;‘1 Formal Methods in System Design 14, 7-44 (1999)
v © 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Verifying the SRT Division Algorithm Using
Theorem Proving Techniques

EDMUND M. CLARKE emc@cs.cmu.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

STEVEN M. GERMAN german@watson.ibm.com
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA

XUDONG ZHAO xzhao@cs.cum.edu
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract. We verify the correctness of an SRT division circuit similar to the one in the Intel Pentium processor.
The circuit and its correctness conditions are formalized as a set of algebraic relations on the real numbers. The
main obstacle to applying theorem proving techniques for hardware verification is the need for detailed user
guidance of proofs. We overcome the need for detailed proof guidance in this example by using a powerful
theorem prover called Analytica. Analytica uses symbolic algebra techniques to carry out the proofs in this paper
with much less guidance than existing general purpose theorem provers require for algebraic reasoning.

Keywords:

1. Introduction

Proving the correctness of arithmetic operations has always been an important problem.
The importance of this problem has been recently underscored by the highly publicized
division error in the Pentium processor [20]. Some people have estimated that this error
cost Intel almost 500 million dollars [2]. In this paper, we verify a division circuit [22]
that is similar to the one used in the Pentium. The circuit uses a radix four SRT division
algorithm that looks ahead to find the next quotient digit in parallel with the generation
of next partial remainder. An 8-bit ALU estimates the next remainder’s leading bits. A
quotient digit look-up table generates the next quotient digit depending on the leading bits
of the estimated remainder and the leading bits of the divisor.

In our approach to verification, we formalize the circuit and its correctness conditions as
a set of algebraic relations over the real numbers [12]. These algebraic relations correspond
closely to the bit-level structure of the circuit, and could have been generated mechanically
from a hardware description. Most of the hardware for the SRT algorithm can be described
by linear inequalities. This led us to experiments [12] in which we proved properties
of the SRT hardware using a special purpose program for verifying SRT dividers. The
program was written in the Maple symbolic algebra system and used its Simplex algorithm
package.

3 CLARKE. GERMAN AND ZHAW,

We now have a more general yet highly automatic approach. where the correctness of
the circuit is proved using a powerful theorem prover called Analytica [10] that we have
developed. Analytica is the first theorem prover to use symbolic computation techniques
in a major way. It is written in the Mathematica programming language and runs in
the interactive environment provided by this system [24]. Compared to Analytica, most
theorem provers require significant user interaction when proving results with algebraic
content. The main problem is the large amount of domain knowledge that is required for
even the simplest proofs. Our theorem prover, on the other hand. is able to exploit the
mathematical knowledge that is built into the symbolic computation system to carry out
long algebraic computations automatically. For example, the proof of the main correctness
result for the SRT divider requires two proof steps in Analytica: first step proves a lemma,
and the second step proves the main result by applying the lemma. The entire input to
Analytica for the SRT problem, including a mathematical model of the circuit and the
specifications of four theorems to be proved, is only 50 lines of text.

The previous work that is most closely related to ours is by Verkest et al. [23], who have
verified a nonrestoring division algorithm and hardware implementation using the Boyer
Moore theorem prover [6]. The circuit they consider is much simpler than the one we
verify. The main difficulty in verifying our circuit is in showing that the estimation circuit
and the quotient lookup table give the correct quotient digits. In contrast, their circuit
computes the quotient in radix 2, and does not speed up the computation by estimating
the partial remainders. Another project by Leeser et al. [15] verifies a radix 2 square root
algorithm and hardware implementation. This work is similar to [23] and does not involve

the design features that make fast division circuits difficult to verify. Although we prove the
correctness of a relatively complicated circuit, our use of symbolic computation techniques
allows us to carry out the proof automatically.

After our initial experiment in verifying the SRT circuit using the Maple symbolic al-
gebra system, we communicated our results with the Maple system to researchers at SRI
International [7], who then proceeded to verify the same circuit using the PVS theorem
prover [18]. Although there are many differences between our approach and the SRI ap-
proach, the SRI researchers have retained some of the ideas of our mathematical model
of the circuit. such as modelling truncation of arithmetic signals using linear inequalities
[12] (cf. Section 4.1). One important difference between the approaches is that the SRI
group verified a parameterized version of the division circuit, while we have developed a
method that can verify individual instances of the division circuit highly automatically. The
proof of the parameterized division circuit in [18] requires much more user guidance than
is needed with our method.

An earlier version of this paper appeared in [8]. The paper is organized as follows: In
Section 2 we describe a circuit that implements a radix four SRT division algorithm. In
Section 3 we give an overview of the theorem prover Analytica that we use for verifying
the circuit. In particular, we explain how inequalities are handled. Section 4 is the heart of
the paper. It contains the axioms that specify the behavior of the circuit and the theorems
about the circuit that we have proved using Analytica. The paper concludes in Section 5
with a summary of our work and some directions of future research. In the Appendix. we
show the input to the theorem prover and part of the generated proof.

A tdiin eI

Y

VERIFYING THE SRT DIVISION ALGORITHM 7

2. The SRT division algorithm and circuit
2.1. Floating-point numbers and floating division

Under the IEEE arithmetic standard, a normalized floating point number has the form
sign - significand - 2°P°"™, where sign is +1, represented by one bit, the significand is
a rational number in the range 1 < significand < 2, and exponent is an integer. Certain
values. such as 0. have special representations under the standard. Hardware circuits for
floating-point arithmetic are usually organized into two parts: a normalization circuit and an
arithmetic core. which performs arithmetic operations on the significands of the normalized
numbers. The circuit that we consider in this paper is the core of a floating point division
circuit. A separate circuit handles the signs and exponents.

There are several ways to interpret the arithmetic operation performed by the hardware
of the core. One way is to consider it as an operation on scaled integers. In this paper,
we interpret signals in the division core as arbitrary rational numbers, and develop our
proof using algebraic theory that holds for all the rationals, not just the values that can
be represented in a certain number of bits. One advantage of our approach is that our
specification and correctness proof are independent of the hardware word length; that is, we
prove the correctness of the SRT division circuit for all word lengths n > 10 bits, without
having to induct on word length. Note that this approach is sound but may not yield a proof
in all cases. It is possible, for example, to design a floating-point circuit whose correctness
depends on the fact that only a finite set of values is represented.

2.2. Long division

We begin by recalling the traditional algorithm for long division. The Dividend is a non-
negative rational and the Divisor is a positive rational. The division algorithm computes
the quotient as a sequence of digits in a given number radix, r. We assume that the inputs
are such that the quotient, Dividend /Divisor, is less than r. In this case. the quotient will
have the form gg -) - - - gm—1, Where each of the g; is a radix r digit. In order to compute
the quotient digits. the algorithm computes a sequence of partial remainders p; according
to the following recurrence:

po = Dividend,
pj+,=r-(pj——q,--Divisor), forj=0,....m—1 (1)

Each quotient digit g; is an integer in the range 0 < q; < r — 1. The quotient digit g is
chosen so that

0 < p; — q; - Divisor < Divisor. (2)

That is. the algorithm subtracts a multiple of the divisor from the partial remainder at each
step; the digit ¢, is chosen so that ¢ . Divisor is the largest multiple of Divisor that can

i

10 CLARKE. GERMAN AND ZLHAU -

be subtracted from p; and still give a non-negative result. Note that in the recurrence (1),
multiplying the quantity p; — g, - Divisor by r shifts the partial remainder one digit to the
left, to prepare for the next cycle of the division.

Example 1. As an illustration. consider using the above recurrence to compute 1/ 8 to an
accuracy of three decimal digits to the right of the decimal point.

Dividend = 1.000
Divisor = 8.000_

Step 1. Choose go so that 0 < po — qo- Divisor < 8.000. Substituting 1.000 for po and
8.000 for Divisor, this is 0 < 1.000 — go - 8.000 < 8.000. Select the quotient digit go = 0.
Then compute p;:

p1 = 10 (1.000 — 0 - 8.000)
=10-(1.000 - 0)
= 10.1.000
= 10.000

Step 2. Choose g so that0 < 10.000 — g, - 8.000 < 8.000. This gives g; = 1.

p2 = 10 - (10.000 — 1 - 8.000)
= 10 - (10.000 — 8.000)
= 10-2.000
= 20.000

Step 3. Choose g3 so that 0 < 20.000 — g3 - 8.000 < 8.000. This gives g2 = 2.

p3 = 10 - (20.000 — 2 - 8.000)
= 10 - (20.000 — 16.000)
= 10 - 4.000
= 40.000

Step 4. Choose g3 so that 0 < 40.000 — g3 - 8.000 < 8.000. This gives g3 = 3.

ps = 10 - (40.000 — 5 - 8.000)
= 10 - (40.000 — 40.000)
= 10-0.000
= 0.000

The final quotient is 0.125 and the remainder is ps = 0.000.

VERIFYING THE SRT DIVISION ALGORITHM 11

Observe that in the example. we were able to choose quotient digits at each step to make
the quantity p,; — g, - Divisor satisfy inequality 2. Since pj+1 =7 - (pj —q;j - Divisor), p;
remained in the range

0 < p; < r - Divisor. 3)

In fact, this inequality is an invariant of this division algorithm for all proper inputs. The
property that the partial remainders stay in a fixed range as j increases is needed to establish
that the computation converges to the correct quotient. Informally, the reason the quotient
computation converges is as follows: On each step of the algorithm, the partial remainder
is effectively shifted one digit to the left by multipling it by r. One can see that the “actual”
remainder of the division corresponds to the unshifted value of p;. Thus, if p; stays in a
fixed range, the actual remainder becomes smaller on each cycle. We develop this argument
formally in Section 4.2.

Itis straightforward to show that the inequality (3) is an invariant of the division algorithm.
For the case j = 0, recall that p is assigned the value Dividend. Since both Dividend and
Divisor are the significands of normalized numbers, they are intherange {(x : 1 <x <r}.
It follows that (3) holds for po. For the inductive case, the algorithm chooses g; so that
0<g; <r—1and0 < pj —q; - Divisor < Divisor. If (3) holds for p;, there must be
a value of g that satisfies these inequalities. Thus, for pj4; =7 - (pj — q; - Divisor), we
have 0 < pj41 < r- Divisor. Inequalities such as (3) are important in understanding SRT
division, and we will consider them again in the next section.

2.3. SRT division

The motivation for the SRT algorithm is to provide a faster division method. The running
time of the traditional long division algorithm discussed above depends on the number of
iterations of (1) and the time needed for each iteration. The number of iterations needed
to compute the quotient to a given number of bits b of accuracy depends on the radix r.
If the quotient is represented in radix 2, b iterations will be needed, because each iteration
produces only one bit of the quotient.

In practice, radix 4 is often used in hardware division circuits because only b/2 iterations
are needed and the calculations on each iteration can be performed quickly in hardware.
Each iteration involves two multiplications and a subtraction, assuming g; is known. In
radix r = 4, both of the multiplications can be implemented by fast hardware that simply
shifts one of the operands to the left. For example, the multiplication by r can be computed
by shifting two bits to the left. Also, the multiplication by g; can be done by simple logical
operations when the value of ¢; is 0, or 1; i.e., select all zeroes for O - Divisor; select Divisor
for 1- Divisor. The value 2 - Divisor can be generated by shifting one bit to the left. In the
case that g; = 3, there is a potential problem because multiplication by 3 is more difficult.
We will see. however, that the SRT algorithm uses a representation of the quotient digits
that avoids this problem.

The subtraction operation in (1) dominates the time needed for each iteration. For double
precision arguments, a 64 bit subtraction must be performed on each cycle. The basic idea

12 LLARRKLE, GERMAN AND ZHAUV .7

of the SRT algorithm is to arrange the computation so that the quotient digit selection can
be done in parallel with the long subtraction operation. Referring to the basic recurrence
(1), it is clear that the choice of ¢; depends on the value of p;.

In order to carry out quotient selection concurrently with the computation of p;, the SRT
algorithm allows the choice of the quotient digit at each step to be inexact. SRT division
computes an estimate of p; while the full subtraction is in progress. The estimated value
of p; is used to select a quotient digit, but the estimate is not precise enough to guarantee
that the exact quotient digit will be selected. This differs from the long division of Section
2.2, where there was only one possible choice of quotient digit at each step.

The SRT division algorithm uses the basic recurrence (1), but with different ranges
for the partial remainders and quotient digits. To accomodate inexactly chosen quotient
digits, SRT division allows the partial remainders to occupy a symmetric range about zero,
—k - Divisor < p; < k- Divisor, where k is a constant. Also, the quotient digits are
selected from a symmetric range —a < q; < a, where a. the quotient digit bound, is a
natural number. The choice of a depends on the radix: to represent the quotient using radix
r, a must be in the range 0, ...,r — 1, and there must be at least r values in the range
—a,...,0,...,a. The second requirement gives a constraint ofa> @r-1)/2.

Roughly speaking, the algorithm chooses quotient digits as follows: For some values of
the partial remainder and divisor, there is more than one quotient digit that will keep the
next partial remainder in the desired range. Thus the quotient digit can be selected using
an estimate of the partial remainder. For some combinations of p;, q;, and Divisor, the
next partial remainder p;; will be negative. When the partial remainder p; is negative,
the algorithm chooses a negative quotient digit ;. In the recurrence (1), note that choosing
a negative value for a quotient digit results in subtracting a negative value from the partial
remainder in the computation p; — g; - Divisor. In this way, the algorithm tries to choose
the quotient digits so that the partial remainders stay in the symmetric range.

The range of the partial remainders p; is —k - Divisor < pj < k - Divisor, where k is a
constant that depends on the radix r and quotient digit bound a. The constant k must be
chosen so that the algorithm can maintain |p;| < k - Divisor as an invariant. The following
calculation [3] suggests that it is possible to maintain the partial remainders in the desired
range if we assignk = (a - r)/(r—1). Suppose p; isatits maximum value, p; = k - Divisor.
In this sitution, the algorithm chooses the largest available quotient digit. g; = a. In order
for p;41 to satisfy the upper bound of the range, we must have

r-(pj —q; - Divisor) =r - (k - Divisor — a - Divisor) < k - Divisor.

Simplifying, this givesusr -k—r-a < k,ork <a-r/(r —1). The same constraint results
from the case p; = —k - Divisor. Thus it seems plausible that a division algorithm can
maintain |p;| < k- Divisor as an invariant. In the formal verification in Section 4.2, we
show that a particular SRT division circuit withr = 4.a = 2.,andk=a-r/(r—1)=28/3,
maintains the invariant |p;| < (8/3) - Divisor.

The usual notation for a negative quotient digit is a digit with an overbar: for example,
7 has the value —2. A number containing negative digits can be converted to one without
negative digits by subtracting the negative digits. As an example. in radix 4, .211 = .203.
The negative digit can be removed by the subtraction 210 — .001. In an implementation

VERIFYING THE SRT DIVISION ALGORITHM

of the SRT algorithm. it is straightforward to provide hardware that performs the
conversion. o

For radix 4 calculations, division can be defined using quotient digits 3, 2, 1.0, 1, 2, 3.
Observe. however. that all radix 4 numbers can be represented using only 2, 1,01, 2
For instance, .3 = 1.I. This observation allows hardware implementations to avoid the
problem of multiplying the divisor by three. We discuss this in more detail in the next
section.

Example 2. We illustrate SRT division. For radix 10, the quotient digits 5,...,5 are
sufficient to represent all values, so we will choose a = 5, r = 10. At each step of the
computation, we must satisfy the constraint | p;| < k - Divisor, where k=a-r/(r=1)=
50/9. Since the algorithm sets pj1 =7 - (pj — q; - Divisor), we must choose quotient
digits at each step to satisfy

k
|p; — q; - Divisor| < . Divisor.

Given our choices of a, r, we have k/r = 5/9. We will compute 1/8.

Dividend = 1.000
Divisor = 8.000

Step 1. Choose go so that [po — qo - Divisor | < g . 8.000. Substituting 1.000 for po and
8.000 for Divisor, this is |1.000 — go - 8.000] < 3 - 8.000. The only possible choice for the
quotient digit go = 0. Compute p;:
p1 = 10- (1.000 — 0 - 8.000)
= 10-(1.000 - 0)
= 10- 1.000
= 10.000

Step 2. Choose g so that [10.000 — g1 - 8.000} < g— . 8.000. The only possible choice is
q = 1.
p> = 10-(10.000 — 1 - 8.000)
= 10 - (10.000 — 8.000)
= 10-2.000
= 20.000

Step 3. Choose g2 so that |20.000 — g2 - 8.000] < % . 8.000. The constraint is satisfied by
choosing g; to be either 2 or 3. Let us assume that the algorithm chooses g2 = 3.
p3 = 10 (20.000 — 3 - 8.000)
= 10 - (20.000 — 24.000)
= 10 - (—4.000)

= —40.000

14 CLARKE, GERMAN AND ZHAQO -

Step 4. Choose g3 so that |—40.000 — g3 - 8.000] < % - 8.000. The algorithm must select

q3 =5.

ps = 10 - (—40.000 — (-5 - 8.000))
= 10 - (—40.000 — (—40.000))
= 10-0.000
= 0.000

The final quotient is 0.135 = 0.130 — 0.005 = 0.125, and the remainder is ps = 0.000.

2.4. Structure and operation of the division circuit

The circuit shown in figure 1 is due to Taylor [22]. There are four full-width registers: The
Divisor register holds the value of the divisor, the Remainder register holds the value of
the partial remainder, and the registers QPOS and QNEG hold the value of the quotient.
The q register holds one digit of the quotient. The outputs of the g register are qdigit (2 bits),
for the absolute value of the quotient digit, and gsign (1 bit), for the sign. The DALU s a
full width adder/subtracter, which is used to compute the partial remainders. The GALU is
an 8-bit wide adder/subtracter, which computes an estimate of the partial remainder. QUO
LOGIC is a block of combinational logic. Given the leading bits of the divisor and the
estimate of the partial remainder from the GALU, QUO LOGIC outputs the next digit of
the quotient. At several places, the circuit shifts a signal by one or two bits to the left in
order to multiply it by two or four. This operation is shown in the diagram as a box with the
operation X 2 or X 4. Throughout the paper, we use roman typeface for names of signals
and italics for the values of signals.

The full-width registers and the DALU for the circuit in figure 1 can have any width
greater than or equal to 10 bits. The reason for this is that the quotient selection logic does
not examine any bit beyond the 10 most significant bits of the signals. We show that on each
cycle, the circuit correctly computes the basic recurrence for SRT division independent of
the word length. Since each cycle produces 2 bits of the quotient, b cycles are required to
produce a quotient of length 2b. The exact sense in which the circuit is independent of the
word length will be discussed in Section 4, where we verify a mathematical model of the
circuit.

The division circuit operates in two phases: an initialization phase followed by the main
calculation phase. The initialization phase begins by setting the Remainder register to hold
the dividend, setting the Divisor register to hold the divisor, and setting the QPOS and
QNEG registers to zero. After these initializations have been done, the initialization phase
uses the GALU and the quotient selection logic to compute the first quotient digit and store
it in the q register. This completes the initialization phase.

The calculation phase performs a cycle of the division circuit for each digit beyond
the first one. Let us say that cycle j of the circuit is the one in which the value p; is

VERIFYING THE SRT DIVISION ALGORITHM

rout
rout } (8bits)
woutl (7bits)
A+B
A g\ A-B-I
nl@bS) | maibis) rin
[xa][x4]
Remainder md
I |
4 * troutt d1(3bits) ?
: R . > MUX
QUO LOGIC | /'\/\/\
................ gsign(ibity
q
qdigit(2bits)
d

J Divisor

Quotient

Figure 1. The division circuit.

computed. At the beginning of cycle j + 1, Remainder holds p;, Divisor holds the divisor,
and the q register holds ¢;. The DALU receives p; on its A input. The other input to
DALU is the signal md, which is controlled by the MUX. The inputs of the MUX are
the values 0, Divisor, and 2 - Divisor. Under control of qdigit, the MUX sets the line md
to gdigit - Divisor. The signal gsign controls whether DALU adds or subtracts its inputs:
DALU performs subtraction if gsign is +; otherwise it does an addition. The result is that
DALU computes the value p; — g; - Divisor and outputs this value on rout. The signal rout
is shifted two bits to the left and stored in the Remainder register for the next cycle. Thus
cycle j + 1 sets Remainder to the value pj4 in the recurrence (D).

The GALU essentially computes the leading 8 bits of rout. The A (resp. B) input to
GALU receives the leading 8 bits of the A (resp. B) input to DALU, and gsign switches
GALU between addition and subtraction. The output of GALU is routed through QUO
LOGIC to select the next quotient digit. In figure 1, note that the function computed by

16 CLARKE, GERMAN AND Z0AY -/

the GALU is asymmetric: in the addition case. the GALU adds the inputs to compute
A + B, while in the subtraction case, the GALU computes A —B — 1. Taylor [22] says that
introducing the —1 term produces a better estimate of the partial remainder than having
the GALU compute A — B in the subtraction case. The accuracy of the estimate produced
by the GALU is crucial for the correctness of the digit selection logic. Since it is not
obvious that the design of the GALU combined with the quotient selection logic produces a
correct quotient digit in all cases, formal verification of this aspect of the design is of great
value.

The value of the quotient is computed using the registers QPOS and QNEG. QPOS holds
all of the positive quotient digits and QNEG holds all of the negative digits. On each cycle.
these registers are updated as follows: Both registers are shifted two bits to the left. If the
digit in the q register is positive, then the value of qdigit (2 bits) is stored in the low-order
bits of QPOS and the two low-order bits of QNEG are set to zero. If the digit is negative,
then the value of gdigit (i.e., the absolute value of the digit) is stored in the low order bits
of QNEG and the low-order bits of QPOS are set to zero. When all of the quotient digits
have been computed, the values of QPOS and QNEG are routed to an ALU to compute
QPOS — QNEG. The output of this operation is the quotient. The reason for storing the
positive and negative digits in separate registers is to keep the cycle time of the circuit short.
Adding a full-width ALU on the inner cycle of the circuit would slow it down.

2.4.1. The quotient selection table. The quotient selection logic for QUO LOGIC is
represented in tabular form in Table 1. QUO LOGIC receives two inputs: an estimate of
the partial remainder from GALU and the first four bits of the divisor, and selects one of the
digits 2, 1, 0, 1, 2. In the circuit diagram, the signal troutl is the result of truncating routl
to 7 bits, by dropping the low-order bit. The value that is supplied to the quotient lookup
table is trout] multiplied by 4. In the table, the GALU input is g7868584 - 838281 NOte g7 is
the most significant bit. The table does not list the input values for the least significant bits
g281. The reason is that for most values of the inputs, the quotient digit can be determined
using only the five leading bits of the GALU output. The bits g2g are needed only near
boundaries where the value of the quotient digit changes. The output in these cases is given
by the lettered formulas A, B, C, D, E. For example, the formula A says that the quotient
digit is —2 unless both g; and g> have the value 1, in which case the quotient digit is —1.
The other formulas can be read in a similar way. '
For input combinations that cannot be reached on executions of the division circuit, the
table has no entry, indicated by —. It is important to verify both that the computation stays
within the marked area in the table, and that the quotient selections in this part are correct.

3. Analytica

In this section, we describe a new approach to mechanical theorem proving that involves
combining an automatic theorem prover with a symbolic computation system. The theorem
prover, which we call Analyrica, is able to exploit the mathematical knowledge that is built
into this symbolic computation system. In addition, it can guarantee the correctness of

it anida

P TRy

VERIFYING THE SRT DIVISION ALGORITHM 17

Table 1. The quotient prediction table for the division circuit.

(4 x routl -- 7 bits)
g7 1 1 1 1 1 1 1 1 1 1100O0OO0OCOO0O O O O O O
ge 0 0 0 1 1 1 1 1 1 1100O0O0CO0CO O O 1 1 1
gs 1 1 1 0 0 o ¢ 1 1 11 00©0©O011 1 1 0 0 O
gd 0 1 1 0 0 1 1 0 0 11001100 1 1 0 0o 1

g3 1 o0 1 o 1 0 1 0 1 010110101 0 1 0 1 0

=7 R [N A ([Y N Y A S A N Y N A N AR BN BN
= N I [T N (Y [Y A NS T A Y A O AR A B
1.000 . -= -- -= -= -2 =2 =2 A -1 -1 0 0 1 1 2 2 2 -- == == -- --
1.001 -- == -= -- -2 =2 -2 B -1 -1 0 01 1 C 2 2 2 -- -- -- --
1.010 =-- -- -= =2 -2 =2 =2 -1 -1 D OO0 1 112 2 2 2 -- -- --
1.011 =-- -- -2 -2 -2 =2 B -1 -1 D 0O 01 1 1 2 2 2 2 =-- == --
1.100 -- -- -2 -2 -2 -2 -1 -1 -1 0 0 0O E 1 1 C2 2 2 2 -- --
1.101 -- -2 -2 -2 -2 -2 -1 -1 -1 0 O0OOO 111112 2 2 2 2 --
1.110 -2 -2 -2 -2 -2 B -1 -1 -1 00 OO Y 112 2 2 2 2 --
1.111 -2 -2 -2 -2 -2 -1 -1 -+ -1 0 OO0 CGC 1 111 2 2 2 2 2
(d1 -- 4 bits) A =-(2 - g2*xgl)
B =-(2 - g2)
C =1+ g2
D =-(1 - g2)
E = g2

certain steps that are made by the symbolic computation system and, therefore, prevent
common errors like division by an expression that may be zero.

Analytica is written in the Mathematica programming language and runs in the interactive
environment provided by this system [24]. Since we wanted to generate proofs that were
similar to proofs constructed by humans, we have used a variant of the sequent calculus in the
inference phase of our theorem prover. However, quantifiers are handled by skolemization
instead of explicit quantifier introduction and elimination rules. Although inequalities play
akey role in all of analysis, Mathematica is only able to handle very simple inequalities. We
have implemented the Sup-Inf method of Bledsoe [5] to handle linear inequality systems.
In addition, we have developed a technique that is able to handle a large class of nonlinear
inequalities as well. This technique is more closely related to the BOUNDER system
developed at MIT [19] than to the traditional Sup-Inf method.

Analytica consists of four different phases: skolemization. simplification, inference. and
rewriting. When a new formula is submitted to Analytica for proof, it is first skolemized
to a quantifier free form. Then, in the simplification phase. a large number of rules are
used to simplify the atomic formulas (i.e.. equations and inequalities) with respect to the

18 CLARKE, GERMAN AND ZHAO" -

current proof context. If the formula reduces to true, the current branch of the inference
tree terminates with success. If not, the theorem prover matches the formula against the
conclusions of the available inference rules, and attempts to prove the formula by backwards
chaining.

If Analytica is attempting to prove a goal and no inference rule is applicable, then
Analytica tries to use rewriting to convert the goal into another equivalent form. If the
formula can be rewritten, then the simplification, inference, and rewriting phases are applied
to the new formula. Backtracking will cause the entire inference tree to be searched before
the proof of the original goal formula terminates with failure.

e Skolemization phase. In Analytica (as in Bledsoe’s UT Prover [4]), we use skolemization
to deal with the quantifiers that occur in the formula to be proved. Initially, quantified
variables are standardized so that each has a unique name. After replacing the quantified
variables by Skolem functions or Skolem variables, we can obtain a quantifier-free for-
mula. A formula is valid if and only if it is valid after skolemization. Although formulas
are represented internally in skolemized form without quantifiers, quantifiers are added
when a formula is displayed so that proofs will be easier to read.

e Simplification phase. Simplification is the key phase of Analytica. A formula is sim-
plified with respect to its proof context. Intuitively, the proof context consists of the
formulas that may be assumed true when the formula is encountered in the proof. The
formula that results from simplifying f under context C is denoted by simplify(f, C).
In order for the simplification procedure to be sound, simplify(f, C) must always satisfy
the following condition:

C k& simplify(f,C) < f.

The initial context Cy in each simplification phase is a conjunction of all of the given
properties of the variables and constants in the theorem. The initial formula in each
simplification phase is the current goal of the theorem prover. In the first simplification
phase it is the result of the skolemization phase. In each subsequent simplification phase
it is the result of the previous rewriting phase. A large number of rules are provided for
simplifying atomic formulas (i.e., equations and inequalities) using context information.

e Inference phase. The inference phase is based on the sequent calculus [11]. We selected
this approach because we wanted our proofs to be readable. Suppose that f is the
formula that we want to prove. In this phase we attempt to find an instantiation for the
skolem variables that makes f a valid ground formula. In order to accomplish this, f
is decomposed into a set of sequents using rules of the sequent calculus. Each sequent
has the form I" - A, where I" and A are initially sets of subformulas of f. The formula
f will be proved if a substitution can be found that makes all of the sequents valid. A
sequent I" - A is valid if it is impossible to make all of the elements of I true and all of
the elements of A false.

e Rewriting Phase. Five rewriting tactics are used in Analytica:

1. Replace the left hand side of an equation in the hypothesis by its right hand side.
2. Rewrite a trigonometric expression to an equivalent form.

VERIFYING THE SRT DIVISION ALGORITHM 19

3. Move all terms in equations or inequalities to left hand side and factor the expression.
4. Solve linear equations.
5. Replace a user defined function by its definition.

Special tactics are included in the inference phase for handling inequalities. Inequalities
play a key role in all areas of analysis. Although many inequality formulas can be handled
in the simplification phase, some valid inequality formulas cannot be reduced to true in this
phase. For example, (x <0Ay < x) — y < 0 cannot be proved by the technique used in
the simplification phase alone. Other more powerful techniques for deciding satisfiability
of inequality formulas must be used in addition. If an inequality a < b is not directly
provable using the techniques in the simplification phase, then Analytica will try to find a
term c, such that a < ¢ and ¢ < b are both provable in the current context. In order to
find such a term ¢, we compute a set of upper bounds for a and a set of lower bounds for b
by using information provided by the current context. The sets computed are denoted by
Upper(a) and Lower(b), respectively. A term x will be in Upper(a) only if a < x is true
in the current context. Likewise, x will be in Lower(b) only if x < b is true in the current
context. To prove a < b, it is sufficient to prove that there is some ¢ € Upper(a) such that
¢ < b is true or that there is some ¢ € Lower(b) such thata < c is true.

There are three main ways of obtaining upper and lower bounds for expressions.

1. Obtain bounds from context information: Upper and lower bounds for an expression are
calculated in the current context. For example, when proving (a < b) V c, the upper
bounds of a and the lower bounds of b are calculated under the context of —c.

2. Obtain bounds from the monotonicity of some function: If f is a monotonically increas-
ing function, and a' is an upper (lower) bound of a, f(a’) is an upper (lower) bound of
f(a); if f is a monotonically decreasing function and a’ is an upper (lower) bound of
a, f(a') is a lower (upper) bound of f(a).

3. Use some known bound on the value of a function: If f is bounded, i.e., for all x,
f(x) < M, or f(x) > M’, M is an upper bound for f(x) and M’ a lower bound for

fx).

The above technique is complete for linear inequalities, and it can also be used to prove
many of the nonlinear inequalities that arise in practice. However, the overhead required for
nonlinear inequalities makes the algorithm very inefficient for linear inequalities. Conse-
quently, we have incorporated Bledsoe’s Sup-Inf method [5, 21] into Analytica for handling
linear inequalities. The Sup-Inf method is treated as a special tactic in the inference phase
and is applied before the more complicated inequality reasoning tactic. The Sup-Inf method
provides a decision procedure for universally quantified formulas containing linear inequal-
ities. Although this method was initially used for formulas of Presburger arithmetic, it is
applicable to the reals as well.

When we apply the Sup-Inf method to a sequent. we first negate the sequent and obtain
a conjunction of formulas. We drop all of the conjuncts that are neither equations nor
inequalities. If we replace a = b by a < b A b < a, we can obtain a conjunction of
inequalities. The sequent is valid if this conjunction is not satisfiable. When applying this

20 CLARKE. GERMAN AND ZHAO -~

method to complex formulas. we treat nonlinear inequalities as linear ones by replacing
each nonlinear term by a new variable. Given a linear inequality system S and a variable
v, SUPs(v) computes the maximum value v can take in real solution of S and INFs(v)
computes the minimal value. For example, fS={0<y, x <y, x <1-y} then
SUPs(x) = % INFg(x) = —oo, SUPs(y) = o0, INFs(y) = 0. The definition of these
functions can be found in [21]. The linear inequality system is not satisfiable if for some
variable v, SUPs(v) < INFs(v).

Analytica contains special rules for reasoning about strict inequalities between expres-
sions whose values are integers or integer multiples of a common factor. For example, if
x, y are integer-valued, then the inequality x < v is presented to the Sup-Inf algorithm as
x + 1 < y. More generally, if x, y are known to be integer multiples of a rational number
p, where p > 0, thenx < y is converted to x + p < v. We say that a variable x has
precision p if the value of x is constrained to be an integer multiple of p.

In order to specify the possible values of variables, Analytica programs can contain
declarations of the form

DeclarePrecision[x] := p;

where x is a variable and p is a positive rational number. When this declaration is processed.
Analytica records an assumption that the value of x is an integer multiple of p.

The following rules are used to determine that an expression is a multiple of a rational
number:

1. If a is a constant, then a is a multiple of Abs(a).

2. If the variable x has been declared with DeclarePrecision[x] := p, then x is a multiple
of p.

3. If x is a multiple of p and y is a multiple of g, for p,qg > 0,thenx + yisa multiple of
GCD(p, q) and xy is a multiple of pg. The validity of these rules follows from simple
arithmetic.

4. Proof of the correctness of the SRT algorithm

In this section, we verify a mathematical model of the circuit. First, we construct the modetl
systematically from the circuit diagram in figure 1. Then we discuss the specifications
of the circuit. Analytica proves the correctness of the SRT circuit automatically from the
mathematical model and the specifications.

The circuit contains the following operations on signals:

1. Addition and subtraction of scaled integer values.

2. Left shifting of signals to multiply by a power of 2.

3. Table lookup and selection of signals by a multiplexor.
4. Truncation of signals to drop the low-order bits.

VERIFYING THE SRT DIVISION ALGORITHM 21

We model these operations as follows:

1. Addition and subtraction of signals that represent scaled integer values are modelled as
addition and subtraction on the rationals. Initially we model the circuit using unbounded
arithmetic. This model corresponds to bounded arithmetic in an actual circuit, provided
the circuit does not have arithmetic overflow. We use the unbounded arithmetic model
to show that the signal widths of the actual circuit in figure 1 are sufficient to perform
all arithmetic operations without overflow.

2. Left shifting of signals is modelled as an operation that multiplies the value of a signal
by a constant power of 2.

3. Table lookup and multiplexing are modelled by conditional expressions in the logic of
the theorem prover Analytica.

4. Truncation of the low-order bits of a signal is modelled by truncation inequalities, which
are explained in the next section.

Because the mathematical model of the circuit is defined using a small number of rules
based on the circuit structure, it is possible in principle to extract the model mechanically
from a description of the circuit structure. In order to do this, we would annotate the cir-
cuit with information about the numerical interpretations of the signals. For example, the
Remainder signal would be annotated with the information that it is a two’s complement
number having a certain number of bits on each side of the binary point. Given this infor-
mation, it is possible to generate the model for Analytica mechanically. One advantage of
automatic extraction is that it would be a step towards carrying out design and verification
of arithmetic circuits at the same time.

4.1. Axioms for the circuit

In our model of the circuit, we represent registers by equational rewrite rules that specify
the value of a register in the next cycle as a function of the values of signals in the current

cycle. An equation of the form

next(reg] = expr

means that the next value of reg is given by the expression expr. The notation next[reg]
designates the next value of reg. Note that next[-] is a special constructor in our equations,
not a function symbol.

We need some definitions for two’s complement arithmetic. A binary digitisQor 1. A
binary numeral is a string of the form [A r containing at least one binary digit, where /
and r are strings of zero or more binary digits and the symbol A represents the binary radix
point. A binary numeral / A r is said to be in format (nl, nr) if the length of / is nl and the
length of r is nr. A binary numeral [A r is said to have nl bits left of the binary point if the
length of [is nl. Consider the binary numeral N = biy...,bn Absy, ..., baignr, Where

22 CLARKE, GERMAN AND ZHAO -~

for 1 <i < nl + nr, b; is a binary digit, nl > 1, and the binary point is to the right of by;.
The value of N in two’s complement notation is given by the function

nl4+nr
Val(N) = =21 by + Y 2¥7" - bi.
i=2

The power of 2 factor associated with each binary digit in the above formula is said to
be the weighting of that binary digit. Note that the smallest value represented by a two’s
complement numeral in format (nl, nr) is —2"~', and the largest value represented is
2nl -1 __ 2-nr

In several places, we need to reason about signals that are formed by dropping the low-
order bits from a signal that represents a two’s complement numeral. For example, the
signal rin1 in figure 1 sends the leading bits of the remainder to the GALU. The full value
of the remainder is carried on the signal rin. The signal rin1 contains the leading bits of rin,
including six bits to the right of the binary point. Low-order bits beyond this are truncated or
effectively set to zero. In the circuit, the remainder and the signal md are represented using
two’s complement arithmetic. The following diagram shows the arithmetic weightings of
the bits in the signals rin and rinl in two’s complement notation. The numeric value of a
two’s complement signal is the sum of the weightings of the bits that are on. The diagram
assumes that rin has 7 bits, for n > 10; the most significant bit is b;.

bit : by, b by bs A bs b by bg be b bu --- b -~ ba
dn c |23 122 |2t | 20]Af2t |22 23 24 [275 |26f 277 23-k{ ... |23-n
dnl : L2322 2t [200 Al2t [272 23 |2%] 27526

Since the bits of rin that are not included in rinl have positive weightings, rinl < rin.
Also, we have

3-n
rin —rinl < Z 2 <278,

j=~7
This gives us the following inequality:
rinl < rin < rinl +27° 4)

It is important that this inequality depends only on the bit position relative to the binary
point at which truncation of the full signal occurs. In particular, the inequality does not
depend on the number of bits that the full-width signal has on either side of the binary point.
This means the inequality is valid in both the bounded arithmetic of an actual circuit and
the unbounded arithmetic model that we use for representing addition and subtraction.
Interestingly, the inequality in (4) is sufficient for our proof, even though it does not
capture all of the mathematical properties of truncation. The exact result of truncating a

VERIFYING THE SRT DIVISION ALGORITHM

signal such as rin is a staircase function, which remains level for each interval in which
by - - - byo are fixed. This staircase function does not have as small a representation as (4)
using linear inequalities. In the proof, we use inequalities like (4) several times to reason
about signals that are truncated.'

We are now ready to write down the axioms for the signals of the division circuit. In
the equations, the variable qdigit represents the absolute value of the quotient digit, and the
variable gsign is a boolean representing the sign (gsign is true iff the sign is +1).

¢ The MUX:

d when qdigit =1

0 when gdigit=0
md = [
2d when qdigit =2

rin — md when gsign
rin+md when —gsign

rout = {
o The Remainder:

next[rin] = 4 - rout

The QPOS:

4 . QPOS + qdigit when gsign

next{QPOS] = [4.QPOS when —gsign

The QNEG:

4 - ONEG when gsign

next(QNEG] = [4. ONEG + qdigit when —gsign

The Quotient:

Quotient = QPOS — QNEG

The signal rinl is rin truncated to 6 bits after the binary point:

rinl < rin < rinl + 2-6

The signal md1 is md truncated to 6 bits after the binary point:

md]gmd<md]+2_6

¢ The GALU:

rinl — mdl —2~% when gsign

rout] = { rinl + mdl when —gsign

In the subtraction case, the term —2~% reduces the GALU output by one ulp. This
is intended to improve the accuracy of the GALU’s estimate of the partial remainder
[22]. We have used Analytica to show formally that the GALU satisfies the following
inequality:

rout! < rout < routl + 23 . 5

Roughly speaking, the circuit achieves these bounds as follows: Both of the inputs to
the GALU are formed by truncating signals that are inputs to the DALU. Each of the
truncated signals satisfies an inequality

xl <x <xl+275, (6)

where x is the full-width input to DALU and x/ is the truncated signal. In the case that
the GALU adds its two inputs, this implies that (5) holds, because the GALU adds two
signals that satisfy inequalities of the form (6). In the subtraction case, truncation works
in the opposite direction for the term —mdl, i.e., we have

—md] — 2% < —md < —md].

The GALU computes rinl — mdl — 2~; the term 2% is intended to compensate for the
effect of truncation on —md]. However, care is needed to analyze this circuit properly.
In the absence of formal verification, it is not obvious that the GALU and the quotient
selection table give correct quotient digits. In the next section, we discuss the properties
we have formally verified to show that the GALU has enough accuracy to produce correct
quotient digits with Taylor’s quotient selection table.

e The signal d1 is the leading 4 bits of d (constant 1 before binary point and 3 bits after).
The divisor is a normalized number, so the signal d represents an unsigned binary number
with the most significant bit set to 1. The signals d and d1 have the following formats:

d : 1 (A2t 272] 273] 27 |

dl : 1 |Aaf2-t] 2-2] 273

We use the following truncation inequality as an axiom in our model:

dl <d <dl+273

24 CLARKE, GERMAN AND ZHAO - -

VERIFYING THE SRT DIVISION ALGORITHM

Additionally, we make use of the discreteness of d1. Because of its format, d1 can
only have the 8 binary values 1.000, 1.001, 1.010, 1.011, 1.100, 1.101, 1.110 and
1.111. This limitation on the range of dl is expressed in our model by the following
formula:

5 11

3 1
dI=1vdI=—9-vdI=—vdI= - z
8 4

15
==-vdl=—vVvdl = = —
2 vdl 5 3 4vdI 2

e The signal troutl is the leading 7 bits of routl (4 bits before the binary point and 3 bits
after). The following axiom says that troutl is produced by truncating routl:

routl < troutl < routl + 26

The proof constructed by Analytica also uses the fact that the value of trout] is a multiple
of 275,

e The QUO LOGIC: The quotient logic receives inputs d1 and troutl, and produces the
next quotient digit. This is the hardest part in formalizing the circuit. Intuitively, the
quotient logic can be represented as a large conditional expression. In our initial approach
[12] using the Maple symbolic algebra system, we formed a separate case foreach element
of the quotient table. The cases were defined in a bit-level definition of the quotient
table. For example, a typical table entry with this approach says that if the four bits of
dl = 1.010, and the five bits of the GALU are troutl = 00.101 then next{qdigit] = 2.

The initial approach to modelling the QUO LOGIC resulted in long running times
for the proof, because each entry in the quotient table was treated as a separate case.
We reduced the number of cases in the proof by representing each row of the quotient
prediction table as a boundary value list {b1, b2, b3, ba, bs, be}. For a given value of d1,
we choose bg to be the minimal positive value for (4 - trout]) that is outside the defined
quotient values in the table. For example, when dl = 1, this minimal value has binary
representation 0011.0. Consequently, bg = 3. Similarly, we choose by, b,, b3, bs and
bs to be the minimal values for (4 - trout1) that gives quotient values —2, —1,0, 1 and
2, respectively. When dI = 1, the minimal value for (4 - troutl) with quotient —2 has
binary two’s complement representation 1100.1. Therefore, by = —7/2. The boundary
value list for each of the 8 possible values for d are shown below:

{-=7/2, -—13/8, -1/2, 1/2, 3/2, 3}, whendl = 1;
(=772, -=7/4 -1/2, 1/2, 7/4, 7/2}, whendl =9/8;
{—4, -2, -3/4, 172, 2, 4}, whendl = 5/4;
{(-9/2, —9/4, -=3/4, 1/2, 2, 4}, whendl = 11/8;
{-=9/2, -=5/2, -1, 3/4, 9/4, 9/2}, whendl=3/2;
{-5. -5/2, -1, 1, 5/2, S5}, whendl = 13/8;
{(—~11/2, -11/4, -1, 1, 5/2, S5}, whendl = 7/4;
{-11/2, =3, -1, 1, 3, 11/2}, whendl = 15/8;

26 CLAKKE, UERMAN AND ZHAV =

From the definition of the boundary values, we know that the following holds:

1. when by < 4 - troutl < b3, = —-2;

2. when b, < 4 -troutl < b3, q=-1,

3. whenb; < 4-troutl <bs, q=0;

4. whenby < 4-troutl <bs, q =1,

5. when bs < 4 - troutl < bs, q =2

6. when 4 - troutl < by, out of table and we define g = —3;
7. when 4 - troutl > be, out of table and we define g = 3;

Let {b, b, b3, b, bs, be} represent the row in the quotient prediction table that corre-
sponds to d1. The QUO LOGIC is given by:

next{gsign] = (4 - troutl > b3)

when 4 - troutl < by Vv 4 - troutl > be

when by < 4 - troutl < by V bs < 4 - troutl < bg
when by < 4 - troutl < b3 Vv by < 4 -troutl < bs
when by < 4 - troutl < b

next{qdigit] =

O = N W

4.2. Specifications and proof of the circuit

The main issue we address in verification of the SRT division circuit is the correctness of the
quotient lookup table with respect to the surrounding data path. We abstract away standard
components such as the ALU. We also abstract the control logic of the circuit; the control
logic is essentially a counter that counts up to the number of cycles needed to compute
the quotient and then outputs the result. Because this control logic is data independent, it
would not be difficult to obtain good coverage with testing. In contrast, known methods of
testing provide very poor coverage for the quotient lookup table [16].
The correctness of the main calculation phase of the circuit depends on two invariants:

next{rin + 4 - Quotient -d] =4 - (rin+ 4 Quotient - d) (Invl)

2 2
—Z.d<rout<=-d (Inv2)
3 3

The first invariant says that (rin + 4 - Quotient - d) remains constant with respect to left
shifting by 2 bits. The initial value of this expression is Dividend. We will use the fact
that this expression does not change value to show that the final quotient and remainder are
correct.

The second invariant guarantees that the computation will never overflow (cf. [3]). We
regard Inv2 as the main property of the circuit to be verified. because it implies that the
quotient lookup table is correct. The constant 2/3 in Inv2 is determined by the choice of
the radix r = 4 and the range of quotient digits, —2. ..., 2, for this circuit. The general
formula to determine the bound on rout is part of the basic theory of SRT division (cf. [3]).
Since the formula for the bound on rout is well-known to practising circuit designers, the

VERIFYING THE SRT DIVISION ALGORITHM

invariant Inv2 is generally known when an SRT divider is being designed. It is also known
from the basic theory of SRT division that Inv1 and Inv2 imply that the computed quotient
converges to the correct value as a function of the number of cycles the algorithm runs. At
the end of this section. we apply the invariants to reproduce this result.

Analytica proves the following invariance properties automatically:

o The assertion Inv1 is an invariant.
next[rin + 4 - Quotient - d] = 4 - (rin + 4 - Quotient - d)

e The GALU gives an estimate for the remainder that satisfies the following inequality:
rouﬂ < rout < routl + 273

e The remainder never falls outside of the defined part of the quotient table.
2 2 . . .
—3 -d < rout < 3 . d = next{qdigit] = 0V next[qdigit] = 1 V next[qdigit] =2

e The assertion Inv2 is an invariant. (We assume that Inv2 holds after the circuit initial-
ization phase, and use Analytica to prove by induction that it remains true in the main
calculation phase.)

2 2 2 2
—-3—-d5rout<§-d=>—§-d5next[rout]< E'd

All of the theorems are proven by Analytica. The last theorem is the most interesting. The
exact statement of the theorem is given below.

Prove[imp{and{dl <= d < dl + 2*(-3),
or(dl == 8/8, d1 == 9/8, d1 == 10/8, dl == 11/8,
d1 == 12/8, d1 == 13/8, d1 == 14/8, d1 == 15/8],
routl <= rout < routl+24(-5),
troutl <= routl <= troutl + 2*(-6),
-2/3 d <= rout < 2/3 d],
-2/3 d <= next([rout] < 2/3 d4dl]l;

Notice that there are some additional conjuncts in the hypothesis part. The first two hy-
potheses are axioms about the values of d1. The third conjunct, relating rout and routl.
states that GALU gives a correct estimate for the remainder. Analytica proves the theorem
about the GALU separately, so we can assume it as a hypothesis in this proof. The fourth
conjunct says that troutl is the result of truncating the 276 bit of routl. The whole input
required by Analytica to prove these theorems and part of the proof it generates are shown
in Appendices A.1 and A.2.

As an application of the main invariance results described above, we show how to use
Inv1 and Inv2 to prove that the quotient converges to the correct value. This part of the proof

28 CLARKE. GERMAN AND ZHAO

can be regarded as part of the known theory of SRT division [3], and less a property specific
to the circuit we are verifying. The steps of this proof have been checked by Analytica,
with about 10 user-supplied lemmas.

Let Quotient, (resp. ring, routp) be the initial value of Quotient (resp. rin, rout), and let
Quotient; (tesp. rinj, rout;) be the values of these variables at the end of the jth cycle,
for j =1,....1. where [> 1 is the number of radix 4 digits in the quotient. The initial
conditions are Quotienty = 0, ring = Dividend.

The following formula can be proved by induction on the number of cycles j:

o rinj +4-d - Quotient; rin; Quotient ;
Dividend = Py =2 +d- - (Propl)

The base case for j = 0 follows from the initialization. The inductive case is just Inv1.
Intuitively, this formula says that the remainder is rin; scaled by 4~/ and the quotient is
Quotient; scaled by 4'~/.

It remains to show that the scaled value of the quotient converges to Dividend/d. First,
we will induct on j, to show that |rout;| < % .d, for j > 0. The base case follows from
the initialization of the circuit, which selects the first quotient digit. The inductive case is
Inv2. Since rinj,; = 4 - rout;j, for j > 0, we can infer that rinj] < % -dforj>1

Using Propl, we have a bound on the difference between the infinitely precise quotient
and the computed quotient:

Dividend Quotient;
d 4

rin,-
d -4

8 d 8
< — . - = -
=344 3.4

= 12. L4l < 4
3

Thus the error in the quotient at step j is less than 41-J,

4.3. Correct implementation on a finite-width data path

Thus far, we have analyzed the circuit in an unbounded arithmetic model. Now we use the
results of this analysis to show that the circuit can be correctly implemented with fixed-
width data paths of certain sizes. In this discussion, we focus on the data path that calculates
the Remainder. We first discuss the width of the Remainder register the signal md, then we
discuss the widths of the arithmetic units.

We have shown that the partial remainders satisfy |p;| < -g- -d,wherel1 <d <2. It
follows that

16
| < —=—=5=.
|p j | < 3 3
The weightings of the bits to the left of the binary point in a format (4, n) numeral are -8,
4,2. 1: thus the remainder can be represented as a (4, n) numeral. On the right of the binary
point, at least 6 bits are needed. because we used the property that the GALU input signal
rinl contains 6 bits to the right of the binary point in showing the accuracy of the GALU

estimate.

VERIFYING THE SRT DIVISION ALGORITHM

Now consider the signal md. which represents the product of the divisor and the unsigned
quotient digit. Since the divisor is in the range 1 < Divisor < 2 and the unsigned quotient
digit is 0, 1, or 2. md is in the range 0 < md < 4. This means that md can be represented
~ using three bits to the left of the binary point and a constant fourth sign bit which is always
0 (because md is non-negative).

Now we will consider the widths of the arithmetic units. Because the delay time of
an adder is proportional to its bit width, the smallest possible width should be used. On
the other hand. if the width is too small, arithmetic overflow will occur, so we need to
analyze the widths carefully. In fact, the width of the GALU presents a puzzle: As we have
discussed, the Remainder has format (4, n), and we have also seen that the GALU receives
6 input bits to the right of the binary point to achieve the necessary accuracy. From this, it
may appear that the GALU needs to be at least 10 bits wide. However, Taylor [22], says
that the GALU is implemented as 8-bit ALU but does not give a clear explanation of why
8 bits are sufficient.

We will show that the GALU can be implemented as an 8-bit arithmetic unit. As a
preliminary, observe that the output of both the DALU and GALU can be represented with
two bits to the left of the binary point. We have seen that the operand inputs to the arithmetic
units have four bits to the left of the binary point. In general. if two operands having four
bits to the left of the binary point are added or subtracted, the result will occupy five bits to
the left of the binary point. However, we have shown that in the division circuit, the correct
choice of quotient digits keeps the output of the DALU in the range |rout| < % -d < %.
This means that rout can be represented using only two bits to the left of the binary point,
weighted —2, 1. This is consistent with the output of the DALU having format (2, n), for
n=>6.

For the GALU, we have shown that the GALU output routl approximates rout in the
sense

routl < rout < rout + 273,
This implies that the output of the GALU satisfies
-2 < routl <2 - 276, @)

making routl representable in format (2, 6).

The output of the DALU is shifted two bits to the right and stored in the Remainder
register. Note that when a number in format (2, n) is shifted two bits to the left, it results
in a number with four bits to left of the binary point, which is the format we want for the
Remainder register.

Now that we have shown the output of the GALU is representable in format (2, 6),
we need to show that the correct output can be obtained using an 8-bit ALU. Although
the implementation of the GALU is not explained clearly in [22], we show how a correct
implementation can be defined. The leading 10 bits of the Remainder and md are numerals
in format (4, 6). The GALU drops two leading high-order bits of each signal. and performs
arithmetic on the remaining numerals in format (2, 6). The DALU can also drop the two

30 CLARKE. GERMAN AND ZHAOLD - °

highest order bits of its inputs. We will now show that this arrangement produces the correct
results.

The arithmetic operation performed by the GALU is either an addition or a subtraction; in
the subtraction case. the GALU actually computes A—B—1. We will consider the addition
case first. In order to discuss addition of binary numerals formally, let us define Sum(x, y)
to be the function mapping two binary numerals in format (nl, nr) into a numeral in format
(nl + 1, nr), with

Val(Sum(x. v)) = Val(x) + Val(y).

We also need to define the restriction of a binary numeral to a smaller format. Let N
be a binary numeral in format (nl, nr), with N = [Ar, where | = ly,.... 51, r =
i, ... rap. Ifnl’ < nl and nr' < nr, then we define N . to be the binary numeral
l,,l', .\..,ll Ary, ...,l,,,J.

The following theorem says that if N is a binary numeral with at least two bits to the
left of the binary point and the value of N is in the range that can be represented using
only two bits to the left of the binary point, then a numeral with the same value can be
formed by truncating the high-order bits down to two bits. The theorem is easily proved by
considering the weightings of the leading bits.

Theorem 1. If N is a binary numeral in format (nl, 6), withnl > 2 and —2 < Val(N) <
2 — 275 then Val(N) = Val(N|2.6))-

Applying this result to the circuit, we can infer, for example, that since the output of the
GALU is in the range given in (7), a numeral representing routl can be correctly computed
the following procedure:

1. Use an adder with inputs in format (4, 6) and output in format (3, 6); this adder will not

overflow.
2. Truncate the output of the adder to format (2, 6).

The above procedure is redundant in the sense that truncated output bits of the adder do
not need to be calculated. This is expressed by the following theorem. The theorem is a
consequence of fact that each output bit of the Sum function is independent of all input bits
that are relatively higher order (i.e., located to the left of the given output bit).

Theorem 2. If M. N are binary numerals in format (nl, nr) for some nl,nr and k is a
natural number. k < nl. then

Sum(M, N k.nry = Sum(Mkk.nr)v Nl(k.nr))(k,nr}-

We can now conclude that in the addition case, the GALU produces the correct output
by truncating the inputs to (2. 6) format and adding the truncated inputs.

VERIFYING THE SRT DIVISION ALGORITHM 31

For the subtraction case. we use the one's complement of the B input. Formally, if N is a
binary numeral in format (nl, nr), then define Comp(N) to be the result of replacing each 1
in N with a 0 and vice versa. If N is in format (n/, nr), then Comp(N) is a binary numeral
in the same format, and the values are related by

Val(Comp(N)) = —Val(N) = 27"".

The subtraction case of the GALU on inputs M, N can be implemented as follows:

1. Truncate both inputs to format (2, 6).
2. Compute Sum(M, Comp(N)).

By our argument in the addition case, this procedure produces the correct result for the
GALU.

While the above proof is conceptually simple, applying manual arguments to circuit de-
signs is a notably error-prone process. It is therefore of interest to mechanize the reasoning.
We will now discuss one approach that can be used to mechanize the correctness proof for
the GALU in Analytica.

First, we use Analytica to verify that the bits of DALU output weighted —16, 8, 4 do not
need to be computed. For the DALU and the output signal rout, we formulate the problem
using binary variables, b1, . .., b5, to represent the higher order bits of a two’s complement
number. The low-order bits are represented by a rational variable frac. All of the Analytica
theorems shown in this section are proven automatically.

Prove[imp[and[-4/3 <= rout <= 4/3,

rout == -16xbl + 8%b2 + 4%b3 + 2xbd + b5 + frac,
bl == 1 || bl == 0,
b2 == 1 || b2 == 0,
b3 == 1 || b3 == 0,
bd == 1 || bd == 0,
b5 == 1 || b5 == 0,

0 <= frac <
and[bl == b4, b2 b4, b3 == b4,
rout == -2x%b4d + b5 + fraclll;

[y
Bo—

n o~

The theorem says that if rout is in the range |rout| < 4/3 and it is represented as a two's
complement number with five bits to the left of the binary point, then the four highest
order bits must have the same binary value, and rout can also be represented as a two's’
complement number using only b4 and bS to the left of the binary point.

For the GALU and output routl, we prove a similar result, using the previously proved
result that routl approximates rout to within 27>,

32 CLARKE. GERMAN AND ZHAO

Prove[imp(and([-4/3 <= rout <= 4/3,
approx|[routl, rout, 5],

routl == -16%bl + 8%b2 + 4*b3 + 2%bd + bS5 + frac,
bl == 1 || bl == 0,
b2 == 1 || b2 == 0,
b3 == 1 || b3 == 0,
b4 == 1 || b4 == 0,
b5 == 1 || b5 == 0,

0 <= frac < 1
and{bl == b4, b2 b4, b3 == b4,
routl == -2%b4d + b5 + fracll];

W o—

[

Now we consider the arithmetic operations on the truncated inputs. We first prove two
preliminary resuits showing that if the truncated inputs are interpreted as unsigned binary
numerals, then the results of performing arithmetic on the truncated inputs fall in certain
ranges. The unsigned interpretation is used because when the inputs are truncated, the
leading (negative weight) bit is dropped. In these theorems, we represent the truncated
inputs as the sum of a bit with weight 2 and a rational number, lowx or lowy, which
represents the value of the input bits contained in format (1, 6). Two theorems are proved

(* The following theorem implies that truncx + truncy is
representable as 4%zl + 2xz2 + lowz. *)

Prove[impf{and(k == 2*(-6),
or[x3 == 1, x3 == 0],
or(y3 == 1, y3 == 0],
0 <= lowx <= 2-k,
0 <= lowy <= 2-k,

truncx == 2*xX3 + lowx,
truncy == 2%y3 + lowy],
0 <= truncx + truncy <= 8-kll:

for the GALU, one for the addition case and one for the subtraction case. We interpret
the results to mean that the arithmetic value produced by the GALU can be represented in
different ways: For the addition case, the arithmetic value can be represented as an unsigned
binary numeral in format (3, 6). For the subtraction case, the value can be represented as a
two’s complement binary numeral in format (3, 6).

Finally, we prove a main result for each of the two cases of the GALU. In these theorems,
the variables xin and yin stand for the two inputs to the GALU in format (4, 6), before
truncation of the two high-order bits. The variables truncx and truncy stand for the result
of truncating the two inputs to format (2, 6). For the addition case. the theorem says that if
truncx + truncy is representable as 4 - 21 + 2 - z2 + lowz, for 0 < lowz < 2. then the sum

oot bmind at- i b

3
3

VERIFYING THE SRT DIVISION ALGORITHM 33

of the untruncated inputs xin and yin is equal to the sum of the truncated inputs. For the
subtraction case, the theorem says that if truncx — truncy — 27% is representable as

(* The following theorem implies that truncx - truncy - k is
representable as -4%zl + 2%z2 + lowz. =*)

Prove([imp[and(k == 2*(-6),
or[x3 == 1, x3 == 0],
or{y3 == 1, y3 == 0],
0 <= lowx <= 2-k,
0 <= lowy <= 2-Kk,
truncx == 2*xX3 + lowx,

truncy == 2%y3 + lowyl,
-4 <= truncx - truncy - k <= 4-k]];

—4 .71 +2- 72 + lowz, then xin — yin — 275 = truncx — trunxy — 2-6. The theorems are
shown in figure 2.

4.4. Generality of the proof procedure

We have shown that an SRT division circuit can be verified automatically by the theorem
prover Analytica. In this section, we discuss the generality of our proof technique.

There are two main approaches to achieving generality with theorem proving techniques:
fully automated methods and interactive parameterized proofs. Our work is in the first class.
Only about two pages of input to Analytica are needed to define the circuit and the theorems
to be proven. Analytica relies on automatic symbolic algebra algorithms and the Sup-Inf
decision procedure to prove the theorems automatically.

Consider the problem of applying our method to another SRT division circuit. If the new
circuit differs from Taylor’s circuit [22] only in having a different quotient lookup table, it
would be sufficient to modify the definition of the the next quotient digit function. Then
the proof could be rerun automatically. Similarly, changing the width of the data path or
the radix of the quotient digits could be accomplished by simply changing some of the
constants in the Analytica input, and rerunning the proof automatically.

In essence, the automatic nature of Analytica implies that if we can obtain a formalization
and proof of a circuit, we also obtain an automatic proof procedure that can be applied to
related circuits.

Interactive parameterized proofs [13] are another approach to achieving generality. The
basic idea is to introduce new variables to stand for parameters of the circuit, such as the
word size or radix. A combinational function such as the quotient lookup function can also
be treated as a circuit parameter. In this approach, the user formulates and proves a general
theorem involving the parameterized design. Once the general theorem has been proven. it
is ususally not difficult to instantiate the parameters with constant values to obtain a result

for a particular circuit.

)
i,

34 CLARKE. GERMAN AND ZHAO

(* Main result for the addition case of GALU. *)

Prove [imp[and [xin == -8#x1 + 4*x2 + 2% x3 + lowx,
yin == -8yl + 4xy2 + 2xy3 + lowy,
or[xi == 1, x1 == 0],
or[x2 == 1, x2 == 0],
or[x3 == 1, x3 == 0],
orlyt == 1, y1 == 0],
orly2 == 1, y2 == 0],
or[y3 == 1, y3 == 0],

0 <= lowx < 2,

0 <= lowy < 2,

truncx == 2xx3 + lowx,

truncy == 2xy3 + lowy,

truncx + truncy == 4xzl + 2%22 + lowz,
or(zl == 0, z1 == 1],

or[z2 == 0, z2 == 1],
0 <= lowz < 2,
-2 <= xin + yin < 2],

xin + yin == -2%z2 + lowzl];
(x Main result for subtraction case of GALU. *)

Prove[imp[and[k == 27(-6),

xin == -8%x1 + 4%x2 + 2xx3 + lovwx,
yin == -Bkyl + 4xy2 + 2xy3 + lowy,
or[x1 == 1, x1 == 0],
or[x2 == 1, x2 == 0],
or[x3 == 1, x3 == 0],
or[yt == 1, y1 == 0],
or(y2 == 1, y2 == 0],
or{y3 == 1, y3 == 0],

0 <= lowx <= 2-k,
0 <= lowy <= 2-k,

truncx == 2*x3 + lowx,
truncy == 2%y3 + lowy,
truncx - truncy - k == -4xzl + 2xz2 + lowz,

or[zl == 0, z1 == 1],

or[z2 == 0, z2 == 1],

0 <= lowz < 2,

-2 <= xin - yin - k <= 2],
xin - yin - k == -2xz2 + lowz]];

Figure 2. Analytica theorems for the GALU.

VERIFYING THE SRT DIVISION ALGORITHM 35

One disadvantage of parameterized proofs is that using parameters in the formalization
of a circuit can make the resulting theorems more difficult to prove automatically. For
example. suppose a linear term of the form cx appears in a formula. where ¢ is a constant
related to circuit size and x is a variable. If we replace c by a new variable v, then the linear
term is replaced with a non linear term, which makes automatic reasoning more difficult.
Phenomena such as this make parameterized proofs more difficult to obtain automatically
than proofs of the individual instances.

5. Conclusion

In this paper, we investigate a radix-4 SRT division algorithm similar to the one used in
the Intel Pentium processor. We have built a formal model for the circuit and proven the
correctness of the model using our theorem prover Analytica. The main properties that have
been proven by Analytica are invariants saying that the value of the partial remainder stays
in the correct range, and that the divider only accesses defined entries in the quotient lookup
table. These are the most critical properties to verify for an SRT divider, because they imply
that the quotient lookup table is correct. As the Pentium error showed, the correctness ofa
quotient lookup table is difficult to assure without formal verification.

We have also used Analytica to verify a subtle logic optimisation that the circuit designer
used in one of the arithmetic units of the divider. Taylor’s circuit uses an estimation ALU
(GALU) to compute an estimate of the partial remainder on each cycle. The subtlety is
that while the signals that must be added or subtracted are 10 bits wide, the arithmetic unit
is only an 8-bit ALU. This design can be justified by appealing to invariants on the values
of partial remainder and estimated partial remainder and by using some properties of two’s
complement arithmetic. We have used Analytica to show that the 8-bit ALU produces the
correct result.

The main obstacle to wider use of theorem proving techniques for hardware verification
is the need for detailed user guidance when using most theorem provers. Therefore, it is
significant that Analytica is able to use our formulation of the SRT problem to prove the
main correctness invariants of the circuit with only a small amount of guidance. Analytica
needs only one user-supplied lemma to prove the main results.

The high degree of automation that we obtained is a consequence of both the theorem
prover we used and the way we formulated the problem. In particular. by formulating trun-
cation of signals using linear inequalities, we made it easier to apply automated reasoning
using the Sup-Inf algorithm. '

One issue in theorem proving is whether to verify parameterized circuit designs or indi-
vidual instances of circuits. In principle, the advantage of verifying a parameterized design
using theorem proving techniques is that the proof effort can be amortized over all the
instances of the design. However, proofs of parameterized designs tend to be much harder
to automate than proofs of the individual instances. When highly automated proofs, such
as the ones in this paper, can be obtained for individual circuits, we feel there is little reason
to carry out the more difficult proofs of parameterized families of circuits.

In mechanised deduction, there is a tradeoff between generality and the degree of automa-
tion. Interactive theorem provers are usually developed with many possible applications in

36 CLARKE, GERMAN AND ZHAO *

mind. In contrast. Analytica addresses a specific domain. A problem that must be overcome
in any theorem prover is that generality makes it harder to design mechanisms to choose
the correct path in a proof. For instance, in a prover with many simplification mechanisms.
if the wrong simplification is chosen at astep in a proof, the prover may never find the rest
of the proof. The tradeoff between generality and the degree of automation is difficult to
avoid.

In other research, we have developed a word level model checker {9] that can verify
arithmetic circuits. Although word level model checking works extremely well for many
circuits, there are still serious restrictions on the application of this technique. For example.
it can only handle circuits that maintain the exact value of the data and would not be
applicable for a circuit that involves rounding. '

Theorem provers, on the other hand, can be applied to a wider range of problems and
are particularly useful for reasoning at a high level of abstraction (architectural level ver-
ification). For instance, in this paper, we used a theorem prover to show that the division
circuit is correct for all word lengths greater than 10 bits. Finite-state methods such as
model checking usually verify a circuit only for a single word length. However, circuit
verification by theorem proving techniques usually requires some user interaction, while
model checking is largely automatic.

In the future, we intend to combine automatic theorem proving and model checking.
There has already been some work in this direction [14, 17]. This combination of approaches
should make it possible to handle much larger circuits than is currently the case. In proving
some property of a circuit, the specification will be decomposed into sub-goals. Each sub-
goal is verified using a decision procedure or the model checker. Then the theorem prover
is used to combine the proofs of the sub-goals.

Appendix

A.l. Mathematica code for the problem

<< index.all
$RecursionLimit = 2000;

(* the main ALU *)
next [rout] := next[ite{gsign, rin - md, rin + mdl];

(* md is a multiple of the divisor x)
md := d gdigit;

(* left shift by 2 bits =*)
nextlrin] := 4 rout;

(¥ values from quotient table. x)
next [gdigit] := nextgdigit(4 troutl, qtable[dl]];
next (gsign] := nextgsign(4 troutl, gtable(dl]];

VERIFYING THE SRT DIVISION ALGORITHM 37

(x divisor never changes x*)
next([d] := 4;

next [n_?NumberQ] := n;

(*x compute the quotient word *)
next [gpos] ite(gsign, 4 gpos + gdigit, 4 gposl];
next (gneg] ite[gsign, 4 gneg, 4 gneg + gdigitl];

(* quotient := Qpos - gneg; x*)
quotient := gpos - Qneg;

next{f_[a_.__]] := Map(next, flall;

(* Each row of the table is a list {bl, b2, b3, b4, b5, bé}.
When bl <= ¥ < b2, g = -2;

b2 <= r < b3, g = -1;

b3 <= r < b4, g = 0;

b4 <= r < b5, g 1;

bS <= r < b6, q@ = 2;

r < bl, out of table and we set q = -3;
r >= b6, out of table and we set g = 3

out of table -2 -1 0 1 2 out of table q
——————————— fpmmmm—jmmm—— g ———4mm———4-————4-=—————-=—--——---> routl

bl b2 b3 b4 b5 b6

*)

gtable{l] ={ -7/2, -13/8, -1/2, 1/2, 3/2, 3};
gtable([9/8] ={ -7/2, -7/4, -1/2, 1/2, 7/4, 7/2};
gtable[5/4] = { -4, -2, -3/4, 1/2, 2, 4};
gtable(11/8] := { -9/2, -9/4, -3/4, 1/2, 2, 4};
gtable([3/2] ={ -9/2, -5/2, -1, 3/4, 9/4, 9/2};
gtable{13/8] := { -5, -5/2, -1, 1, 5/2, 5};
gtable{7/4] = { -11/2, -11/4, -1, 1, 5/2, 5};
gtable([15/8] := { -11/2, -3, -1, 1, 3, 11/2};

(* CaseWithDefault is a conditional expression. Each case
is a pair of a boolean expression and a value. The final
element is the default value, which is 3 in this example.
If none of the boolean cases applies, the default value
is returned. x)

38 CLARKE, GERMAN AND ZHAO

nextqgdigit(r., {bl., b2., b3_, bd., b5., b6.}] :=

CaseWithDefault[{(bl <= r < b2) 11 (b5 <= r < b6), 2},
{(b2 <= r < b3) 11 (b4 <= r < b5), 1},
{(b3 <= r < b4), 0},
31;

(* sign of g *)
nextqgdigit(r., {bl., b2, b3_, b4, b5, bé.}] := (r >= b3);

(* The quantity (rin + 4 quotient d) is multiplied by 4 on each
iteration by left shifting. The hypothesis about rout is needed
because we only defined the value of next [rout]. =*)

Prove[imp[rout == ite([gsign, rin - md, rin + md],
next[rin + 4 quotient d] == 4(rin + 4 quotient d)1]:;

(* introduce an abbreviation x*)

approxla., b.,n.] := (a <= b < a + 24(-n));

(* Since routl has 6 bits to the right of the binary point, its
value is a multiple of 24-6. *)

DeclarePrecision{routl] := 24-6;

(* The Hypothesis says that rinl and mdl are approximations of
rin and md to 6 bits after decimal points. routl is the out put
of the small ALU. The conclusion of the theorem is that

routl <= rout < routl + 2A(-5). This theorem is used as a lemma

in proving the two following theorems. *)

Prove[imp{and[approx[rinl, rin, 6], approx{mdl, md, 6],
routl == ite(gsign, rinl - mdl - 2A(-6),rinl +mdl],
rout == ite[gsign, rin - md, rin + md]}],
approx[routl, rout, 5]1];

(* The hypothesis says that routl <= rout < routl + 27(-5); dil
is approximation of divisor to 3 bits after the decimal point;
dl can only have 8 possible values; rout is between -2/3 4 and
2/3 d. The conclusion is that next{rout] is between -2/3 d and

2/3 d. =*)

DeclarePrecision[troutl] := 27(-5);

VERIFYING THE SRT DIVISION ALGORITHM

Prove[imp{and[dl <= d < dl + 240 (-3),
or(dl == 8/8, d1 == 9/8, dl == 10/8, dl1 == 11/8,

dl == 12/8,d1l == 13/8,dl == 14/8,d1 == 15/8],
routl <= rout < routl + 2A(-5),
troutl <= routl <= troutl +,2%(-6),
-2/3 d <= rout < 2/3 4],
-2/3 d <= nextlrout] < 2/3 dll;

(x The hypothesis says that routl <= rout < routl + 27A(-5); 4l
is approximation of the divisor to 3 bits after the decimal
point; dl1 can only have 8 possible values; rout is between
-2/3d and 2/3d. The conclusion is that the quotient can only be
-2, -1, 0, 1, 2. This guanrantees that it is impossible to fall

out of table. *)

Prove [imp [and[approx[routl, rout, 5], approx(di, 4, 3],
troutl <= routl <= troutl + 270 (-6), .
or{dl == 8/8, d1 == 9/8, dl == 10/8, 41 == 11/8,
dl == 12/8, dl1 == 13/8, dl1 == 14/8, dl == 15/81,
-2/3 d <= rout < 2/3 d],

or [next [gqdigit] == O,
next [agdigit] == 1,
next [qdigit] == 2]11];

A.2. An example of the proof

Theorem.

approx(rinl, rin, 6) A approx(mdl, md, 6) N

routl = ite(gsign, rinl —mdl — 278, rinl + mdl) A
rout = ite(gsign, rin — md, rin + md) =
approx(noutl,rout,S)

Proof:

1 1
rinl <rinArin < 7] + rinl Amdl < d qdigit A d qdigit < & + mdl A

1
ite(gsign, routl = @ mdl + rinl, routl = mdl + rinl) A
ite(gsign, rout = — (d qdigit) + rin, rout = d qdigit + rin) =

1
routl < rout A rout < v -+ routl

40 CLARKE, GERMAN AND ZHAO

reduces to
1
—rin+rinl <0A ~a + rin — rinl <0 Amdl —dqdigit <0 A
1
ar7ie mdl + d qdigit < 0 A
1
ite(gsign. routl = i mdl + rinl, routl = mdl + rinl) A
ite(gsign, rout = — (d qdigit) + rin, rout = d qdigit + rin) =

1
—rout + routl <0 A I + rout — routl <0

and split
case 1.1:

1
—rin+rin150/\—-6z+rin—rinl<O/\md1—dqdigi150/\
1
—— —mdl +d qdigit <0 A
7 +dqdigit <

1
ite(gsign, routl = & mdl + rinl, routl = mdl + rinl) A
ite(gsign, rout = — (d qdigit) + rin, rout = d qdigit + rin) =

—rout +routl <0

ite cases
case 1.1.1:

1
—rin + rinl sOA—a-l-rin—rinl < 0 Amdl —dqdigit <0 A
1
& — mdl + d qdigit < O A gsign A

1
routl = i mdl + rinl A ite(gsign, rout =
— (d qdigit) + rin, rout = d qdigit + rin) =
—rout + routl <0

simplify formula using local context
1
—rin+rinl < OA—EZ + rin — rinl < 0 Amdl — d qdigit <0 A
1 ‘
7 mdl + d qdigit < 0 A gsign A

1
rout] = i mdl + rinl A rout = — (d qdigit) + rin =

—rout + routl <0

and(oo < rinl, rinl < —o0)

VERIFYING THE SRT DIVISION ALGORITHM

Proved by Suplnf Method
case 1.1.2:

1
—rin + rinl 50/\—a+rin—rin1 < 0Amdl —dqdigit <0 A

1
~a — mdl + d qdigit < O A

routl = mdl + rinl A ite(qsign, rout =
~ (d qdigit) + rin, rout = d qdigit + rin) =

gsign v —rout + routl <0
simplify formula using local context

1
—rin+ rinl _<_0/\—a+rin—rin1 < 0Amdl —dqdigit <0 A

1
~a — mdl + d qdigit <0 A

routl = mdl + rinl A rout = d qdigit + rin =
gsign v —rout + routl <0

and(oo < rinl, rinl < —00)

Proved by SupInf Method
case 1.2:

' 1
—rin+rin]50/\—az+rin—rinl<0/\md1—dqdigit§0/\
1
—— —mdl +d qdigit < 0 A
7 +d qdigit <

1
ite(gsign, routl = ar7in mdl + rinl, routl = mdl + rinl) A

ite(gsign, rout = — (d qdigit) + rin, rout = d qdigit + rin) A
—rout + rout] <0 =

1
—3-:2- + rout — routl <0

* simplify formula using local context

1
—rin+rin150/\—-a+rin—rin1 < 0Amdl —dqdigit <0OA

1
—a—md1+dqdigit<0/\

1 .
ite(gsign, routl = —a mdl + rinl, routl = mdl + rinl) A
ite(gsign, rout = — (d qdigit) + rin, rout = d qdigit + rin) =

i
—3—2- + rout — routl] <0

42 CLARKE, GERMAN AND ZHAO -

ite cases
case 1.2.1:

1
—rin + rinl _<_0/\—a+rin—rin1 < 0Amdl —dqdigit <0 A

1
" mdl + d qdigit < 0 A gsign A

1
rout] = @ mdl + rinl A ite(gsign, rout =
— (d qdigit) + rin, rout = d qdigit + rin) =

1
—-3—2 + rout — routl <0

simplify formula using local context

1
—rin + rinl 50/\—a+rin—rinl < 0Amdl —d qdigit <0 A
1
i mdl + d qdigit < 0 A gsign A
1
routl = r7in mdl + rinl A rout = — (d qdigit) + rin =

1
—55 + rout — routl <0

and(oo < rinl, rinl < —00)
Proved by Suplnf Method
case 1.2.2:
1
—rin+rinl < 0/\—6—4- + rin — rinl < 0 Amdl — d qdigit <0 A

1
—a—mdl+dqdigit<OA

rout]l = mdl + rinl A ite(gsign, rout =
— (d qdigit) + rin, rout = d qdigit + rin) =>

1
qsign v T + rout — routl <0
simplify formula using local context
1
—rin + rinl _<_0/\—a+rin—rin1 < 0Amdl —dqdigit <O

1
—6—4—de + d qdigit < O A

routl = mdl + rinl A rout = d qdigit + rin =

VERIFYING THE SRT DIVISION ALGORITHM

gsign v —-515 + rout — routl <0
and(oco < rinl, rinl < —00)
Proved by Suplnf Method : a
Acknowledgment

We thank Nikolaj Bjorner for calling our attention to a technical problem.

This research was sponsored in part by the National Science Foundation under Grant
No. CCR-9217549, by the Semiconductor Research Corporation under Contract No. 94-
DJ-294, and by the Wright Laboratory, Aecronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under Grant No.
F33615-93-1-1330.

Notes

1. Here we consider the case of two’s complement notation, but it is straightforward to give an inequality for

truncation of numbers in sign-magnitude notation. Truncation of sign-magnitude numbers always gives a result
with the same sign but smaller absolute value.

References

1. R. Alur and T. Henzinger (Eds.), Computer-Aided Verification (CAV '96), volume 1102 of Lecture Notes in
Computer Science, Springer-Verlag, 1996.

2. APT Data Services, “Pentium bug fiasco costs Intel dear,” Computer Business Review, Jan. 1995.

3. D.E. Atkins, “Higher-radix division using estimates of the divisor and partial remainders,” I[EEE Transactions
on Computers, Vol. C-17, No. 10, pp. 925-934, Oct. 1968.

4. WW. Bledsoe, “The UT natural deduction prover,” Technical Report ATP-17B, Mathematical Department.
University of Texas at Austin, TX, 1983.

5. W.W. Bledsoe, P. Bruell, and R. Shostak, “A prover for general inequalities,” Technical Report ATP-40A,
Mathematical Department, University of Texas at Austin, TX, 1979.

6. R.S. Boyer and J.S. Moore, A Computational Logic Handbook, Academic Press, 1988.

7. E.M. Clarke and S.M. German, Personal communication to H. Ruess, N. Shankar, and M.K. Srivas, 1995.

8. EM. Clarke, S.M. German, and X. Zhao, “Verifying the SRT division algorithm using theorem proving
techniques,” in R. Alur and T. Henzinger (Eds.), Computer-Aided Verification (CAV ’96), volume 1102 of
Lecture Notes in Computer Science, Springer-Verlag, 1996.

9. EM. Clarke, M. Khaira, and X. Zhao, “Word level symbolic model checking—Avoiding the pentium FDIV
error,” Design Automation Conference, June 1996.

10. E.M. Clarke and X. Zhao, “Analytica: A theorem prover for mathematica,” The Journal of Mathematica.
Vol. 3, No. 1, 1993.

11. J.H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Proving, Harper & Row, 1986.

12. S.M. German. “Verification of arithmetic hardware using a symbolic algebra system.” Lecture Notes.
March 1995.

13. S.M. German and Y. Wang, “*Verification of parameterized hardware designs.” in Proceedings of International
Conference on Computer Design. 1985.

14. J. Joyce and C. Seger, “The HOL-Voss system: Model-checking inside a general-purpose theorem prover.” in
Proceedings of the 6th International Workshop on Higher Order Logic Theorem Proving and its Applications.
HUG '93, LNCS 780. Springer-Verlag, 1993.

44 CLARKE, GERMAN AND ZHAO~

15. J. O’Learyv. M. Leeser. J. Hickey, and M. Aagaard. “Non-restoring integer square root: A case study in
design by principled optimization,” in Proceedings of the Theorem Provers in Circuit Design '94, LNCS 901,
Springer-Verlag, 1995.

16. V. Pratt, “Anatomy of the Pentium bug,” in Proceedings of TAPSOFT '9S: Theory and Practice of Software
Development, LNCS 915, Springer-Verlag, 1995.

17. S. Rajan. N. Shankar. and M.K. Srivas, “An integration of model checking with automated proof checking,”
in Proceedings of the Seventh Workshop on Computer-Aided Verification, 1995.

18. H. Ruess, N. Shankar. and M.K. Srivas, “Modular verification of SRT division,” preliminary version in (1},
final version in this journal.

19. E. Sacks, “Hierarchical inequality reasoning,” Technical Report, MIT Laboratory for Computer Science, 1987.

20. H.P.Sharangpani and M.L. Barton, “Statistical analysis of floating point flaw in the Pentium processor (1994),”
Technical Report, Intel Corporation, Nov. 1994.

21. R. Shostak. “On the sup-inf method for proving Presburger formulas,” Journal of the Association for Com-
puting Machinery, Vol. 24, pp. 529-543, 1977.

22. G.S. Taylor, “Compatible hardware for division and square root,” in Proceedings of the 5th IEEE Symposium
on Computer Arithmetic, May 1981.

23. D. Verkest. L. Claesen. and H. De Man, “A proof of the nonrestoring division algorithm and its implementation
on an ALU.” Formal Methods in System Design, Vol. 4, pp. 5-31, Jan. 1994.

24. S. Wolfram. Mathematica: A Svstem for Doing Mathematics by Computer, Wolfram Research Inc., 1988.

-

