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Abstract— We look at the problem of estimating k discrete
random variables from n noisy and sparse measurements
where k = nR, with a ‘rate’ R. The model is motivated
by problems studied in diverse areas including compressed
sensing, group testing, multiple access channels and sensor
networks. In particular, we study uncertainty and mismatch in
the measurement functions and the noise model and quantify
the effect of these faults on detection performance, in the
large system limit as n → ∞, while R remains constant.
We characterize the performance of mismatched and uncertain
detectors, design and analyze robust detectors and present an
illustrative example where the analysis presented can be used
to guide the design of robust measurement ensembles.

I. INTRODUCTION

We study the problem of detecting k discrete random
variables ~V =

[
V 1, . . . , V k

]
, from n noisy and sparse

measurements ~Y =
[
Y 1, . . . , Y n

]
. A measurement Y u is

sparse if it is a function of a small (Θ(1)) number of V js.
Sparse measurements are attractive because they are often
associated with low-complexity detection algorithms that
have very good performance guarantees [1]. The problem
of estimating discrete variables using sparse observations
[1] has been studied from many different points of view
including sensor networks [2], combinatorial group testing
[3], sparsely spread Code Division Multiple Access (CDMA)
systems [4] and sparse compressed sensing [5].

Rachlin et al. [2] analyzed this problem from an informa-
tion theoretic perspective, in the large system limit (n→∞),
with k = nR for a constant rate R. Their work showed that
there is a strong parallel between the problem of detecting k
discrete random variables using n sparse measurements and
the channel coding problem of communicating k discrete
symbols across a noisy channel using a code of length n
with a sparse generator matrix. Furthermore, [2] showed that
the detection problem could be analyzed using Gallager’s
bounding method [6]. They obtained a characterization of the
rate R that is sufficient to detect k discrete random variables.

In this paper we are interesting in analyzing the effect of
parameter uncertainty and model mismatch in this detection
problem. To do so, we generalize the result in [2] to allow
for a large class of (possibly sub-optimal) decoders. We
show that with this more general derivation, the parallels
to channel coding can be extended even further. We begin
by modifying the analysis for universal decoders from [7]
and mismatched decoders from [8] to analyze the detection
task. This generalization allows us to quantify the effect of
mismatch or uncertainty in the noise model and measurement
function and design robust measurement ensembles.
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Fig. 1. Factor graph [9] of detecting variables from sparse measurements
with c = 3, k = 8, n = 4, and the rate R = 2. fu are measurement
factors and hj factors correspond to prior information.

A. Model outline

The model we study can be represented using a factor
graph [9] as in Fig. 1. The state of the environment is
modeled by k discrete random variables ~V =

[
V 1, . . . , V k

]
.

Each position in the vector represents a discrete phenomenon
at that ‘location’, which takes values in V . Each measurement
u ∈ {1, . . . , n} is sparse i.e., a function of c locations
l (u, 1) , . . . , l (u, c). We call the measurements and loca-
tions measured by them a sensor network or measurement
network. Each noiseless function value Xu ∈ X , is a
function Xu = Ψ

(
V l(u,1), . . . , V l(u,c)

)
. Each measurement

is corrupted independently according to a probability mass
function (p.m.f.) pY |X (Y = y|X = x) resulting in the obser-
vations ~Y ∈ Yn. We use a ‘decoder’ g : Yn → Vk to obtain
an estimate ~̂V = g(~Y) of the true state of ~V. We quantify
the performance of (possibly sub-optimal) decoders g, with
uncertain or mis-specified noise model PY |X or measurement
function Ψ. We study the problem in the large system limit,
(n→∞), while the rate R is maintained a constant.

B. Motivation for the model

We now review some applications that can be cast into the
framework described above. The model is nearly identical to
the one studied by [1], and so, the possible applications of
our results are naturally very similar. Montanari [1] focuses
on the analysis of message passing algorithms using density
evolution and is not concerned with the robustness of the
algorithms. However, as explained in the next section we
characterize the performance of a large class of decoders,
especially with model mismatch and parameter uncertainty.
• Luby Transform (LT) codes [10] are low-density

generator matrix (LDGM) codes which are universal
and rateless erasure codes that show promise in many
network applications. In an LT code, each encoding
symbol chooses a degree c from a degree distribution. It



then chooses c message bits as neighbors. The encoded
symbol is then the XOR of the chosen bits. Putting this
into the model we study is very simple - the discrete V js
are the ‘message bits’ in the LT code and the function Ψ
is XOR. The noise model PY |X is the erasure channel
over which we use the LT codes where Y is a tertiary
alphabet Y = {0, 1, ∗}, with ∗ used for erasures. We
described the model above for fixed c but we show in
Section IV how to extend it to the case of multiple cs.

• Group testing [11] is an old technique which was
used to reduce the number of blood tests required to
detect syphilis in soldiers during World War II. The
blood from multiple people is mixed together to form
a ‘pool’ that is tested. If any of the soldiers in that
pool are ‘positive’ for syphilis the sample will test
positive. To fit this into the model, we have one V j

for each solider which takes a value 1 if he is infected
and 0 otherwise. The function Ψ is OR. Sources of
errors such as human error and chemical inhibitors, are
modeled using the noise model PY |X . Recent work [12]
explores the use of sparse random pools for the group
testing problem. Many different versions of this problem
have been studied (as detailed in [11]) for a variety
of applications such as DNA clone library screening,
circuit testing or multi-access channels. These models
differ in the Ψ function or the noise model, but are
generally considered as group testing applications.

• Multi-user detection [13] is the problem of decoding
the transmissions of multiple users using a shared
channel resource. In general the channel can be modeled
as a vector channel H with ~Y = H~V + ~N. In binary
CDMA the alphabet of the V j variables to be estimated
is V = {1,−1}. Each output Y u is then a linear
function of the discrete V j . This falls very naturally into
our framework when H is row sparse, as is the case for
sparsely spread CDMA [4], in which the output at each
Y u is a linear function of a few of the binary V js. The
noise model PY |X is usually assumed to be Gaussian,
modeling the additive noise in the channel.

C. Focus of this paper

Prior theoretical work [1], [2] on problems similar to the
one described above assume that the noise model PY |X and
sensing function Ψ are known perfectly at the decoder. How-
ever, in real systems this assumption can easily be violated.
For example, when using LT codes [10] in networks, the
erasure probability (corresponding to PY |X ) is usually not
known. In CDMA systems [4] the Ψ and PY |X correspond-
ing to the channel model and noise may only be known
to be in a certain class, or the true system parameters may
change over time. In applications such as group testing [11]
and DNA micro-arrays [14], similar problems of uncertainty
and mismatch can arise. Motivated by these examples, we
analyze the effect of particular fixed measurement functions,
noise and especially uncertainty and mismatch in the noise
model PY |X and measurement function Ψ.

In particular, we seek to answer the following questions:

• How do we design the decoder g(~Y) if the noise model
PY |X or the measurement function Ψ is uncertain?
What is the performance of this decoder?

• What is the performance of the decoder g(~Y) when
PY |X or Ψ are mis-calibrated? That is, what is the
performance of a decoder that is provided with an
incorrect noise model or measurement function?

• How can we design measurement ensembles that are
robust to uncertainty and model mismatch?

We approach the problem from an information theoretic
point of view, following [2]. However, they were interested
in the performance of optimal Maximum Likelihood (ML)
or Maximum-a-posteriori (MAP) decoders and did not look
at the problems of uncertainty and mismatch. In order to
analyze sub-optimal decoders and address the problem of
robustness, we first simplify and generalize the original
derivation of sensing capacity in [2] following the 1961
Gallager-Fano bounding technique (as described [8]). We
then use large deviation results from [15] to derive our
main general result (Theorem 3.1). Next, we study universal
decoders from [7] and analyze performance when the noise
model PY |X or the measurement function Ψ is uncertain. We
also analyze sub-optimal decoders and decoders using mis-
specified Ψ or PY |X using techniques reviewed in [8]. Our
analysis allows us to quantify the effect of calibration faults
and uncertainty, and suggest cases where modified algorithms
need to be used to compensate for them. We conclude that
if a sufficient number of measurements are available (so that
the sensing capacity remains positive), then even in these
cases, performance guarantees can be made. We also show
an example, where the analysis presented can be used to
guide the design of robust measurement ensembles.

D. Comparison to prior work

In this paper we start from the ideas in [2]. However the
original work did not look at mismatch and uncertainty and
was for optimal Maximum Likelihood (ML) or Maximum-
a-posteriori (MAP) decoders. To analyze mismatch, uncer-
tainty and new decoders, we are forced to follow a different
analysis technique. We provide a more general derivation,
resulting in an expression that can be easily specialized
to analyze these new problems. As pointed out in [2], the
model we study is different from the set up of classical
channel coding problems [6] because the randomly generated
‘codewords’ (or noiseless measurements) ~X are not inde-
pendent for different ‘messages’ (or environments) ~v. This
is because, in our case, all the ‘codewords’ come from the
same fixed generative model, resulting in constraints on the
possible codewords. Also, because of the finite ‘field of view’
c of the measurements, each ‘message bit’ (location) can
only affect a constant number of output measurements. For
example, suppose we know the noiseless measurements for
an environment ~vm. Consider an environment ~vm′ generated
by changing the value at one location in ~vm. Because
of the sparse nature of the measurements, we expect that,
in general, very few measurements will change i.e., the
noiseless measurements ~Xm and ~Xm′ will be similar. In



(ideal) codes on the other hand, there is no reason for two
codewords to be similar to each other. This difference causes
a significant change in the techniques used.

Montanari [1] also studies a model very similar to the
one we look at, but there are some fundamental differ-
ences between his approach and ours. Firstly, the case of
model mismatch and uncertainty was not addressed there
which is central to our work. Additionally, in that work
the focus was on analyzing the performance of message
passing algorithms for the detection problem. The analysis
was performed through ‘density evolution’, which required
that each measurement function is invariant to a permutation
of the measured locations. The analysis results in estimates of
the symbol error rate while we seek to provide a single letter
characterization of the number of measurements (or rate R),
that is sufficient to achieve a particular overall (or word
level) distortion. Finally, in [1] the measurement networks
are assumed to be actually drawn from a random distribution,
whereas we use random measurements as a proof technique
in the spirit of Shannon’s random coding argument [6].
We are interested in the existence of good measurement
networks Cn, while [1] analyses the performance of inference
algorithms on random graphs.

The rest of the paper is organized as follows. In Section
II we define the notation we need for our analysis. Section
III contains our main result, while its proof is relegated to
the Appendix. Section IV specializes the result of Section
III, and shows how our analysis is general enough to easily
analyze parameter uncertainty and model mismatch. Finally,
in Section V, we show a simple example highlighting how
our results could be used to design measurement ensembles
that are robust to model mismatch.

II. MODEL AND NOTATION : TYPES, JOINT TYPES AND
CONDITIONAL DISTRIBUTIONS

Notational preliminaries : In this paper, we use upper
case (X) to denote a random variable and lower case (x) to
denote its values. The notation ~X denotes a random vector.
We index into a vector using superscripts, and enumerate
vectors using subscripts - Xj

m is the jth element of the mth

vector ~Xm. All logs are to base e.
Model : The problem we study [2] can be modeled

using the factor graph, as shown in Fig. 1 and described
in Section I-A. For completeness, some terms are defined
again. The ‘environment’ or ‘target vector’ is modeled as a
k-dimensional discrete random vector ~V. Possible states of
the environment are denoted by ~vm, m ∈ 1, 2, . . . , |V|k. We
assume that nature generates elements of ~V independently at
random with probability mass function (p.m.f.) pV (V = v)
(these correspond to the hj factors in the factor graph). We
are given n measurements and define the rate R = k

n as
the ratio of the number of random variables to be measured
(k) to the number of measurements (n). Each measurement
u ∈ {1, . . . , n} is sparse - that is, a function of c arbitrary
locations l (u, 1) , . . . , l (u, c). We denote the resulting mea-
surement network or sensor network as Cn. For measurement
u, we denote the (unobservable) noiseless function value

Xu ∈ X , which is a function Xu = Ψ
(
V l(u,1), . . . , V l(u,c)

)
,

where Ψ is the ‘measurement function’ or ‘sensing func-
tion’. Each Xu is then corrupted by independent identically
distributed noise that follows a p.m.f. pY |X (Y = y|X = x),
to obtain the observed measurements ~Y ∈ Yn. Since the
noise in the measurements is independent and identical,
P~Y|~X

(
~Y = ~y|~X = ~x

)
=
∏n
u=1 pY |X (Y u = y|Xu = x).

We define a ‘decoder’ by a function g : Yn → Vk.
Error events and Sensing capacity : We define a

tolerable distortion region around a particular environment
vector ~vm as D~vm =

{
m′ : 1

kdH (~vm′ ,~vm) < D
}

for
some distortion D ∈ [0, 1] where dH (•, •) is the Ham-
ming distance function. This corresponds to the set of all
environments within a Hamming distance of D of ~vm.
Motivated by applications, we wish to analyze under what
conditions it is possible to guarantee that when ~vm is
the true state of the environment, the decoded g

(
~Y
)

=

~̂V ∈ Dvm . Formally, we define an error event for a given
measurement network C and true environment ~vm as the
event

{
g
(
~Y
)
/∈ D~vm

}
, and the corresponding probability

of error Pe,m,C . The average probability of error is defined
as Pe,C =

∑
m Pe,m,CP~V

(
~V = ~vm

)
. As defined in [2], the

sensing capacity C(D) at distortion D is the the maximum
rate R such that there exists a sequence of measurement
networks Cn, such that Pe,Cn → 0 as n → ∞ for fixed R.
By definition, a larger sensing capacity implies that we can
detect the environment using fewer measurements.

Types and joint types : Shannon used a random coding
argument [6] to analyze the average probability of error for
the channel coding problem. In that method the codeword
for each message is drawn with independent, identically
distributed symbols from a particular distribution. However
in our case, as described in [2], we cannot draw symbols
in this manner. The noiseless measurements ~X (which cor-
respond to the codewords in the channel coding problem)
are constrained to be functions of the environment ~v (which
correspond to the message in the channel coding problem)
through the sensing function Ψ. However, following [2] we
apply a random measurement argument. That is, we assume
each measurement to be a function Ψ of an independently
chosen random subset of locations, resulting in a random
measurement network Cn. Because of the random Cn, the
noiseless measurements Xu are i.i.d. random variables. How-
ever, the codewords so formed (~Xm for m ∈ 1 . . . |V|nR) are
neither independent nor identically distributed and so, we use
the method of types [16] to handle the correlations.

The notion of types and joint types [16] allows us to
apply a version of the random coding argument, while still
accounting for the correlation between codewords that arise
because the measurements for different environments ~v come
from a particular measurement network Cn. The type of a
target vector ~v, denoted by ~γ =

(
γ1, . . . , γ|V|

)
, is defined

as the empirical p.m.f. of ~v. The joint type of two target
vectors ~vm and ~vm′ , ~λ =

(
λ11, . . . , λ|V||V|

)
is a p.m.f.

of size |V|2 with λab denoting the fraction of locations{
i : vim = a, vim′ = b

}
. For example, suppose k = 4, and



consider the case of binary vectors ~vm = [0001] and ~vm′ =
[0101]. Then the type of ~vm is [ 3

4 ,
1
4 ] and the type of ~vm′ is

[ 1
2 ,

1
2 ]. The joint type of ~vm and ~vm′ is [ 1

2 ,
1
4 , 0,

1
4 ].

Next, we will look at why the notion of types and
joint types of the environment vector arise naturally in our
analysis. As stated earlier, to parallel the random coding
argument, we consider a case where each measurement (or
sensor) chooses c locations to measure independently and
uniformly at random, and then generates a function Ψ of
those locations. In such a random drawing, the distribution
of the noiseless output Xu for a measurement u is a function
of only the type of the true environment, with

PXu (Xu = x) =
∑

~a∈Vc,Ψ(~a)=x

c∏
l=1

γa
l .= P~γX (X = x) (1)

Suppose that in a particular drawing of the network Xu
m is the

noiseless output for measurement u when the environment is
in state ~vm. The output Xu

m′ when the environment is in state
~vm′ is not independent of Xu

m because that measurement
is taken by the same measurement network. Because of
the randomly drawn measurements, the probability that the
noiseless output of measurement u is Xu

m when ~vm occurs
and Xu

m′ when ~vm′ occurs depends only on the joint type
of the two vectors and is given by

PXum,Xum′ (Xu
m = x,Xu

m′ = x′) = (2)∑
~a,~b∈Vc,Ψ(~a)=x,Ψ(~b)=x′

c∏
l=1

λa
lbl .= P

~λ (X = x,X ′ = x′)

Naturally, the conditional PXu
m′ |Xum (Xu

m′ = x′|Xu
m = x) =

PXum,X
u
m′

(Xum=x,Xu
m′=x

′)
P (Xum=x) . We also define the conditional

distribution of the measurement Y u when ~vm′ of type ~γ
occurs, conditioned on the fact that Xu

m is the noiseless
output when a different environment ~vm occurs. This is also
only a function of the joint type ~λ of ~vm and ~vm′ .

QY u|Xum(Y u = y|Xu
m = x) .= Q

~λ(Y = y|X = x) (3)

=
∑
x′∈X

P
~λ (Xm′ = x′|Xm = x)PY |X (Y = y|X = x′)

We emphasize that the fact that Xu
m′ and Y u, when ~vm′

occurs, are not independent of Xu
m (which corresponds to a

different target ~vm) is the core of the difference between our
measurements and channel codes used for communication.
We capture the dependence in a tractable manner using the
notions of types and joint types.

III. GENERALIZED DERIVATION OF THE SENSING
CAPACITY

A natural question that arises is, how many measurements
are sufficient to guarantee that we can detect the random
variables ~V to within a specified distortion D? i.e what
is the sensing capacity C(D)? Rachlin et al. [2] derived
a lower bound on sensing capacity CLB using Gallager’s
[6] Chernoff bounding technique to answer this question.
However, they assumed that optimal ML or MAP decoders

are used and furthermore, that all the problem model and
parameters are known exactly.

In this paper, we are interested in situations where there
is model uncertainty or mismatch. As a result a more
general class of decoders needs to be considered and the
analysis in [2] must be generalized. In this paper, we
provide a simpler, yet more general derivation of CLB ,
which allows us to go beyond the results in [2] and ad-
dress these problems. We assume a decoder that maximizes
some similarity metric sC (which depends on the specific
measurement network C) between the received ~Y and possi-
ble noiseless measurements ~xm for different states of the
environment. Since there is a one-to-one correspondence
between m and ~vm, we can write such a decoder as
g
(
~Y
)

= argmaxm sC
(
~xm, ~Y

)
. For example, a Maximum

Likelihood(ML) decoder has sC
(
~xm, ~Y

)
= p~Y|~X

(
~Y|~xm

)
.

However, the analysis also holds for decoders maximizing
other (possibly sub-optimal) metrics. We define S~γ (D) be
the set of joint types ~λ at distortion D from a type ~γ.
H(•) is the entropy function. We define a tilting metric
f
~λ,w

(
~Xm, ~Y

)
= E~Xm′ |~Xm

(
sC
(
~Xm′ , ~Y

))w
, which cor-

responds to the expected value of our metric for incorrect
environments which have a joint type ~λ with the true
environment. Intuitively, if this is small (in a sense made
rigorous in the proof) compared to the value of the metric
for the true environment ~vm (sC

(
~xm, ~Y

)
) then we do not

expect our decoder to output an environment ~vm′ which has
joint type ~λ with ~vm. Our theorem then concerns the large
deviations of Z~λ,wn which is the ratio of these two quantities
- the empirical metric for the correct environment and the
expected metric for incorrect environments with joint type ~λ
and its log-moment generating function Λ~λ,wn (s),

Z
~λ,w
n =

1
n

log


(
sC
(
~Xm, ~Y

))w
f~λ,w

(
~Xm, ~Y

)
 (4)

Λ~λ,wn (s) = logE[esZ
~λ,w
n ] (5)

Theorem 3.1: (Sensing capacity : General statement)
Suppose the limit Λ~λ,w (s) = limn→∞ 1

nΛ~λ,wn (ns) exists,
and Λ∗~λ,w (x) = sups

(
sx− Λ~λ,w (s)

)
is the Fenchel-

Legendre transform. If DΛ~λ,w =
{
s ∈ R : Λ~λ,w (s) <∞

}
,

and the origin belongs to the interior of DΛ~λ,w , then, there
exists a sequence of sparse measurement networks Cn, such
that the average probability of error, Pe,Cn → 0 as n → ∞
of a decoder using a metric sCn , for fixed R, if R < CLB
where CLB is a lower bound on sensing capacity given by,

CLB = min
~λ/∈S~γ(D)

sup
w≥0

(6)

supT(~λ)

{
T
(
~λ
)

: infx∈(−∞,T(~λ)] Λ∗~λ,w (x) > 0
}

[
H(~λ)−H(~γ)

]
Proof: See Appendix.

This theorem states that if we have a sufficient number of
measurements then there exists an appropriate measurement



network and a decoder using a metric sCn that can guarantee
detection to within a distortion D. Some discussion of the
intuition behind this result may be helpful. The original
large scale detection problem is a hypothesis testing prob-
lem with an exponential number of competing hypotheses.
Using union bounds we group the competing hypotheses
into a polynomial number of classes, with enR[H(~λ)−H(~γ)]

hypotheses for each class, and one class for each joint type ~λ.
Each hypothesis test is solved using a threshold of the form
enT (~λ) (See Eq. (A-4)). The error exponent for each class is
a function of the largest threshold that still allows detection,
for that class. We union bound over all the hypotheses in a
class, each of which have the same error rates on average
- because of the random sensor network deployment. The
average probability of error is bounded by the worst exponent
(or the most confusable joint type ~λ). This may be easier to
visualize after we look at some special cases.

IV. SPECIAL CASES

Case 1 : We first consider the basic situation where
all the measurement functions are identical and c sparse.
Each measurement is a function of a subset of c locations
as described earlier. We assume a Maximum Likelihood
(ML) decoder. The ML decoder returns the index of the
environment m that maximizes P~Y|~X

(
~Y|~xm

)
Corollary 4.1: ([2] ML decoding no mismatch) There

exists a sequence of sparse measurement networks Cn, such
that the average probability of error, Pe,Cn → 0 as n→∞,
with ML decoding, for fixed R, if R < CML

LB , where

CML
LB = min

~λ/∈S~γ(D)
sup
w≥0

(7)

∑
x∈X

∑
y∈Y P

~γ (x)PY |X (y|x) log
(

(PY |X(y|x))w

Q~λ,w(y|x)

)
[
H(~λ)−H(~γ)

]
Proof: We define the various terms that occur in

Theorem 3.1:

sC
(
~xm, ~Y

)
=

n∏
u=1

PY |X (Y u|xum)

Q
~λ,w (y|x) =∑

x′∈X
P
~λ (X ′ = x′|X = x)

(
PY |X (Y = y|x = x′)

)w
f
~λ,w

(
~Xm, ~Y

)
=

n∏
u=1

Q
~λ,w (Y u|Xu

m)

Z
~λ
n =

1
n

n∑
u=1

log

((
PY |X (Y u|Xu

m)
)w

Q~λ,w (Y u|Xu
m)

)

Each of the terms in Z~λn , Zu = log
(

(PY |X(Y u|Xum))w

Q~λ,w(Y u|Xum)

)
are

i.i.d. Thus, we are seeking a large deviations result for the
average of i.i.d terms. Hence, the condition in Theorem 3.1
is met and Λ~λ,w (s) = logE[esZ

1
]. Now, x < E

(
Z1
)
, then

Λ∗~λ (x) ≥ 0. So the resulting condition is that T
(
~λ
)
≤

E

(
log
(

(PY |X(Y |X))w

Q~λ,w(Y |X)

))
.

We consider simplifications of this expression. If we do not
optimize over w but just set w = 1,

CLB = min
~λ/∈S~γ(D)

D(PY |X ||Q
~λ)[

H(~λ)−H(~γ)
] (8)

where D(•||•) is the KL-divergence [6]. Here the reason for
the intuition given after Theorem 3.1 is even more obvious.
Another specialization occurs if we assume the ideal coding
case, where the codewords ~X are actually i.i.d. Then the
KL-divergence becomes a mutual information term I(•, •),
independent of the joint type ~λ resulting in

CLB = I(PY |X , Q) (9)

which is Shannon’s expression for channel capacity [6].
Thus, the sensing capacity in Theorem 3.1 and in [2] can
be considered generalizations of the channel capacity.

Case 2 : We now derive a simple extension that will
be useful for the simulations in Section V. We consider
the heterogeneous case of measurement networks, CHETn ,
where there are M classes of measurements, and each class
t for t = 1, . . . ,M has its own measurement function
Ψt
(
vl(1), . . . , vl(c)

)
. Let there be a constant fraction αt =

nt
n of measurements of class t, and we assume that the

measurements are arranged such that the products below
make sense.

Corollary 4.2: ([2] ML decoding, heterogeneous mea-
surements) There exists a sequence of heterogeneous sparse
measurement networks CHETn (as defined above), such that
the average probability of error, Pe,CHETn

→ 0 as n → ∞,
with ML decoding, for fixed R, if R < CHETLB , where

CHETLB = min
~λ/∈S~γ(D)

sup
wt≥0

M∑
t=1

αt (10)

∑
x∈X

∑
y∈Y P

~γ (x)P tY |X (y|x) log
(

(PY |X(y|x))wt
Q~λ,wt (y|x)

)
[
H(~λ)−H(~γ)

]
Proof: We just outline the proof. In the deriva-

tion in Section III, we can account for the heterogeneity
by assuming a single vector output measurement function
Ψ
(
vl(1), . . . , vl(c)

)
=
[
vl(1), . . . , vl(c)

]
, and M noise func-

tions, ptY |X (Y = y|X = x). This mapping is useful because
it unifies the noise model PY |X and the measurement func-
tion Ψ. Again assuming an ML decoder, that returns the
index of the environment m that maximizes P~Y|~X

(
~Y|~xm

)
.

We then define the various terms that occur in Theorem 3.1
and the result follows.

Case 3 : The next specialization we consider is the case
where there is mismatch, which was one of the motivations
for the analysis performed in this paper. Again we consider
a single measurement function. Each measurement is a func-
tion of a subset of c locations as described earlier. However,
instead of the true measurement function and noise, PY |X ,
we have a mismatched/mis-calibrated symbol-wise similarity
metric d (x, y) - possibly due to mis-calibration or model
error. For example, if the noise model is mis-calibrated,
then d(x, y) = P̂Y |X . We run a decoder using this metric.



The decoder returns the index of the environment m that
maximizes d

(
~xm, ~Y

)
=
∏n
u=1 d (xum, Y

u). We emphasize
that using the mapping of Corollary 4.2, we can also analyze
the case where the measurement function Ψ is mis-calibrated.
This result also can be used in cases where we use a sub-
optimal decoder that maximizes a metric that is not the ML
metric.

Corollary 4.3: (ML decoding with a mismatched metric)
There exists a sequence of sparse measurement networks Cn,
such that the average probability of error, Pe,Cn → 0 as n→
∞, with mismatched decoding using a metric d

(
~xm, ~Y

)
, for

fixed R, if R < CMIS
LB , where

CMIS
LB = min

~λ/∈S~γ(D)
sup
w≥0

(11)

∑
x∈X

∑
y∈Y P

~γ (x)PY |X (y|x) log
(

dw(x,y)

Q
~λ,w
d (y|x)

)
[
H(~λ)−H(~γ)

]
Proof: In this case we define ,

sC
(
~xm, ~Y

)
= d

(
~xm, ~Y

)
=

n∏
u=1

d (xum, Y
u)

Q
~λ,w
d (y|x) =

∑
x′∈X

P
~λ (X ′ = x′|X = x) dw (x′, y)

f
~λ,w

(
~Xm, ~Y

)
=

n∏
u=1

Q
~λ,w
d (Y u|Xu

m)

Z
~λ
n =

1
n

n∑
u=1

log

(
(P (Y u|Xu

m))w

Q
~λ,w
d (Y u|Xu

m)

)

Where Z~λn is again an average of i.i.d terms, and so we now
apply Cramer’s theorem [15].
This is the parallel of the Csiszar-Korner-Hui bound [8] in
coding theory, modified to account for the correlations be-
tween ‘codewords’ that is inherent in measurement networks.
This is smaller than the matched sensing capacity, indicating
that we require more measurements to make a network robust
to model mismatch, but at the same time, it also shows that
we can still guarantee performance if a sufficient number of
measurements are available.

Case 4 : Another problem we wished to study was the case
where we had model uncertainty. We consider a situation
where we do not know the exact value of the measurement
model PY |X , but we know that it belongs to a finite set {P θ},
indexed by θ ∈ Θ. To simplify notation, we choose w =
1. Again, using the mapping of Corollary 4.2, we can also
similarly analyze the case where the measurement function
Ψ is uncertain.

Corollary 4.4: (ML decoding with uncertainty for a class
of channels) There exists a sequence of sparse measurement
networks Cn, such that the average probability of error,
Pe,Cn → 0 as n → ∞, with unknown {P θ}, for fixed R,
if R < CFINLB where CFINLB is a lower bound on sensing

capacity given by,

CFINLB = min
~λ/∈S~γ(D)

(12)

minθt∈Θ minθ′∈ΘE
θt

(
log
(“

P
θt
Y |X(Y |X)

”
Q
~λ
θ′ (Y |X)

))
[
H(~λ)−H(~γ)

]
Proof: A possible metric for the decoder to maximize

is

sC
(
~xi, ~Y

)
=

1
|Θ|

∑
θ∈Θ

Pθ

(
~Y|~xi

)
=

1
|Θ|

∑
θ∈Θ

n∏
u=1

Pθ (Y u|xui )

This results in,

f
~λ
(
~Xi, ~Y

)
=

1
|Θ|

∑
θ∈Θ

n∏
u=1

Q
~λ
θ (Y u|Xu

i ) (13)

Z
~λ
n =

1
n

log

(∑
θ∈Θ

∏n
u=1 (Pθ (Y u|Xu

i ))∑
θ′∈Θ

∏n
u=1Q

~λ
θ′ (Y u|Xu

i )

)
Unfortunately, this is not the average of i.i.d terms, and so
we try a bounding procedure to simplify the expression. Let
θt be the true θ that actually occurred.

Z
~λ
n ≥ 1

n
log

( ∏n
u=1 (Pθt (Y u|Xu

i ))∑
θ′∈Θ

∏n
u=1Q

~λ
θ′ (Y u|Xu

i )

)
(14)

≥ 1
n

log

( ∏n
u=1 (Pθt (Y u|Xu

i ))

|Θ|maxθ′
∏n
u=1Q

~λ
θ′ (Y u|Xu

i )

)
(15)

≥ − log (|Θ|)
n

+ min
θ′∈Θ

1
n

n∑
u=1

log

(
Pθt (Y u|Xu

i )

Q
~λ
θ′ (Y u|Xu

i )

)
≥ −ε+ min

θ′∈Θ
S
~λ,θt,θ

′
n (16)

The last inequality is true for any ε for n large
enough. Each term in S

~λ,θt,θ
′

n is i.i.d as before. Since
Z
~λ
n ≥ minθ′∈Θ S

~λ,θt,θ
′

n − ε, Pr
(
Z
~λ
n < T

(
~λ
))

≤

Pr
(

minθ′∈Θ S
~λ,θt,θ

′
n < T

(
~λ
)

+ ε
)

, for n large

enough such that log(|Θ|)
n ≤ ε. Using a union

bound over θ′, this goes to zero if T
(
~λ
)

<

minθt∈Θ minθ′∈ΘE
θt

(
log
(“

P
θt
Y |X(Y |X)

”
Q
~λ
θ′ (Y |X)

))
, and so,

we have proved the corollary.
Let θ∗ be the minimizing θt in the Corollary 4.4. The
Corollary also suggests a simplified decoder that just assumes
P θ
∗

Y |X . This decoder would achieve the same worst-case on
performance as the suggested decoder with uncertainty, but
would have a lower computational complexity. Thus, our
theorem can be used to indicate and analyze a sub-optimal
decoder with reasonable worst case guarantees.

V. HETEROGENEOUS SENSOR NETWORKS TO
COMPENSATE FOR MISMATCH

We look at a simple example where mismatch can cause a
sharp drop-off in the performance of a measurement/sensor
network (or equivalently a large increase in the number of
sensors required to achieve a specified distortion), and where
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Fig. 2. The use of heterogeneous sensor networks to compensate for
mismatch. The dash/dot lines are rates achievable by sensors with different
thresholds, at different mismatches in the gain. The true gain is 1. The solid
line represents the rates achievable using a mixture of sensors.

the bounds from the previous section can be used to guide
sensor network design. The sensing model is as follows. Each
sensor senses c = 5 random locations. The sensor transfer
function takes an average of values within it’s field of view
and then applies a threshold. The decoder assumes that the
environment takes values {0, 1}, but actually the values are
{0, g}, where g is a mismatched gain. The required rates
for sensors with different thresholds, to achieve a distortion
of D = .005 are plotted with dash/dot lines in Fig. 2.
These indicate that the sensors are susceptible to the gain
mismatch. To ensure that the error criterion is always met
despite the mismatches, we would need to use the sensor
with the pessimistic ‘blue dash-dot’ threshold (near the
bottom of the figure), which can achieve a rate of less than
.035. Alternatively, we can use a heterogeneous network,
composed of nt sensors with each of the thresholds t. We
use the results from Corollary 4.2 and 4.3, essentially that,
CMIS,HET
LB =

∑r
t=1

nt
n C

MIS
LB,t . So, if we know that mis-

matches are possible, and the rates achievable with mismatch
(using the results of the previous section), then we could use
a mixture of sensors with different thresholds, which could
achieve the black solid curve in the figure - a rate of more
than .1.

This is a simple example where we can use the formu-
las derived to determine a combination of sensors so that
the sensor network is robust to mismatch. Other kinds of
mismatches can be analyzed similarly, and in many cases it
can be seen that a mixture of heterogeneous sensors is more
robust to mismatch and uncertainty than networks with a
single kind of sensor.
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APPENDIX

Proof: (Theorem 3.1) The notation in our proof is
unfortunately complicated, but is necessary to maintain rigor.
So, we first provide an outline to give some intuition.

Eqs A-1 to A-3 : We use the random measurement
argument outlined in Section II. We bound Pe,m, which is
the expected probability of error over the random sensor
networks. To do this we wish to follow the classical union
bound arguments, where we union bound over all incorrect
messages, as in the channel capacity proof [6]. However, be-
cause of the non-i.i.d. nature of the codewords (as explained
in Section II) we first split the union bound based on the
type of the incorrect environments as suggested in [2].

Eqs A-4 to A-10 : We split the error events based on
two sources of error - i) the noise is so large that the mea-
surements ~Y are not similar to the noiseless measurements
~Xm corresponding to the true environment ~vm (a ‘bad noise’
event) and ii) we draw a measurement network in which the
~Xm′ corresponding to a different ~vm′ is similar to ~Y. The
conditions under which the probability of both these events
goes to zero as n→∞ is our main large deviation result.

Eqs A-11 to A-12 : We complete the proof by showing
that if we can guarantee that the average error probability
for ‘typical’ environments goes to zero exponentially fast in
n, (using the large deviation result), then the average error
probability across all environments goes to zero since there
are only a polynomial number of types, and among them
‘typical’ ones are the most likely.

Now we start the actual proof. Let S~λm be the set of
environments at joint type ~λ with ~vm.

Pe,m= Pr

0@ [
m′ /∈D~vm

n
sC
“
~Xm′ , ~Y

”
> sC

“
~Xm, ~Y

”o1A
(A-1)

= Pr

 ⋃
~λ/∈S~γ(D)

⋃
m′∈S~λm

{
sC (~Xm′ , ~Y) > sC (~Xm, ~Y)

}
(A-2)

We introduce f~λ,w
(
~Xm, ~Y

)
, which is a ~λ specific tilting

function to be optimized later, and w ≥ 0 is a parameter that
can also be optimized.

≤
X

~λ/∈S~γ (D)

(A-3)

Pr

0B@ [
m′∈S~λm

8<:
“
sC
“
~Xm′ , ~Y

””w
f~λ,w

“
~Xm, ~Y

” >

“
sC
“
~Xm, ~Y

””w
f~λ,w

“
~Xm, ~Y

”
9=;
1CA

We define a ‘bad noise’ event using a ~λ specific threshold
enT(~λ)

Yb,λ =


(
sC
(
~Xm, ~Y

))w
f~λ,w

(
~Xm, ~Y

) < enT(~λ)

 (A-4)

We now union bound in (A-3) over good and bad noise
events. For the good noise condition we have reduced the



problem to a tilted threshold test.

Pe,m ≤
X

~λ/∈S~γ (D)

Pr
`
Yb,λ

´
+ (A-5)

X
~λ/∈S~γ (D)

X
m′∈S~λm

Pr

0@8<:
“
sC
“
~Xm′ , ~Y

””w
f~λ,w

“
~Xm, ~Y

” ≥ enT(~λ)

9=;
1A

Using results from [16], |S~γ (D) | ≤ n|V|
2

since there
are only a polynomial number of joint types, and |S~λm| ≤
enR[H(~λ)−H(~γ)]. Considering the second term in (A-5),

Term 2 ≤ n|V|
2

max
~λ/∈S~γ (D)

[enR[H(~λ)−H(~γ)] (A-6)

Pr

0@8<:
“
sC
“
~Xm′ , ~Y

””w
f~λ,w

“
~Xm, ~Y

” ≥ enT(~λ)

9=;
1A]

Applying Markov’s inequality,

≤ n|V|
2

max
~λ/∈S~γ (D)

enR[H(~λ)−H(~γ)]e−nT(~λ) (A-7)

E~Xm
E~Y|~XmE~Xm′ |~Xm

“
sC
“
~Xm′ , ~Y

””w
f~λ,w

“
~Xm, ~Y

”
We now choose the tilting function f

~λ,w
(
~Xm, ~Y

)
=

E~Xm′ |~Xm

(
sC
(
~Xm′ , ~Y

))w
resulting in

Term 2 ≤ n|V|
2

max
~λ/∈S~γ (D)

e−n[T(~λ)−R[H(~λ)−H(~γ)]](A-8)

Because of the random sensor placement, as discussed in
Section II, the distributions only depend on the type ~γ of
~vm, and the pairwise joint types ~λ of ~vm and ~vm′ . This

probability goes to zero if R < min~λ/∈S~γ(D)

T(~λ)
[H(~λ)−H(~γ)] .

For the first term in (A-5), we have

Term 1 ≤ n|V|
2

min
~λ/∈S~γ(D)

Pr
(
Z
~λ,w
n < T (~λ)

)
(A-9)

Where we define Z~λ,wn and its log-m.g.f Λ~λ,wn (s),

Z
~λ,w
n =

1
n

log

((
sC (~Xm, ~Y)

)w
f~λ,w (~Xm, ~Y)

)
,Λ~λ,wn (s) = logE[esZ

~λ
n ]

(A-10)
If the limit Λ~λ,w (s) = limn→∞ 1

nΛ~λ,wn (ns) exists, and
Λ∗~λ,w (x) = sups

(
sx− Λ~λ,w (s)

)
is the Fenchel-Legendre

transform. If DΛ~λ,w =
{
s ∈ R : Λ~λ,w (s) <∞

}
, and the

origin belongs to the interior of DΛ~λ,w , according to the
Gartner-Ellis theorem [15] the probability in (A-9) goes to 0
with exponent − infx∈(−∞,T(~λ)] Λ∗~λ,w (x). If this exponent
is positive, then Term 2 in (A-5) also goes to 0 as n→∞.

Suppose that targets are generated independently at ran-
dom with p.m.f. pV (v = V ). Let this p.m.f. be ~γ. As defined
earlier we look at the average probability of error, Pe

Pe = ECPe,C =

2nRX
m=1

P~V

“
~V = ~vm

”
ECPe,m,C

=
2nRX
m=1

P~V

“
~V = ~vm

”
Pe,m (A-11)

We divide the environments ~vm based on their types ~γ′.
There are enRH(~γ′) target vectors of each type ~γ′. According
to Eq. (A-8) the error rate for an environment m is only a
function of its type ~γ′, which we denote by Pe,m = Pe,~γ′ .

Pe =
X
~γ′

enRH(~γ′)Pr~γ(~v of type ~γ′)Pe,~γ′ (A-12)

=
X
~γ′

enRH(~γ′)e−nR(H(~γ′)+D(~γ||~γ′))Pe,~γ′

where ~γ is the type corresponding to the true distribution
PV . In the above sum, in terms for which ~γ′ 6= ~γ, the
e−n(D(~γ||~γ′)), causes their contribution to go to zero as
n→∞, using the fact that there only a polynomial number
of types [16]. And so, if the Pe,~γ (for typical environments
m of type ~γ) goes to zero exponentially, then Pe → 0.
The condition for this to happen was stated after (A-10).
If this condition is satisfied, the average error rate across
measurement networks goes to zero, and there exists a
sequence of sensor measurement networks Cn for which the
error rate goes to zero.
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