Given the instructions it re-
ceived, the row player knows that with a probability
of 2/3 the referee told the column player to play L,
and the referee told the column player to play R with

A strategy o € X; strictly dominates o’ € X; if and
only if for all 6" € T_;, ui(a,0") > ui(o’, 0").
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T [10,10 | -10,10
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Joint Probabilities for Game 2

T [1/4]0
M [0 [1/2
B [1/4[0

a probability of 1/3. If the column player listens to
the referee, then the row player is just as good playing
T or M. If the row player is instructed to play M, he
gleefully does so, because if the column player listens
to the referee and plays L with a probability of 1/2
and R with a probability of 1/2, then the row player
will maximize his expected reward by playing M. Sim-
ilarly, the column player will be indifferent if told to
play R and enthusiastic if told to play L. However,
as was stated before, the row player does not receive
a Nash equilibrium value. Therefore, a guarantee of
achieving a Nash equilibrium value is strictly better
than a guarantee of achieving a correlated equilibrium
value.

Suppose that in Game 2 the referee tells the players
to play (T,L) with a probability of 1/4, (M,R) with
a probability of 1/2, and (B,L) with a probability of
1/4. Note that this probability is a marginal best re-
sponse for both players. However, whenever the row
player is told to play B, he would rather play T. There-
fore, it is not a correlated equilibrium. Hence, a joint
probability distribution which is a marginal best re-
sponse for both players is not necessarily a correlated
equilibrium.

In fact, the column player according to this distribu-
tion has minimized regret in the stongest way. Sup-
pose the game is played and a pure joint strategy is
selected. Then the strategy of the column player ac-
tion is optimal given the strategy of the row player.

Thus, in terms of the value guaranteed, a guarantee
of a Nash equilibrium value is a strictly better guar-
antee than the guarantee of a correlated equilibrium
value, which is strictly better than the guarantee of a
marginal best response for both players.

4 Joint Probabilities, Continuous
Time, and Discrete Time

Many properties of repeated games in continuous or
discrete time can be represented in terms of a joint

probability distribution.

Consider a set of joint probability distributions
{1,...¥r} € (A(S))". Suppose that at time t the
players play according to joint probability distribution
Y¢. The average expected reward for a player i from
time 1 to time 7' is:

W () = 13 wil)

t=1

Observe that w;(¥) = > c g ¥e(s)ui(s), so:

al (¢) = Zul(s)% Z Yi(s) = Zul(s)d}T(s)

where ¢ (s) = %Zthl (), the average probability
distribution up to that time.

Now, suppose that iy is an integrable function of ¢.
Then we can consider the average reward over contin-
uous time, much in the same way that we consider the
average probability distribution over discrete steps:

W)= 5 [ wwa

We again can utilitize the definition of u; and define
- T
v = %fo Yedt to get:

ul (¥) =Y wi(s)dr(s)

SES

Using these definitions of average reward, we can ex-
tend the definitions of regret and mixed best response
to discrete time and continuous time repeated games.

Definition 4 Guven an infinite sequence of joint prob-
ability distributions {1}, or an integrable function i,
the regret of player i at time T is:

RZT(1/;) = gneax):( ftZT(i/)|zUz) — azT(w)

i i

This sequence is a marginal best response for i if*:

lim RY(4) <0

T—oo

5 Generalizing Iterated Gradient
Ascent

describe an extension

Mansour, and

In this section we will
to IGA as described in Kearns,

4This is similar to the definition of Hannan consistency.
However, since Hannan consistency refers specifically to a
property of discrete time algorithms, we refrain from using
it as a property of a probability distribution.



Singh (2000). Consider a game in strategic form
(N,S1,...,SN,u1...,un), that is played an infinite
number of times. At each time step ¢, each player
plays according to o(t) € X. For all ¢, player 7 receives
ui(0). The algorithm in the discrete case consists of
two steps: moving in the direction which best improves
the utilities, and moving back to a valid probability
distribution.

5.1 Gradient Ascent

Suppose player ¢ will use the IGA algorithm. In order
to do gradient ascent, we must identify what param-
eters of which player ¢ has control will have an effect
on the expected utility of 1. These are the probabil-
ities that it plays each action. The first step is to
calculate the gradient of the reward with respect to
these parameters. Since S; is finite, we can define
m = |S;|. There exists a bijection f : {l...m} —
S;. We can define a vector a(t) in R™ such that
aj(t) = Pricomlsi = f(j)]. Similarly since S_; is fi-
nite we can define n = |S_;|. We can define a bijection
g:{l...n} = S_;. We can also define a vector b(¢)
in R such that b;(t) = Pr.co()[s—i = g(j)]. Observe
also that for all ¢, Y- b;(t) = 1, and that for all j,
b;(t) > 0. We can extend the definition of the utility
function of ¢ over these vectors u;(a, b) in the natural
way. Finally, there exists an m x n matrix R such that

ui(a,b) = ) a; Rjxby
ik

We will attempt to maximize u; according to a. We
can consider the derivative of this function with re-
spect to each component of a. Suppose that player ¢
takes a step in this direction:

dui(a(t), b(t))

Sa = a;(t)+n > _ Rjxbx(t)

k

c;(t) = a;(t)+n

where 7 > 0. ¢(t) may or may not be a valid proba-
bility distribution.

5.2 Finding A Valid Probability Distribution

Observe that the set of all vectors in R™ which rep-
resent valid probability distributions are the stan-
dard closed m-simplex, A,,. A point a € R™ rep-
resents a valid probability distribution if and only if
Z;n:l a; = 1 and for all j, a; > 0 . In the final part
of the step A will move to the point in A, which has
the lowest standard Euclidean distance to ¢(¢). Thus
the update equation is in the discrete case:

aj(t+1) = a;(t) + n Y Rixbe(t) + u;(t)

where u(t) is the movement towards the nearest point
in A,,. When we decrease the step size to be infinites-
imally small, this becomes:

da;(t) _
T Zk: Rjkbi(t) + u;(t)

We address the issues of reducing the step size in this
fashion in Section 8.

Since moving back to the simplex is a complex action,
we present an equivalent algorithm that we will use in
the proof and recommend in practice. Suppose ¢ is
the vector we wish to project back onto the simplex,
indexed from 1 to m.

int 1i,j,pcount;

double csum = 0;

/* Find the sum of the elements */
for(i=1;i<=m;i++) csum = csum + c[i];
/* A:Normalize sum to 1 */

for(i=1;i<=m;i++) c[i] = c[i]l - (csum/m);
/* Repeat until on simplex */
while(!0){

/* Find negative probabilities */
for(i=1; (i<=m)&&(c[i]>=0);i++);
/* Leave if all nonnegative */
if (i>m) break;
/* Count positive values */
for(j=1;j<=m;j++) if (c[jI1>0) pcount++;
/* B: Spread c[i] over positive values */
for(j=1;j<=m;j++)

if (c[j1>0) c[jl=cl[jl+(c[i]l/pcount);
/* C: Make negative value zero and sum 1 */
c[il=0;

}

Observe that at the end of each iteration, Zj c; = 1.
Also, when the loop terminates, for all j, ¢; > 1.
Therefore, this algorithm puts ¢ back onto the sim-
plex. At each iteration of the while loop, ¢; = 0 for
at least one more value of j. Therefore, the while loop
terminates. A final observation that we will use in the
proof is:

Lemma 1 If the above algorithm is used to project ¢
to d, then:
d—c=r+sl

where r is a vector and s is a scalar, 1 = (I...1), and
for all j where d; > 0, r; =0, and for all j, r; > 0.

Observe that only at points A, B, and C in the algo-
rithm the value of the elements of the vector are mod-
ified. At A, the values are all increased or decreased
equally. At B, all positive values are decreased equally.
We can also think of the behavior at B of decreasing
all the values, and then increasing the nonpositive ones



again. At C, a negative value is increased to zero. If
a value ever becomes nonpositive, it finishes as zero.
However, any decrease that is incurred is felt by every
element. Only elements which end at zero are individ-
ually affected, and this effect is an increase. [ |

5.3 Requirements of IGA

IGA has a very strong requirement: the player must
know the probability distribution with which the other
players selected their actions. This means that we
cannot analyze IGA in terms of Hannan consistency,
because Hannan consistent algorithms are dependent
only on past actions played, not past probability distri-
butions. We address the conversion of this algorithm
into an algorithm based solely on the history in Sec-
tion 8.

6 Regret of Generalized IGA

Disregarding u, note that a is a transformation of the
integral of b. Therefore, in order for the regret of a to
be well-defined, b must be doubly integrable.

Theorem 1 If the marginal probability distribution of
the other agents is doubly integrable, then an agent
using the IGA algorithm in the continuous case has
an average regret that approaches zero.

In order to prove this, we will develop a potential func-
tion. This potential function will allow us to bound the
total regret by a constant, and therefore show that the
average regret is bounded above by 1/T.

It may appear strange that the total regret is bounded,
but this is due to the fact that we are analyzing the
algorithm in a continuous form. Since each single step
is infinitesimally small, the regret associated with it is
as well.

For the remainder of this section, let us fix a player i,
a pathwise doubly integrable joint probability distri-
bution function b : R — R”, and an arbitrary distri-
bution a* € R™. We can define the total loss for not
playing a* in the interval [t;,¢] as:

ts ts
L(ti,ty) = / ui(a®,b(t))dt — / ui(a(t),b(t))dt
t; (2]
Note this is equal to the regret if and only if a* is the
best static strategy.

Lemma 2 For any playeri, for any strategy a* € R™,
for any pathwise doubly integrable joint probability dis-
tribution b : R — R”, for any interval t; <ty

ja(t) —a*[* |

L(t;,tr) <
(i, ty) < 3

t;

where a is the probability distribution executed by IGA
for player 1.

*2
[at)=a’l" 5¢ 4 measure of potential. If it

In a sense,
increases in a duration, there can be a loss of utility
with respect to the strategy o*. If it decreases, there is
a definite gain, because the right side of the inequality

becomes negative.

and

52 |t2
If £ < ty < t3, L(ty,1y) < 1BO=21

t1

bl

L(t2’t3) < M

ts
. Thus we can prove Lemma 2 in segments.
t1

ta
, then it is clear that L(t1,t3) <
ta

la(t)—a"|?
2

Lemma 3 For a set T C {1...m}, and an interval
[ti, tf], where for allt € [t;,tf), for all j € T, a;(t) =
0, and for all t € [t;, tf), for all j ¢ T, a;(t) > 0:

lat) —a* ||

L(t;,tr) <
(i, ty) < 3

t;

Another way of describing the restriction on the strate-
gies of a in the path is to say that they are all in the
same face of the simplex.

Observe that any path in A, can be decomposed into
such sections. Therefore, it is sufficient to prove this
in order for the general result to hold true.

Consider the function L:
ty
Lt ty) = / > (@) — a;(t)) Rxbg (t)dt
ti G

Observe that the term ), R;rbi(t) also appears in
the update rule.

_ da;(t)
Xk:Rjkbk(t)_ S ()

Liti 1) = /: (a5 — (1)) <dacjl%t(t) - U(t)) dt

If it were not for the term u(¢), the bound would be
completely tight. However, we must establish that the
u(t) term decreases the regret or leaves it unchanged.
Let us consider the effect of u(t). Observe that u()
can be decomposed into u(t) = rx(t) + s(t)T according
to Lemma 1.

Note that one need not be concerned with u(ts), be-
cause the strategy a is of the proper form right until
the time 7, so we can look at the limit as the upper
bound of the integral approaches ¢;. Intuitively, we
will establish that if a is not using a pure strategy at
all, then it has nothing to gain by using it. Also, we



will establish that the component of u(t) in the direc-
tion of 1 has no effect on the regret.

We will look at the integration of each piece of u(t).
If k¢ T, then vy, = 0. Consider the contribution of rg
where k € T. Now, since ri(t) > 0 and aj; > 0, and
a(t) = 0, then:

(ax —ax(t))(—rx(t)) <0

[ ' (a] — aw (1)) (—r (1))t < 0

i

Also:
(@5 —ay(t)(=s()T;)
= (D a) - O a1) (-

Because a(t) and a* aré on the standard closed m-
simplex:

So(@) —a (1) (~s(t) = (1 1)(~s(t)) = 0

/ Za —a;(t))(—s(t)1;)dt =0

Therefore, summing over all components of u:

[T

u(t))dt <0

Hence:

L{ti t;) < /t,f Z(a; - aj(t))daét(t)dt

By variable substitution:

a;(ts)
ZCANED By B SCARMUITNT

" a;(ty)
(aj _aj)zl !

- 2
J aj:aj(t,)
at — at)|2|Y
Lt ty) < =20
2 ”
This concludes our proof of Lemma 3. |

In order to prove Lemma 2, one must divide the path
of probability distributions of a into valid segments
according to Lemma 3. |

Proof of Theorem 1:

Since Lemma 2 holds for any static strategy o*, it
holds for the best static strategy. Observe that a(t)
and a* are in A, so 0 < |a* — a(t)|? < 2. Therefore,
the total regret is bounded by 1, and the average regret
then approaches zero at a rate of 1/t. [ |

7 Nash Equilibria in N-Action Games

Now we will spend a moment to present the evidence
that we have for the extensibility of the result of
(Kearns, Mansour, & Singh, 2000).

Theorem 2 If in a 2-player, N-action game, both
players are using the IGA algorithm, and at every
point in time both of their strategies are completely
muxed, then their average marginal probability distri-
butions will approach a Nash equilibrium.

Call the players A and B. What we will prove is that,
under the average marginal probability distribution of
B, every strategy of A will return almost equal value.
Consider the continuous update function:

da
J ZRkbk )+ u;(t)

Integrating with respect to time and dividing by 7"

%/0 dacjlt(t) dt = %/0 (zk: R]kbk(t) + uj(t))dt

(1/T) f; bx(t)dt

Defining by (T') =
(1/T)(a;(T) — a;(0))

= Z Rixby(T) + (1/T) /T u;(t)dt

Observe that in this region, u(t) = s(t)f. Therefore,

Ty = 1T [ s(t)dt
ZRkak +5(T)1;

Observe that for all j, for all ¢, 0 < a;(¢) < 1. There-
fore:

defining s(

(1/T)(a; (T) — a;(0

—1/T <Y Rijgby(T) +

k

E Rjby (T

Therefore, the distance between the vector Rb and
the set of vectors of the form sf, decreases with time.
However, observe that if Rb = s1 for some s, then any
strategy of a is a best response. Similarly, the average
marginal probability distribution of a must approach
the set of strategies for which any strategy is a best
response. Thus, the average strategies approach the
set of Nash equilibria.

(1) < 1/T

—s(1)| < /T



8 Future Work

Three primary issues remain unresolved with regards
to this algorithm. First of all, it would be a significant
result to prove that the algorithm in the limit receives
at least the minimum of the Nash equilibrium value in
self play. Secondly, it would be interesting to modify
the algorithm such that it was no longer dependent on
knowing the opposing player’s past mixed probability
distribution. Finally, translating these results to the
discrete case would make them more practical.

If the probability distribution of the opposing players
is not known, then it can be approximated. For in-
stance, one can take the average probability distribu-
tion over time. When there are three or more players,
this leads to an interesting question: should the proba-
bility distributions of the opposing players be averaged
separately, or should the average of the joint probabil-
ity distribution over time be taken? In terms of giv-
ing a marginal best response, a joint probability dis-
tribution average makes much more sense. However,
taking marginal probability distributions might avoid
correlated equilibria in which the remaining players
collaborate in order to frustrate one player. Thorough
analysis of the resulting algorithms will resolve this
question.

The final issue to analyze is that of the relationship be-
tween the discrete algorithm and the continuous one.
Making certain that the analysis of the discrete algo-
rithm approaches the continuous one in the limit as
the learning rate is decreased is a necessary task.

9 Conclusion

Consider the following algorithm: m players are play-
ing a game: each performs the same algorithm to solve
for all of the equilibria or some subset, and then they
all choose the same one which is first according to some
lexicographical ordering. Then they are all guaranteed
the minimum Nash equilibrium value.

However, suppose that one of these agents is presented
with other agents of a different nature. Then this agent
has no guarantees. Establishing that IGA behaves well
against a wide diversity of opponents, as we have done
here, is crucial to the proving the general quality of
the algorithm.

In this paper, we have established that IGA is a
marginal best response to the class of algorithms for
which it and its reward is well-defined. We believe that
this is evidence that the discrete algorithm is Hannan
consistent as the learning rate is decreased, but have
not proven this. We have also shown that in a very
general situation IGA converges to the set of Nash

equilibria in self-play. Therefore, IGA is a excellent
candidate for a learning algorithm in multiagent do-
mains.
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