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1 Introduction

In this manuscript we present a proof of the theorems presented in (Zinke-
vich & Balch, 2001a). Specifically, we wish to prove an additive bound on
the suboptimality of some symmetric policy for an asymmetric Markov decision
process(hereafter referred to as MDP I). The structure of the proof is as follows:

1. Construct a related MDP(called MDP II) which has a symmetric reward
function.

(a) Prove that for every policy, the reward when used in MDP II is no
better than in MDP 1.

(b) Prove that for every policy, the reward when used in MDP I is no
better than the reward when used in MDP I plus some additive factor.

2. Construct a related MDP(called MDP III) from MDP II which has a

symmetric transition function.

(a) Prove that for every policy, the reward when used in MDP III is no
better than in MDP II.

(b) Prove that for every policy, the reward when used in MDP II is no
better than the reward when used in MDP III plus some additive
factor.

3. Refer to (Zinkevich & Balch, 2001b) to prove that the there exists a sym-
metric optimal policy for MDP III.

4. Use this to prove that there exists a symmetric policy in MDP I is within
the sum of these two additive factors of the optimal policy for MDP 1.

For an introduction to the concept of symmetries in MDPs, and for the
definition of terms not introduced here, please see (Zinkevich & Balch 2001b).



2 MDP II: Symmetric Reward Function

How does one construct a symmetric reward function from an asymmetric re-
ward function? Although there are several conceivable ways of doing so, the con-
straint that the resulting MDP must be strictly worse suggests that we should
decrease the reward function at certain points. The restriction that it must
be symmetric suggests that we decrease the reward for a state-action pair to
the minimum reward for any symmetric state-action pair. The following lemma
clarifies this.

Lemma 1 Given a MDP (S, A, T, R), and a symmetry (Es, E 4), one can con-
struct a new MDP (S, A, T, R') where
R (s,a) = min R(s',a
(5,9) (s',a')EEA(s,a) ( )
This new MDP has a symmetric reward function. For any policy o, for any
state s € S:
Vi (s) > V' (s)
AR
Vil (s) 2 Vi (s)+ 77—
L—x
where V! is the expected discounted reward function for MDP I, V1 is the ex-

pected discounted reward function for MDP 11, and AR = max((s q),(s',a’))eE4 (R(8', a')—
R(s,a)).

Proof:
Observe that for all s € S, for all @ € A:

R(s,a) > R'(s,a) > R(s,a) — AR

The remainder of the proofis an extension of this from the reward function to the
expected discounted reward function. Suppose that for policy o and transition
function T', Pyrs = T(s,0(s),s'). Then the expected discounted reward function
for ¢ in MDP 1 is:

v, (s) 2 V1 (s)

This was the first part which we wished to prove.

VI (s) =20 D A (P R(s' o (s")

t=0s'e8



vH(s) > Z A (s',0(s")) — AR)

Vil(s) = 30 D A (PO R(s o (s") = D Y A (P)ss AR

t=0s'eS t=0s'eS
VIH(s) > V(s ARZ»y d(p
t=0 s'eS

Because P is a probability transition matrix:
VH(s) > VI(s) — AR Z 7 (

AR
Ty s vige) -
Vi) 2 V) -

Observe that MDP II has a symmetric reward function, as desired.

3 MDP III: Symmetric Transition Function

Constructing a symmetric transition function is a bit more complex: one cannot
simply reduce the probabilities in a distribution, because the result would not be
a probability distribution. However, what if just append to this result a “bad”
circumstance, a transition to a really “bad” state. How bad can a state be? First
of all, the reward in this bad state should be no more than the lowest possible
reward in the system. Secondly, the state should be inescapeable. insuring the
worst possible future reward.

Before considering how to make the transition function symmetric, first let
us consider how to make a probability distribution symmetric.

Definition 1 Two random variables, S and S’ defined over the set S are sym-
metric if for all s € S:

Pr[S € Es(s)] = Pr[S’ € Es(s)].

Two probability distributions are symmetric if the associated random variables
are symmetric.

So, in order to make two probability distributions symmetric, their mass
on each equivalence class of states must be made equivalent. So, in this simple
case, for each equivalence class of states, we look for the probability distribution
which has the minimum mass on that class, and then we “reduce” the mass of
the other probability distribution on that class to the same value. We then
increase the transition probability to the “bad” state by this value.



Observe that there can be multiple probability distributions resulting from
reducing the mass, because one could divide the reduction among the probabil-
ities on the states in that reduction in many ways. However, it is important to
note that it is unnecessary to make any of these probabilities negative: because
there was more mass on this equivalence class than the other to begin with,
there will be some mass left over. As opposed to explicitly constructing a prob-
ability distribution in this fashion, we simply state that one such probability
distribution exists.

Definition 2 A set R of random variables over the set S is A-asymmetric if:

A=max( Y  (Pr[S€ P]—minPr[S'€ P]))
Pe{ES()|S€s) ven

Lemma 2 Given a set {Si,...,S,} of A-asymmetric random variables over
the set S, one can construct a set of symmetric random variables {S},...,S.}
over the set S Ub, where for all i, for all s € 8, Pr[s = S;] > Pr[s = SI], and
for all i, Pr[S;=05] < A.

Proof: By a generalization of the above argument on two variables. |
Lemma 3 Given a set {Si,...,S,} of A-asymmetric random variables over
the set 8, one can construct a set of symmetric random variables {S%,...,S,}

over the set S Ub, where for all i, for all s € 8, Pr[s = S;] > Pr[s = SI], and
for all i, Pr[S;=05] = A.

Note that now we claim that the Pr[S] = b] is equal for all <. This follows
from the fact that for any ¢, j, for any s € S, Pr[S] € Es(s)] = Pr[S; € Es(s)].

Since the probability of b is the “leftover” probability mass, it must be equal il

Definition 3 For each state-action pair (s, a), define S 4 to be a random vari-
able such that for all s' € S, Pr[S; .= 5] =T (s,a,s'). Then, one can consider
the set of random variables {S; 4/|(s',a') € Ea(s,a)}. Define AT to be the maz-
imum asymmetry of any such set. This is the asymmetry of the transition
function T.

Observe that if and only if the sets of random variables are symmetric, the
transition function is symmetric. Thus, a symmetric transition function has an
asymmetry of 0.

Lemma 4 Given a MDP II (S, A, T, R'), and an equivalence relation (Es, E 4),
where the asymmetry of T is AT, construct a set 8’ = SUb. For each state-
action pair (s,a), define S, 4 to be a random variable such that for all s' € S,
Pr[S .= 5"1=1T(s,a,s"). Then, one can consider the set of random variables
{Ssrar|(s',a") € Ex(s,a)}. For each such set, construct a set of symmetric
random variables according to Lemma 2, and add a state b. For all actions
taken at b, there is a probability of 1 of the next state being b. Label the resulting



transition function T' : &' x A — &'. Construct a new reward function R" :
S x A = R where for all s € S, for all a € A, R"(s,a) = R'(s,a), and
R'(b,a) = minges ares R'(s',a’). Call the MDP (S', A, T',R") MDP III. Then
for any policy o : 8" — A, for any state s € S:

V1 (s) > VM (s)

|’ |ATy
(1= = (1-AT)y)

Vi (s) > V) (s) —
where |R'| = (maxses aea R/ (s, a)) — (minges ocn R/ (s, a)).

First, without loss of generality, assume that for all s € S, for all a € A,
R'(s,a) > 0 and mingies o7ea R'(s',a’) = 0. The general case can be converted
to this case by adding —min,ies orea R'(s', @) to every reward. This does not
change |R’|, nor does it change the difference between MDP II and MDP III.

For all s,s' € 8, define Py = T(s,0(s),s’). For all s,s' € &', define
P!, =1T'(s,0(s),s’). These are the probability transition matrices. Observe
that for all s,s' € 8, Py > Pl,.. Forall s € S:

VOII( ) VIII (Z Z ’Y ) (Z Z P/ s SR”(S 0’(8 )))

t=0s'eS t=0s'eS’

Let us construct a matrix which is not a transition matrix: for all s,s’ € &,
define Q; s+ = T'(s,0(s), s’). The difference between P’ and @ is that Q is only
defined on & x &, and therefore does not consider b. Observe that, since the
reward received in b is zero and the state is inescapeable, we can replace P’ with
@ in the above equation without affecting the value.

Vil (s)=Vs (s (Z > ) (Z > (s ,0(8’)))

t=0s'eS t=0s'eS

For all s' € 8, for all a x A, R"(s',a) = R'(s, a).

Vol (s)=Vs (s (E > (8’))) - (E 7 ( (s o (s’ )))

t=0s'eS t=0s'eS

Vi (s) = Vi (s) = 30 3 A ((Phsrs = (@Y)ars) R(S 0 (o))
t=0 s'eS
Observe that for all s,s' € §, for all t > 0, (P?),s > (Q')sss. This establishes
VI (s) = VII(s) >0, s0
Vil (s) > vy (s)

I Technically, o is not a policy on MDP II, because its domain is larger than the set of
states. o|g, the restriction of ¢ to the domain &, is a policy on MDP II. However, we surpress
this notation because the intention is clear.



However, since for every addend, (P')ys — (Q%)ss > 0, if we increase R', we
will increase the value of the right side. Since minyes aeu R'(s,a) =0, |R'| =
max,es,aeA R'(s,a). So:

Vil (s) = Vit (s Z_;Z Jors = (Q)wrs) IR

'eS

V- V) < RS ((z 13)—(2@0315))

s'eS s'esS

Because P is probability transition matrix, for all s € §, for allt > 0, Zs'es (P')grs =

1.
VST (s) = VT (s) < IRTD A (1 - (Z (Qt)m))

Since in MDP III the probability of transitioning to any state to b is less than
AT, for all s € 8, forall t > 0, 3, 5(Q%)ss > (1 — AT)E.

VIT(s) — V() < |R’|Z»ﬁ (1-(1-AT))

t=0
After some algebraic manipulation:

|R'|ATy

V) Vo) - T - (- AT

|
Now we will state explicitly the main theorem, followed by the proof we
outlined in the introduction.
Now we combine these two lemmas into one cohesive piece.

Lemma 5 Given an MDP (S, A,T, R) and a symmetry (Es, E4) where T has
an asymmetry of AT, AR = maX((s a) (s a))eks R(s',a') — R(s,a), |R| =
(maxses aca R(s,a))—(minses aea R(s,a)), if for any policy o VI is the reward
function for MDP I and V! is the reward function for MDP III:

Vii(s) > VI (s)

AR |R|ATY

Voll(s) 2 Vi (s) - I—y (I1=9)(1-(1-AT))

Proof:
By combining the Lemma 1, Lemma 4, and the fact that |R| > |R/|. |

Theorem 1 Given an MDP (S, A,T,R) and a symmetry (Es, E4) where T
has an asymmetry of AT, AR = max((s q) (s,a'))eE4 R(5',a") — R(s,a), |R| =



(maxses,aca R(s,a)) — (minges oca R(s,a)), there exists a symmetric policy
sym such that for all s € S:

AR |R|ATY
=y (1=7)01-(1-AT)y)

V*(s) being the optimal discounted reward achievable from state s in MDP I.

Veym (s) 2 V7 (s)

So, first we construct MDP II, and then construct MDP III as in the above
lemmas. Is MDP III symmetric? Well, strictly speaking Egs is not defined
on & x &8'. Therefore we must extend the symmetry. Define Es: = FEs U
{(b,b)}. That is, b is only symmetric to itself. Similarly, define 4 = E4 U
{((b,a), (b,a))|a € A}. All actions in b are only symmetric to themselves. Hence,
if R’ is symmetric with respect to (Es, E4), then R” is symmetric with respect
to (Es', E4r). Similarly, due to the result of Lemma 3, 7" is symmetric with
respect to (Eg/, E4+). Thus, MDP III is symmetric with respect to (Egs:, E /).
So there exists a policy sym which is symmetric with respect to (Eg:, E4+).

Is this policy, when restricted to the domain &, symmetric with respect
to (Es,E4)? Since E4 C E 4+, this directly follows from the definition of a
symmetric policy. Observe that from Lemma 5, for all s € S:

Vhm(s) > VI (s)

sym sym
Consider * to be the optimal policy for MDP 1. By Lemma 5, for all s € §:

_ AR |R|AT~
1=y (1=-701-(1-AT))

Because o* is optimal in MDP I:

Vi (s) > Vi (s)

_ AR |R|ATy
1=y (1=9)01-(1-AT)y)

Because sym is optimal in MDP III:

VA (s) = V()

Vii(s) > VA (s

sym
Combining:
AR |R|AT Y
‘/sIm s) > V*(s) — -
e e [
Which was what we intended to prove. [ |

4 Conclusion

This proof is a guideline for the viability of symmetric policies in asymmetric
MDPs. I believe that there are a few points that should be highlighted about the



nature of the additive bound. First of all, it is not the number of deviations from
symmetry which is important, but their magnitude. In order to understand why
this is so, consider a line on which there exists one point where one can receive a
reward. If one changes that reward, all of the expected discounted rewards from
every state change. Similarly, if there were only one transition to that state,
changing that transition would again affect every expected discounted reward.
On the other hand, perhaps there is some large change in a reward from some
inaccessible state, or the transition probabilities change in an action that is not
used. It is difficult to clarify which rewards and transitions are “important” and
“unimportant” without explicitly solving for all the optimal policies.

Therefore, a more useful form of the above theorem is as follows. If actions
which are equivalent under the symmetry have only slight asymmetries in the
transition function and the reward function, regardless of the number of such
asymmetric actions, there will be a “good” symmetric policy in the Markov
decision process.
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