
RoboCup Rescue: Agent Development Kit
Version 0.4

Michael Bowling∗

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

mhb@cs.cmu.edu

December 5, 2000

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Organization . 3

2 Simulator Codebase 4

3 Controller Class 5
3.1 Public Methods . 5
3.2 Protected Fields and Methods . 6

3.2.1 Basic Support . 6
3.2.2 Memory Interface . 7
3.2.3 Primitive Actions . 8
3.2.4 Extendibility . 8

4 Memory Class 9
4.1 Datatypes . 9

4.1.1 Object Functions . 9
4.1.2 Object Pair Functions . 10
4.1.3 Other Datatypes . 11

4.2 Methods . 11
4.2.1 Finding Objects . 11
4.2.2 Finding Paths . 12

5 Example 13
5.1 Main . 13
5.2 A Fire Agent . 13

5.2.1 Defining an Agent . 13
5.2.2 Theact Method . 14
5.2.3 Thesense object Method . 15

∗Currently a visiting researcher at Kitano Symbiotic Systems Project, ERATO, JST in Tokyo, Japan.

1

5.2.4 Thehear Method . 15

6 Changes 17
6.1 Changes From Version 0.2 . 17

2

1 Introduction

RoboCup Rescue is a new initiative designed to foster multiagent research in a socially-significant domain. This
document describes an Agent Development Kit (ADK) to help ease the burden of designing agents for this new do-
main. Although, one of the goals of the ADK is to abstract away many of the gritty details of the simulation envi-
ronment, it is still recommended that you are familiar with the RoboCup Rescue Simulator Manual, available from
http://kiyosu.isc.chubu.ac.jp/robocup/Rescue/manual-English-v0r3/.

1.1 Purpose

The purpose of the RoboCup Rescue ADK is to simplify the procedure for developing interesting agents for the
simulation system. This purpose is two-fold. First, to abstract away the details of the agent-kernel communication
protocol so agent developers can focus on agent development. And second, to provide a toolbox for building high-level
behaviors.

These goals are to be achieved while providing maximum flexibility to the agent developers. It is an important goal
of the ADK not be biased towards any particular solution to the agent development problems. The toolbox should only
contain well-known tools for addressing only the simplest problems inherent in the rescue environment. For example,
a search algorithm for finding shortest paths is a basic tool that this kit includes, but an implementation of a specific
agent communication protocol is not, since this is an area of ongoing research.

Currently the ADK is only available in C++.

1.2 Organization

The ADK consists of three components. The organization is shown in Figure 1. The first component is the simulator
codebase that is provided with the RoboCup rescue simulation environment. The second component is the Controller
class which provides an abstraction for the agent’s interaction with the kernel. The third component is a Memory class
that encapsulates the agent’s current view of the environment.

Controller

Agent

Memory

Simulation Codebase

Kernel−Agent Communication Protocol

Kernel

Figure 1: The organization of the Agent Development Kit. The shaded regions correspond to the components of the
ADK. The Simulator Codebase, Controller, and Memory are described in Sections 2, 3, and 4, respectively.

Although, the Memory and Controller components depend on the simulator codebase they do not depend on ea-
chother. This allows agent developers to use their own Memory component, or one derived from the ADK, and still
make use of the ADK’s Controller component. It’s also possible to use the Memory component independent of the
Controller, though this is probably unlikely.

Each of these components will be described in detail in the following sections. The final section will contain an
example agent built using the ADK to help illustrate how these components work together.

3

2 Simulator Codebase

The available code that accompanies the RoboCup Rescue simulation provides some crucial support, which the ADK
makes use of. Agents built using the ADK will often have to work with the data types they provide. This code performs
a variety of functions: network communication, configuration file support, and most importantly an object hierarchy
defining the various objects in the rescue environment.

For the most part, agent developers do not need to be familiar with the communication or configuration file support.
On the other hand, agent developers will have to be very familiar with the object hierarchy. Currently there is no
documentation describing the specifics of the object hierarchy, although the RoboCup Rescue Simulation Manual does
provide some high-level description. Until there is documentation, it is best to simply consult the “objdef.h ” file
and example agents. Figure 2 shows the class hierarchy defined in the codebase, which may be of some assistance
when consulting “objdef.h ”.

Object

RealObject VirtualObject

MotionlessObject MovingObject World

Edge PointObject Humanoid

Road River Vertex Building Civilian Car FireBrigade AmbulanceTeam PoliceForce

Node RiverNode FireStation AmbulanceCenter PoliceOffice Refuge

Figure 2: The class hierarchy defined in “objdef.h ”.

The codebase also defines a class calledObjectPool , that is essentially a collection ofObject s. The Controller
class described in Section 3 requires an object of this type to be used as its memory. This allows agent developers
to use either a simpleObjectPool , the Memory class described in Section 4, or their own class derived from
ObjectPool .

4

3 Controller Class

Controller is the base class from which all agents should be derived. It has the following features:

• Supports an ObjectPool (or derived class) as memory.

• Supports multiple agents sharing the same communication socket. Improves performance by only requesting the
initial state of the world once for all agents.

• Derived controllers need only implement theact method. They may also optionally implement theinit ,
sense changed , andhear methods.

• Provides support for multiple modes of operation (e.g. continuous acting, acting after each sensation.) See
m_act_policy field in Section 3.2.1.

• Simplifies the execution of actions with convenience functions for all the primitive actions.

Controller.hxx
namespace Rescue {

class Controller
{

3.1 Public Methods

These methods are basically formain to create, connect, and start agents running. See Section 5.1 for an example
implementation ofmain .

Controller.hxx
static void setup_connection(char *host, int port);

All agents share the same UDP connection to the kernel.setup_connection is a static method to setup that
initial connection for all the agents. This must be called once before anyController ’s constructor gets called.

Controller.hxx
Controller(int type, ObjectPool *memory);
virtual ˜Controller();

The constructor takes a type parameter which is a bitwise-or of the agent types that this agent can assume. For
example,

Controller *c = new Controller((1 << AGENTTYPE_POLICE_FORCE) |
(1 << AGENTTYPE_POLICE_OFFICE),
new ObjectPool());

The second argument is theObjectPool or object derived from that class which is used as the Agent’s memory.
Although, not in line with the spirit of a distributed environment, it’s also possible to pass the same ObjectPool to
multiple agents so that they have a single shared memory. This may improve performance for non-critical agents, such
as civilians.

Controller.hxx
bool connect();
static void go();

The connect method contacts the kernel to connect into the simulation environment, and will returntrue if
successful. After all agents have been created and connected to the kernel, the static methodgo will start the agents
running.

5

3.2 Protected Fields and Methods

Agents are derived classes and so therefore have access to these fields and methods. They fall into the following
categories:

• Basic Support,

• Memory Interface,

• Primitive Actions, and

• Extendibility.

3.2.1 Basic Support

These are the basic methods that derived agents can override to control their behavior. Agents are not required to
override any of these methods, but will almost certainly want to override theact method.

Controller.hxx
virtual void init() {};
virtual void sense_change(Object *o) {};
virtual void sense_object(S32 time, Object *o, Input &input);
virtual void hear(Object *sender, const char *msg) {};
virtual void act() { send(); }

enum ActPolicy { ACT_ONCE_WHEN_IDLE, ACT_ONCE_PER_SENSE, ACT_WHEN_IDLE,
ACT_LATER, ACT_NEVER };

ActPolicy m_act_policy;

The init method gets called immediately after the agent connects to the kernel and is sent the GIS data that
comprises the initial state of the world. By default this does nothing.

Thesense_change method gets called when a new sensation from the kernel is given for a specific object. This
method is called after the object has been updated with the property changes.

The sense_object method is useful if an agent needs to know how a property changed (i.e. both its value
before and after updating) when a sensation is received. This method must be used with some care, though.The
Controller ’s definition of this method must be called at some point within any method that overrides it.The
structure of any overriding method should look like:

void Agent::sense_object(S32 time, Object *o, Input &input)
{

// Examine the current value of the object, storing information
// in the local variables

Controller::sense_object(time, o, input);

// Examine new values of the object and compare to old values.
}

Section 5.2.3 gives an example of how this method can be used to notify others of crucial observations.
Thehear method is called when another agent communicates with this agent.
The act method is the primary method that agents interact with the environment. This method should execute

actions (see Section 3.2.3), which will be sent to the kernel to be executed. By default this does nothing besides sending
any currently pending actions. Derived classes should be sure to callController::act() after specifying actions
to be sure they are sent to the kernel. Theact method should exit quickly.

A number of models of execution can be specified withm_act_policy , which should be set in a derived class’
constructor. The description of how these policies affect when theact method is invoked is described in Table 1. The
default setting isACT_ONCE_WHEN_IDLE, but can be changed in the constructor of a derived class.

Controller.hxx
void send();

virtual void sense(S32 time, Input &input);

6

Value Calling Policy
ACT_ONCE_PER_SENSE actis called once after aKA_SENSEmessage is re-

ceived from the kernel.
ACT_WHEN_IDLE act is called whenever there are no messages from the

kernel to be processed.act may be called any number
of times (including none) betweenKA_SENSEmes-
sages.

ACT_ONCE_WHEN_IDLE Like ACT_WHEN_IDLE, except act will not be
called more than once betweenKA_SENSEmessages
from the kernel.

ACT_LATER act will not get called while this is the value of
m_act_policy . KA_SENSEand KA_HEARmes-
sages are still processed. This is useful for agents that
are awaiting some message or change in state before
executing actions.

ACT_NEVER Like ACT_LATER but KA_SENSEand KA_HEAR
messages are not processed. The agent will not per-
form any actions for the rest of the simulation.

Table 1: The effect of themact policy field on whenact is called.

The action methods in Section 3.2.3 only queue commands to be sent to the kernel. Thesend method can be
invoked to flush any pending commands to the kernel. This may be useful if methods besidesact (whose default
implementation invokessend()) execute actions that should be sent to the kernel immediately. This method cannot
be overridden.

Thesense method is included for completeness. Derived classes should not need to override this method. This
method receives the raw input from the kernel for a sense action and callsesense_object for each object for which
information is received. It also updates the current time.

3.2.2 Memory Interface

These are some basic methods and fields that agents can use to query their view of the world. The Memory class
described in Section 4 provides more useful and advanced methods.

Controller.hxx
ObjectPool *m_memory;

template <class T>
T *lookup(Id id) { return dynamic_cast<T *>(m_memory->get(id)); }

template <class T>
T *is_a(Object *o) { return dynamic_cast<T *>(o); }

m_memory is theObjectPool or derived class that was given in the agent’s constructor. It can be queried for
information about the current view of the world. Thelookup<class> method is a convenience function to ask
the memory for the object representing a specific ID. The template parameter specifies the expected type, which is
checked. Theis_a<class> method is a convenience function that checks whether an object is of a specific type. If
not, it returnsNULL. For example,

Road *road = lookup<Road>(road_id);
Building *building = is_a<Building>(object);

if (building) { ... }

Controller.hxx

7

S32 m_time;
S32 m_id;
MovingObject *m_self;

These are useful fields related to the agent’s memory.m_time is the time of the last sensation that was incorporated
into the memory model.m_id is the ID of the agent.m_self is the object representing the agent, itself.

3.2.3 Primitive Actions

These methods are the primitive actions available to agents. Each method queues a message to be sent to the kernel to
execute the action. All queued actions will then be sent whensend is called, which is the default action ofact (see
Section 3.2.1). Most of these actions are self-explanatory, though a few clarifications are made below.

Controller.hxx
void act_move(Object **path); // path must be a NULL terminated array.
void act_open(Road *target);
void act_rescue(Humanoid *target);
void act_load(Humanoid *target);
void act_unload();

void act_say(Object *target, const char *msg);
void act_tell(Object *target, const char *msg);

void act_say_list(Object **targets, const char *msg);
void act_tell_list(Object **targets, const char *msg);
void act_extinguish_simple(Building *target);

void act_extinguish(); // Unimplemented

The act_move method requires an array ofObject pointers. This array is the path of neighboringObject s
that the agent is to traverse. The array must beNULL terminated but need not remain valid (i.e. it can be deallocated)
after calling the method. See Section 4.2.2 for a function that will generate useful paths for this method.

Theact_say_list andact_tell_list are convenient methods for communicating a message to multiple
agents. It is equivalent to callingact_say or act_tell for each agent in the array. Like the array parameter of
act_move the target array must beNULL terminated.

Theact_extinguish method is currently not implemented since it’s unclear what the interface to this primitive
action should be. Theact_extinguish_simple is a simpler version that provides reasonable defaults for the
parameters to extinguish the specified target.

3.2.4 Extendibility

These methods and fields are not likely to be useful for most agent implementations but are still provided to insure
maximum extendibility and flexibility. They should only be used with great consideration.

Controller.hxx
typedef std::map<Id, AutoPtr<Controller> > IdMap;
static IdMap m_controllers;

static Address m_address;
static LongUDPSocket m_socket;

int m_type;

Output m_output;
Output::Cursor *m_output_base;
void packet_start(Output &output, Header header);
void packet_end(Output &output);
void packet_send(Output &output);

8

4 Memory Class

The goal of the Memory class is to provide a simple and easy interface for querying details about the current view of the
environment. The class is derived fromObjectPool and so can be used as the memory object for theController
class. In addition to the collection of objects it provides a number of powerful query mechanisms.

Memory.hxx
namespace Rescue {

class Memory : public ObjectPool
{

4.1 Datatypes

The query mechanisms used by theMemory class strives to be as general as possible. In order to achieve this goal it
makes use of a number of data structures that are used in the interfaces of the various methods.

4.1.1 Object Functions

An object function is a class that implements a mapping fromObject s todouble s. Object functions must be derived
from the pure classObjectFn .

Memory.hxx
struct ObjectFn {

virtual bool consider(const Object *o) const = 0;
virtual double f(const Object *o) const = 0;

};

Theconsider method is a boolean function that returnstrue if its argument should even be considered at all
(i.e. if the object is the domain of the function). Thef method is the actual mapping.

Predefined Object Functions A number of predefined object functions are provided. Each of these are explained
below. Some of these are used as the defaults to laterMemory methods. Others are generally useful for implementing
other object functions.

UniformObjectFn is a trivial function which maps all objects to the value zero.

ObjectObjectFn is derived fromUniformObjectFn and restricts the domain of the function to a single object.

ClassObjectFn is a template class derived fromUniformObjectFn that restricts the domain of the function to
Object s of the class specfied in the template parameter.

DistanceObjectFn returns a value based on Euclidean distance of the object to some specfied point. The value
returned is the square of the distance in GIS units (millimeters).

AddObjectFn combines twoObjectFn s. Its domain consists of the intersection of the domains of its arguments,
and the value returned to be the sum.

NotObjectFn is derived fromUniformObjectFn but restricts the domain to only objectsnot considered by the
ObjectFn specified in the constructor.

The gritty details of these classes and their constructors are given below.

Memory.hxx
struct UniformObjectFn : public ObjectFn {

virtual bool consider(const Object *o) const { return 1; }
virtual double f(const Object *o) const { return 0.0; }

};

struct IsObjectObjectFn : public UniformObjectFn {
Id m_id;
virtual bool consider(const Object *o) const { return o->id() == m_id; }

9

IsObjectObjectFn(Id id) { m_id = id; }
IsObjectObjectFn(Object *o) { m_id = o->id(); }

};

template <class T>
struct IsClassObjectFn : public UniformObjectFn {

virtual bool consider(const Object *o) const {
return (dynamic_cast<const T*>(o)); }

};

struct IsAgentObjectFn : public Memory::UniformObjectFn {
virtual bool consider(const Object *o) const {

switch(o->type()) {
case TYPE_FIRE_BRIGADE: case TYPE_FIRE_STATION:
case TYPE_AMBULANCE_TEAM: case TYPE_AMBULANCE_CENTER:
case TYPE_POLICE_FORCE: case TYPE_POLICE_OFFICE:

return true;
default:

return false;
}

}
};

struct DistanceObjectFn : public ObjectFn {
double m_x, m_y;
virtual bool consider(const Object *o) const { return 1; }
virtual double f(const Object *o) const {

double x = o->x(); double y = o->y();
return ((x - m_x) * (x - m_x) + (y - m_y) * (y - m_y));

}
DistanceObjectFn(double x, double y) { m_x = x; m_y = y; }
DistanceObjectFn(const Object *o) { m_x = o->x(); m_y = o->y(); }

};

struct AddObjectFn : public ObjectFn {
const ObjectFn &m_a, &m_b; double m_wa, m_wb;
virtual bool consider(const Object *o) const {

return (m_a.consider(o) && m_b.consider(o)); }
virtual double f(const Object *o) const {

return (m_a.f(o) * m_wa + m_b.f(o) * m_wb); }
AddObjectFn(const ObjectFn &a, const ObjectFn &b,

double wa = 1.0, double wb = 1.0) : m_a(a), m_b(b) {
m_wa = wa; m_wb = wb;

}
};

struct NotObjectFn : public ObjectFn {
const ObjectFn &m_a;
virtual bool consider(const Object *o) const { return ! m_a.consider(o); }
virtual double f(const Object *o) const { return 0.0; }
NotObjectFn(const ObjectFn &a) : m_a(a) { }

};

4.1.2 Object Pair Functions

Object pair functions are similar to object functions but define a mapping frompairs of Object s todouble s. Only
one predefined object pair function is provided.

TraversalObjectFn returns a value which is the distance an agent would travel in moving from objecta from
objectb according to the GIS data. The domain is restricted to only neighboring object pairs and those which an agent
could mean between (i.e. it excludes roads that cannot be travelled due to debris.)

The class definitions are below.

Memory.hxx
struct ObjectPairFn {

virtual bool consider(const Object *a, const Object *b) const = 0;
virtual double f(const Object *a, const Object *b) const = 0;

};

struct TraversalObjectPairFn : public ObjectPairFn {

10

virtual bool consider(const Object *to, const Object *from) const {
if (to->type() == TYPE_ROAD) {

Road *r = (Road *) to;
return (min(r->linesToHead(), r->linesToTail()) -

floor((0.5 * (r->linesToHead() + r->linesToTail()) *
(r->block() / (double) r->width())) + 0.5) > 0);

} else return 1;
}
virtual double f(const Object *to, const Object *from) const {

switch(to->type()) {
case TYPE_ROAD: return ((Road *) to)->length();
default: return 1;
}

}
};

4.1.3 Other Datatypes

Other datatypes are also used to provide a more general interface for querying the state of the world.

Memory.hxx
struct Location {

Object *m_o;
S32 m_dist;

Location(Object *o, S32 dist = 0) { m_o = o; m_dist = dist; }
Location(MovingObject *o) {

m_o = o->position(); m_dist = o->positionExtra();
}

};

enum FunctionOrder {FUNCTION_MINIMIZE = 0, FUNCTION_MAXIMIZE = 1};

Location is most useful for specifying an exact location in the world. This is either just an object, or an object and
an extra position parameter. The position parameter is used in determining the exact position along a road, according
to thepositionExtra property as described in the RoboCup Rescue Simulation Manual.

FunctionOrder is an enumeration, which determines wether the value, returned by by an object (pair) function
should be minimized or maximized. This is used as an argument to thefind and find_list methods described
below.

4.2 Methods

The methods are designed to provide a useful and powerful interface for querying the agent’s current view of the rescue
environment. The simplest method,Object *get(Id id) , is inherited from theObjectPool class and can be
used to retrieve anObject of a particular ID. If using theController class a type-checking version of this method
may be more useful (See Section 3.2.2.) The additional methods provided by the Memory class can be grouped into
those that find objects, and those that find paths.

4.2.1 Finding Objects

These methods will find particular objects as determined by an object function.

Memory.hxx
Object *find(const ObjectFn &q, FunctionOrder order = FUNCTION_MAXIMIZE);

Object **find_list(const ObjectFn &q, double threshold = -MAXDOUBLE,
FunctionOrder order = FUNCTION_MAXIMIZE);

Thefind method returns the single object that maximizes (or minimizes, as selected by the second argument) the
provided function. As an example, the following call finds the object closest to the agent:

Object *nearest = memory->find(DistanceObjectFn(self),
Memory::FUNCTION_MINIMIZE);

11

This example is not very useful since the nearest object to the agent is, of course, the agent itself. Another more
complex example finds the nearest building to the agent:
Object *nearest = memory->find(AddObjectFn(DistanceObjectFn(self),

ClassObjectFn<Building>()),
Memory::FUNCTION_MINIMIZE);

See Section 5.2.2 for another example, which uses an agent defined object function.
The find_list method will return an array of all theObject s whose function value is larger (or smaller) than

the specified threshold. The returned array isNULL terminated. The array is also newly allocated and it is the caller’s
responsibility to free it, with “delete [] return_value; ”.

4.2.2 Finding Paths

These methods are useful for finding paths, which are lists of objects that are neighboring according to the GIS data
(e.g. roads, intersections, buildings).

Memory.hxx
Object **find_path(const Location &origin,

const ObjectFn &destination,
const ObjectFn &heuristic =UniformObjectFn(),
const ObjectPairFn &edge_cost =TraversalObjectPairFn());

bool verify_path(Object **path,
const ObjectPairFn &edge_cost =TraversalObjectPairFn());

Object **update_path(Object **path, Object *here,
const ObjectFn &destination,
const ObjectPairFn &edge_cost =TraversalObjectPairFn());

The find_path method is a completely general search algorithm for finding paths. It takes an origin to begin
the search. It then takes two object functions and an object pair function (only one is mandatory) that guide the search.
The mandatory argument is an object function that determines the destination. The domain of this function is the goal
states for the search. The second object function is a heuristic function that estimates the distance from a particular
state to the goal. Finally an object pair function sets the cost associated with traversing from one state to another. The
default for the heuristic function is the uniform function, and for the cost is theTraversalObjectFn . It returns a
NULL terminated array of neighboring objects that define the path. As withfind_list it is the responsiblity of the
caller to free this array with “delete [] return_value; ”.

The method implements the A* search algorithm, therefore if an admissible heuristic is provided it will return a
shortest (least cost) path. For example the following call returns the shortest path from objectA to objectB using
euclidean distance as an admissible heuristic:
memory->find_path(Location(A), ObjectObjectFn(B), DistanceObjectFn(B));

Theverify_path method takes aNULL terminated array and verifies that the path is still valid, i.e. each object
is a neighbor of the previous object and each is in the domain of the cost object function.

Theupdate_path method takes aNULL terminated array, a current location, and a destination object function.
It then tries to find a valid subpath from the current location to a valid destination. This is useful for following a path,
since it does not have to incur the computational cost of a new call tofind_path . If there is no valid subpath or
the path parameter isNULL then it frees the path and aNULL pointer is returned. This method is destructive, i.e. it
modifies the path array directly. See Section 5.2.2 for an example of how to use this method.

Memory.hxx
Object *path_destination(Object **path);
Object **path_subpath(Object **path, Object *origin);
double path_cost(Object **path,

const ObjectPairFn &edge_cost =TraversalObjectPairFn());

These methods provide useful information about paths.path_destination returns the last object in a given
path.path_subpath returns a pointer into the path array that corresponds to the subpath that starts from the given
origin. path_cost returns the sum of the edge costs along a path. With the defaultedge_cost argument this
returns the length of the path.

12

5 Example

This section presents a comprehensive example of using the ADK to build a simple fire fighting agent. The agent
searches for shortest paths to nearby fires and then attempts to extinguish them. It also sends messages to other agents
with information about the status of roads, and incorporates these same messages from other agents in its view of the
world.

The complete source code for this example can be found in theexamples directory of the ADK distribution.
The directory also contains a simpler example: a sample civilian that acts similar to the civilian distributed with the
RoboCup Rescue distribution, but which makes use of the ADK.

5.1 Main

Themain() function for our example is designed to make use of the feature of having multiple agents share the same
communication port. It is also general and could be used for any agent derived from theController class.

main.cxx
Controller::setup_connection(host, port);

while(number != 0) {
Controller *a = new CONTROLLERCLASS();
if (!a->connect()) break;
number--;

}

Controller::go();

First the connection to the kernel is established with the call tosetup_connection . The while loop will
then connect at mostnumber agents of the typeCONTROLLERCLASS. For this specific example the class would be
FireAgent . After the agents are connected, the agents are started by callinggo() .

5.2 A Fire Agent

This simple fire fighting agent illustrates a number of the features of the ADK, both theController andMemory
classes. The key features of the implementation are described here.

5.2.1 Defining an Agent

An agent is defined as a class derived fromController . The agent in this example overrides theact method, of
course, but also overrides thesense_object andhear methods to implement the communication of changes in the
environment to other agents.

FireAgent.hxx
using namespace Rescue;

class FireAgent : public Controller
{
protected:

Memory *m_memory;
Object **m_path;

virtual void act();
virtual void sense_object(S32 time, Object *o, Input &input);
virtual void hear(Object *sender, const char *message);

public:
FireAgent(int type = (1 << AGENTTYPE_FIRE_COMPANY));

};

13

5.2.2 Theact Method

An agent’s behavior is mostly defined in theact method, which is responsible for examining the state and then making
calls to variousact_* methods to perform primitive actions. In this example, the behavior of the agent is put out any
fire in the current location, otherwise find the nearest fire and move there.

The implementation defines a special object function,TargetBuildingObjectFn , which is derived from the
DistanceObjectFn , but restricts the domain to only burning buildings. This can then be used to find the nearest
burning building.

FireAgent.cxx
struct TargetBuildingObjectFn : public Memory::DistanceObjectFn {

virtual bool consider(const Object *o) const {
return (o->type() == TYPE_BUILDING &&

((Building *) o)->fieryness() >= 1 &&
((Building *) o)->fieryness() <= 3);

}
TargetBuildingObjectFn(const Object *o) : DistanceObjectFn(o) {}

};

Theact method begins by checking if the current location is a burning building and if so extinguishing it.

FireAgent.cxx
void FireAgent::act()
{

MotionlessObject *here =
dynamic_cast<MotionlessObject*>(m_self->position());

// Put out fire in current location.
if (here->type() == TYPE_BUILDING) {

Building *b = (Building *) here;

if (b->fieryness() >= 1 && b->fieryness() <= 3) {
act_extinguish_simple(b);
return;

}
}

If the current location is not burning it needs to find a path to a burning building. In order to help aid the search we
use a heuristic function which is the Euclidean distance to the nearest building (not necessarily the easiest or fastest
to reach). This is not an admissible heuristic for finding the shortest path to any burning building, but this is not a big
concern in this example.

Since searching for paths can be computationally intensive, we use the methodupdate_path to try and reuse a
path as long as it remains valid.

FireAgent.cxx
// Otherwise, go toward the nearest fire.
// Update any existing path. Otherwise generate a new path.
m_path = m_memory->update_path(m_path, here, TargetBuildingObjectFn(here));

If the agent has no path to begin with or there’s no valid subpath due to either blocked roads or the building is no longer
burning, then the agent must generate a new path.

FireAgent.cxx
if (!m_path) {

Object *target = (Building *) m_memory->find(TargetBuildingObjectFn(here),
Memory::FUNCTION_MINIMIZE);

if (!target) return;

m_path = m_memory->find_path(Memory::Location(m_self),
TargetBuildingObjectFn(here),
Memory::DistanceObjectFn(target));

}

The path is generated by first finding the nearest burning building by the call tofind . This is then used to create a
heuristic function for the call tofind_path . The goal of the search function is anObject in the domain of the
TargetBuildingSearchFn , i.e. a burning building.

14

Since it is now either using its old path or has generated a new one, it can simply callact_move to follow the
path.

FireAgent.cxx
// Follow the path.
if (m_path) act_move(m_path);

}

5.2.3 Thesense object Method

The Controller class handles updating an agent’s view of the world when new sensations are received. Agents
though may want to do additional processing of state changes. This can be done by overriding thesense_change
method or thesense_object method. In our example the fire agent will send a message to the other agents when a
road that was thought open is discovered to be blocked, or vice versa. Since this requires the agent to examine both the
object before and after the object is updated thesense_object method is overriden.

FireAgent.cxx
void FireAgent::sense_object(S32 time, Object *o, Input &input)
{

switch(o->type()) {
case TYPE_ROAD: {

Road *r = (Road *) o;

int was_clear_h = Memory::TraversalObjectPairFn().consider(r, r->tail());
int was_clear_t = Memory::TraversalObjectPairFn().consider(r, r->head());

Controller::sense_object(time, o, input);

int is_clear_h = Memory::TraversalObjectPairFn().consider(r, r->tail());
int is_clear_t = Memory::TraversalObjectPairFn().consider(r, r->head());

if ((was_clear_h ˆ is_clear_h) || (was_clear_t ˆ is_clear_t)) {

char msg[256];
sprintf(msg, "roadinfo %ld %ld", r->id(), r->block());

Object **other_agents = m_memory->find_list(Memory::IsAgentObjectFn());
act_tell_list(other_agents, msg);
delete [] other_agents;

}

} break;

default:
Controller::sense_object(time, o, input);

}
}

Thesense_object method gets called for each object that the kernel sends sensing information. In this example
we are interested in examining road objects, so for other objects we just call the parent method. For roads we first
store wether they are currently blocked (since a road may be blocked in only one direction we must store both.) We
then call the parent method, “Controller::sense_object(time, o, input); ”, and afterwards check if
the road’s status has changed. If it has changed it usesfind_list to retrieve a list of all the agents and then uses
the actionact_tell_list to pass the message to the other agents. It is very important that all calls to a derived
sense_object call Controller::sense_object or the object will not actually be updated.

5.2.4 Thehear Method

In the previous section the agent used theact_tell_list method to communicate to the other agents. Thehear
method can be defined in order to process communications from other agents. In this example, the fire agent needs to
update its state of the world based on other agents’ messages about the status of roads. This is done rather simply by
parsing the message and updating the memory’s stored object.

15

FireAgent.cxx
void FireAgent::hear(Object *sender, const char *message)
{

const char *complete_message = message;
char type[32];

sscanf(message, "%s", type);
message = strpbrk(message, " \t");

if (strcmp(type, "roadinfo") == 0) {
Id id;
char status;

sscanf(message, "%ld %c", &id, &status);
if (Road *r = lookup<Road>(id)) {

r->setBlock(m_time, (status == ’B’) ? r->width() : 0);
}

} else {
fprintf(stderr, "[%ld] Cannot understand message, \"%s\".\n",

m_id, complete_message);
}

}

16

6 Changes

Although, this is the first version it is hoped that the API will remain fairly stable so that agent development can begin
quickly. Of course future versions of the RoboCup Rescue Simulator may require more encompassing changes to the
ADK interface. In the meantime, updates will primarily focus on additional “tools” for the “tool box”, both more
complex agent actions and more useful tools for retrieving information about the environment. Recommendations of
these tools or improvements to the ADK are welcome to be sent to the author or discussed on the RoboCup Rescue
mailing list.

This document will attempt to maintain a list of the changes to the existing API that may require changes to agents
built using a previous version of the ADK. It is hoped that these will be kept to a minimum.

6.1 Changes From Version 0.2

• RenamedScoreFn and derived classes toObjectFn . Changed thefind_path method to take anObjectPairFn
as its edge cost function, so that roads blocked in only one direction could be handled.

• sense_object replaces whatsense_change attempted, and the arguments forsense_change were
simplified.

17

