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Abstract— Prior work motivated the use of sequential decoding is independent of the code memory, if the rate is below
for the problem of large-scale detection in sensor networks the computational cutoff rate of the channel. Therefore, by

In this paper we develop the metric for sequential decoding oo ; ;
from first principles, different from the Fano metric which i s analogy, it is expected that the same independence applies t

conventionally used in sequential decoding. The differerecin the the problem of sensor network decoding, so long as enough
metric arises due to the dependence between codewords, whic measurements are collected (to keep the rate below thef cutof
is inherent in sensing problems. We analyze the behavior ohts rate of the sensor network.) Such a computational cutoff rat

metric and show that it has the requisite properties for use m  pehavior was indeed empirically observed in [10]. Thus, the

sequential decoding, i.e., the metric is, 1) expected to irease if - ;
decoding proceeds correctly, and 2) expected to decreasenire paper demonstrated that the trade-off between compuédtion

than a certain number of decoding errors are made. Through Complexity and detection accuracy can be altered by caiigct
simulations, we show that the metric behaves according to #ory ~ additional sensor measurements.
and results in much higher accuracies than the Fano metric. ~ While [10] developed the possibility of using sequential
We also show that due to an empirically-observed computatital  decoding in sensor networks, the metric used there (the Fano
cutoff rate, we can perform accurate detection in large sc@ ayric) originated in the decoding of convolutional codes.
sensor networks, even when the optimal Viterbi decoding is ot . S
computationally feasible. The Fanc_> metnc_: is not justifiable f_or sensor r_1etworks, ekcep
perhaps in special cases. The main contribution of the ptese
|. INTRODUCTION paper is the derivation of a sequential decoding metric for
The term “large scale detection” characterizes sensor nsgnsor networks from first principles, following arguments
work detection problems where the number of hypothesesaisalogous to those used by Fano [3] for convolutional codes.
exponentially large. Examples of such applications inelud'he derived metric differs significantly from the Fano metri
the use of seismic sensors to detect vehicles [5], the usedok to the dependence between the ‘codewords’ that is inhere
sonar to map a large room [6] and the use of thermal sensorssensor networks [8]. We analyze the behavior of this
for high resolution imaging [10]. In these applications thenetric and show that it has the requisite properties for use
environment can be modeled as a discrete grid, and eadth sequential decoding. i.e., the metric is expected jo, 1
sensor measurement is effected by a large number of gindrease if decoding proceeds correctly, and 2) decrease if
blocks simultaneously (‘field of view’), sometimes by morenore than a certain number of decoding errors are made. In
than 100 grid blocks [10]. Conventionally, there have beeimulations, the metric behaves as predicted by theory and
two types of approaches to such problems. The first gessults in significantly lower error probability than thenéa
of algorithms are computationally expensive such as \tertnetric. We also show that, due to an empirically-observed
decoding and belief propagation [7]. These algorithms acemputational cutoff rate, we can perform accurate detncti
at least exponential in the size of the field of view of the large scale sensor networks, even in cases where thealptim
sensor, making them infeasible for many common sensiN@erbi decoding is not computationally feasible due to the
problems. The second set of algorithms make approximatiomisle field of view of the sensors.
(such as independence of sensor measurements [6]) to make
the problem computationally feasible, at the cost of aagura Il. SENSORNETWORK MODEL
Thus, there has existed a trade-off between computationalWe consider the problem of detection in one-dimensional
complexity and accuracy of detection. sensor networks. While a heuristic sequential decoding pro
Our previous work in [8] has defined the concept of ‘sensingedure has been applied to complex 2-D problems [10] using
capacity’ as the ratio of target positions to number of ses)soessentially the same model as the one described below, we
required to detect an environment to within a specified accpresent the 1-D case for ease of understanding and analysis.
racy. Based on parallels between communication and sensiigtivated by parallels to communication theory and prior
established by this work, [10] built on an analogy betweemork, we model a contiguous sensor network as shown in
sensor networks and convolutional codes, to apply a heurigtig. 1. In this model, the environment is modeled a%-a
algorithm similar to the sequential decoding algorithm alimensional discrete vector. Each position in the vector
convolutional codes, for the problem of detection in sensoan represent any binary phenomenon such as presence or
networks. The average decoding effort of sequential degpdiabsence of a target. Possible target vectors are denoted by



derive an appropriate metric for sequential decoding irsgen
networks.

A. Definitions

In this paper we parallel the reasoning in [3], where a
metric for sequential decoding was derived for decoding
convolutional codes and extend that reasoning to the pmoble
Fig. 1. Contiguous sensor network model of detection in sensor networks. We use an argument similar
to the random coding argument [11], that deals with the
%omplications of inter-codeword dependence using argtsnen
based on the method of types [1]. We first introduce the

otation related to the types used and the random coding
CEistributions. The raté? of a sensor network is defined as the

vi i € 1,...,2%. There aren sensors and each sensor i
connected to (senses)contiguous location®;, ..., v rc_1.
The noiseless output of the sensor is a value X that is
an arbitrary function of target bits to which it is connecte

w = U(v,...,ve4c-1). For example, this function could .y of nymber of target positions being sensept¢ number

be a weighted sum, as in the case of thermal sensors, orc. oo, measurements)(R — %. D(P||Q) represents
location of the nearest target, as in the case of range SENsply ¢\, Ipack-Leibler distance between two distributioRs
The sensor output is then corrupted_ by noise accord_ing 4Rd Q. A sensor network is created as follows. Each sensor
an arb|tr.ary p.mf.Pyx(ylz) to obtain a vector of.n0|sy independently connects totarget locations according to the
observa.tlo.nSy & Y. W? assume that the noise in eaCIaontiguous sensor network model as described in Section. Il
Sensor 1s |denFlcaI and mdepender?t so that observed SEMRfHen we consider all such randomly chosen sensor networks
output vector is related to the noiseless sensor outputs @&nilar to the random coding argument in communication

o \ :
5Y\X(§Y|X) = 1;11:1 PYlﬁ_(?ﬁwlf)-és'”g this outputy, the” theory), the ideal sensor outpul§; associated with a par-
eco e:j mI\:St eteclt_ whic Olt - targetd\_/ecto_rs actually 0jar target configuratiorv; is random. We can write this
occurred. Many applications also have a distortion coetra opilin as Py, (x;) — []1-. Px,(a). A crucial fact is

that tPe de;[]ected vector "_]USt _ze less thgn f? dlstonﬂqﬁ that the sensor outputs are not independent of each otteer, an
gq 1] rombt e true vector, I.e., | H(Vi"’ih) IS tl € I-tl)?mcrpmg are only independent given the true target configuratiom Th
Istance between two target vectors, the tolerable diStort 4 vectorsk; and X; corresponding to different target

: s a1 v ' :
region of v; is Dy, = {j : gdu(vi,v;) < D}. Detection vectorsv; andv; are not independent. Because of the sensor

using this configuous sensor model is hard becgqse adjaGetilyork connections to the target vector, similar targetmes
locations are often sensed together and have a joint effect(gs) are expected to result in similar sensor outpss.(

the sensors sensing them. We proceed to define the conceptscatular c-order types

and circular c-order joint types[l] as they apply to our

problem. A circular sequence is one where the last element
We adopt a sequential decoding procedure for inferen&¥,the sequence precedes the first element of the sequence.

based on the stack algorithm described in [4]. This algorithThe circular c-order type of a binary target vector sequence

searches a binary tree consisting of all possible targedtinge vi is defined as2° dimensional vector where each entry

ses. In sequential decoding of convolutional codes, fordecocorresponds to the frequency of occurrence of one possible

of rate % each node in the tree corresponds to a seh of subsequences of length For example for a binary target

transmitted bits. There will b2* branches leaving every nodevector andc = 2, v = (Y00, 701,710, 711), Where~o; is the

one for each possible assignment of values toktleput bits fraction of subsequences of length 2vipwhich are 01. While

that generated the transmitted bits. Similarly, in the caseall types are assumed circular we omit the word “circular” in

of sensor networks, each node in the tree corresponds ttha remainder of this section for brevity.

group of sensors sensing the same set of locations, and eachince each sensor selects the target positions it senses ind

branch in tree corresponds to a hypothesis of the valuespgindently and uniformly across the target positioRg, (x;)

the locations sensed only by these sensors and not by &epends only on the type of v; and can be written as

of the sensors previously decoded in the tree. Each of thd%e (xi) = Px"(xi) = [[}, Py, (=) and is the same for

hypothesis is evaluated using an appropriate metric anu tidl vs of the same typey. We define\ as the vector of

inserted into a stack which holds all currently active hyjgst A(a)(), the fraction of positionss; has subsequence and

sis. This stack is then sorted according to metric valudghal v; has subsequenchk. For example wherc = 2, A =

branches extending from the topmost hypothesis in the sta@koo)(o) - - -» Aa1)(11)), Where Ag1y11y is the fraction of

(the hypothesis with the largest metric) are evaluated had subsequences of length 2 wharghas 01 andr; has 11. The

new hypotheses are inserted into the stack. This procedj@i@t probability Px;x;(xi, x;) depends only on the joint type

is repeated until either a hypothesis of length equal to tieétarget vectors;; andv; and we can writePx, x; (Xi, X;j) =

target vector is obtained or some maximum number of stepsﬁﬁ&j (xi,%x3) = [, PM@a, zj0).

reached. The choice of metric is of primary importance in the There are two important probability distributions that

design of sequential decoding algorithms. We now proceedadse in the discussions to follow. The first is the joint
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distribution between the ideal output; when v; oc- indexed by;j. However, as described in Section. Ill-A these
curs, and its corresponding noise corrupted outpufThis terms can be represented in terms of the typd x; and joint

is written as Px,v(xi,y) = [l Px,v(za,ya) = typel ofx; andx;. If we can tolerate errors up to a distortion
[T, Px, (wa) Py x (yi|lza). The second distribution is the D we should require the posterior probability of the correct
joint distribution between the ideal outpstf corresponding codeword to be much greater than that of all other codewords
to v; and the noise corrupted outpyt generated by the that have a distortion greater thdn Let S, (D) be the set of
occurrence ok; corresponding to a different target vectqr  all joint types corresponding to codewords of target vetor

This is denoted athgY(xj,y) = 121 Qv (@i, 1) = at a distortion greater thaf.
T2y Daen Pxpxi (2w = a)Pyix(yile: = a). Again
the important fact should be noted that even though HPXI.(IH)PY\X(?J”IH) > ©))

was produced byX;, Y and X; are dependent because (=1

of the dependence oX; and X;. We can reduce c-order .

type over a binary alphabep to a 2-order type over a AR T D PRy, (s wi = a)Prix (i = a)
sequence with symbols in an alphabet—? of cardinal- *¢5(P) [=tacX

ity 22(c=1) py mapping each shifted binary subsequence wferes(\, k) is the number of vectore; having a givenjgint
length ¢ — 1 to a single symbol in this new alphabet. Waype X with v;, bounded by3(\, k) < 2FHEXIA)=H ]yl
define A" = {Aaym),¥a,b € VEV} as a probability [8]. Since v; and v; have the joint type) their types are

mass function with/\'(a)(b) = Za,bev Aaa),(bb) @Nd A = the corresponding marginals afbecause of our definition of

{Na)@ )by, Va,b € VD va b € V} as a conditional types being circular) i.eq;b = > ,cq.1 Aa)(b) @ndvia =

With Xjaa)(bb) = w Correspondingly, we defing’ = > beo.1c Aa)(b)- There are only a polynomial number of types
(a)(b)

o c—1 2(c—1) .
{rara € VD) Wih +, — 5, 70, and a conditonal C6) = 2787 (14 )" 18], and the expression

5 = {Vaa, Ya € V(¢ VYq € V} defined asyz, = % Scomes

B. Metric derivation HP;(' () Py x (wilaa) — O(k)zk[H(X*\A*/)*H('f*\'y*/)]
While deriving the metric to be used for detection in=1 '

sensor networks, significant changes need to be made from n \

[3] because the “codeword” sequendsare not independent H Z Py, x, (@ji, i = a) Py x (yilwi = a) 20 (4)

or identically distributed. The optimum decoding procelur I=lacx

would be the MAP (Maximum A Posteriori) procedure whicfor an appropriate choose of from the set of allAs and
looks to find the noiseless sensor outpitsthat maximizes Wherev* is the marginal type corresponding to the joint type
the joint probability Px,y. The MAP procedure for the 1- A™. Takinglog, () and applying a limiting argument as— oo,

D contiguous sensor network case reduces to the ViteMs¢ obtain the general form of the metric (which is expected
algorithm, which is computationally expensive. This issieée t0 be positive when the probability of the correct codeword
only for sensors with smaller field of view)(since it requires dominates erroneous codewords) to be,

the evaluation of each element in a state space of Zizé

at each step with number of steps linear in the length of thelogz[P” (i) Py x (yi|za)] — (5)
target vector. The computation grows exponentially with =1
and so we must use sub-optimal procedures. These met C
usually rely on the fact that if probability of error is suféatly p
small, then the posteriorimost probabléX is expected to be
much more probable than all the other code words. We try
select a condition under which we may expect the performan
of an algorithm to be good. Suppose that given the receiv%1
sequencey there exists a&; such that t

p(xi,y) = Y p(x5,y) (1) Ai=logy [P (za) Py x (yi|za)] — (6)

-y . N - -
If the sensor networks were éz:‘\erated according to the rande?82ll” (@) Py x (ilza)] = RIH(AT[IAT) = H(y7[y")]
scheme described in Section. Il, then we can approximate thd here are two requirements of a metric to be appropriate for
left and right hand sides of (1) with their average value aversequential decoding. The first is that the expected valubeof t
random ensemble of sensor network configurations and targtric increase as the decoding of the target vector preceed

vectors, along the lines of the random coding argument [1dpwn the correct branches of the binary hypothesis tree. The

0[P (wit) PP x (wilwia)] — K[H (N [IN) = H(3*[y™)]

'{(pe choice of\* is based on the properties desired of the
gtric and is discussed in Section. IlI-D. This leads us # th
oice of appropriate metric &, = > . ; A;, whereA,; is

e increment in the metric as each sensor is decoded.

as applied to sensor networks [8]. second is that the m.etric should decrease_ along any intorrec
Px,v(xi,y) > Z Q;?,Y(vay) (2) Pathin the tree that is more than a dlsto_rtlﬂnfrom the true _
i target vector. We analyze the metric derived and prove that i

Ve
The right hand side of (2) has an exponential number of terrsatisfies these requirements for appropriate choices efftat
because of the exponential number of incorrect codeworalsd representative joint typk*.



C. Analysis of the metric along the correct path

50

We calculate the expected value of the increment in the

metric A; along the correct decoding path and derive the
condition on the sensor network for the expected value of

these increments to be positive along this path. o ® w 150

Sensors Decoded

50}

-100

New metric

ExyA; = Ex ylogy[P"(x)P(y|r)] — (7)
Ex.y logy[P" (2)P* (y|z)) — RIH(X*||N) — H(v*|y")]

Fano metric

Where expectation is ovef andY which are respectively, the
noiseless and noise corrupted sensor outputs along thectorr
path. This reduces to

Sensors decoded

(\) Fig. 2. Behavior of new metric and Fano metric along the @brpath(in
EX,YA%’ = D(PXY”QXiY) bold) and incorrect paths at a distortion D=0.02 away from ¢brrect path
~ ' ~ ’ forc=15
— RHM[[A") = H(y*[7" )] 8)

_ . . The convexity ofS, (D) can be reasoned as follows. The
which will be greater than or equal Wif we chose rateR set of A € S, (D) are a group of probability mass functions

such that defined by 1) a normalization constraint to ensure that they a
D(PXYHQS?)Y) true probability dist_ribution_s 2) a set of markov consttgix_;o
R< min ~— — (9) thatthey are associated with real sequences and 3) a itistort
za#&abzz) [HAIN) = HG)] constraint so that they correspond to sequences more than a
225 Aab="Yia distortion D from the true target vector. These constraints are

We note that the right hand side of (9) is expression for a towBreserved by a convex combination, implying that a convex
bound on sensing capacity for a sensor network derived in [gPMbination of two valid\ € 5,(D) is a valid A € S, (D).
Thus as long as the number of sensors used is sufficiently higus the set ofA € S,(D) is convex and closed. Each

so that the rate? is below the sensing capacity the metric wilProbability distribution@” is linear in the elements of [8]

increase along the correct path. and hence the set @)* is convex and the theorem can be
applied.

D. Analysis of the metric along an incorrect path

. . . IV. SIMULATION RESULTS
We now analyze the change in metric over an incorrect path

corresponding to a vecter; having a joint type\ with the true  Prior work [10] has compared sequential decoding with
target vector. We calculate the expected value of the inerem Other algorithms such as belief propagation, occupanasgri

in the metricA; along this path. and iterated conditional modes for a different sensing.task
Since the inference task in this paper can be solved opgimall

Exr yAi = Exr ylogy PY(x)P(ylz) — (10) by Viterbi decoding, we do not simulate these other approx-

By y log, P (2)PN (y|z) — R[H()\N*||/\*/) _ H(th*/)] imate algorithms. We simulate a random sensor network at

) a specified rateR with sensors drawn randomly according
whereX is the noiseless sensor outputs along the wrong paththe contiguous sensor model. Error rates and runtimes for

andY is the noise corrupted true sensor outputs. sequential decoding are averaged over at least 5000 russ. Th
P (2, ) output of each sensor is the weighted sum of target regions in
Ex yAi = Z Q Nz, y) logy (=5——3) its field of viewz = 3°%_, w;viy;. This output is discretized
Xy QY (z,y) into one among 50 levels equally distributed between 0 and
—R[H(X*||A*') _ H(7~*|7*,)] (11) the maximum_possible vglue anq corrupted with expone_ytiall
_ _D(QM|P) + DQVQN) distributed noise to obtain the discrete sensor outgutBhis
L e has to be processed to detect the target vector. If the deltect
—RIHA|[A") = H(v*|v")] (12) targetv is more than a distortio away from the true target
< _D(QA* pv*) — R[H()}H)\*’) _ HW‘W*,)] (13) Vvector an error occurs. An important part of the algorithm is
<0 (14) the computation of* and the corresponding correction term.
- In this paper we assume that is a joint type at a distortion
Eqn. (13) is true if choose, D from the true vector and calculate the correction term for

this A* using a dynamic programming algorithm. In Fig. 2
we simulate the growth of the metric along the correct path
and wrong paths at a distortioR from the true path. The
behavior of the new metric is compared to that of the Fano
"Metric where the increment is defined to be [3]:

A= in D |PY 15
arg | min (QIP7) (15)

Eqgn. (13) arises from (12) because theSgtD) is closed and
convex, and using Theorem 12.6.1 in [2]. Eqn. (14) is fro
the positivity of KL divergence [2] and sinclH (\*||\*') —

H(y*|y*)] > 0 since theys are marginals ofs . Ar, = logy[Py|x (yi|wa)] —logy Py (y1) — R (16)
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5

Word error rate
5
i
J

Running time in seconds
5

2000 H
1500 4
1000 5

L L L L L L L
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
Rate

Steps till convergence

2 “3 é 8 10 1‘2 1‘4 16
Sensor field of view ¢
Fig. 3.  Comparison of running times of optimal Viterbi demayd and Fig. 4. Running times and error rates for sequential degpdindifferent
sequential decoding for different sensor fields of view rates forc = 15

Fig. 2 shows the important difference between the new met-
ric and the Fano metric. Even when we proceed along an
erroneous path that is at a distortidh away from the true
path, the Fano metric continues to increase. This is because
the Fano metric was derived assuming that if a path diverges v ——————
from the true path at any point, the bits of the two codewords ol =@ = Vo erforat vt Fano mtr

—&— Bit error rate with new metric

will be independent from that point onwards. While this is R L
approximately true for strong convolutional codes withgkar 0 001 002 003 004 005 000 007 005 009 o1
memory, where the Fano metric has been used successfully, it

is not a gOOd assumption in sensor networks due to depend@@rtf’- Comparison of error rates of new metric and Fano médridifferent
L . . . tolerable distortions at rate 0.2 for= 15
distribution of codewords. Thus, if because of noise, the

decoder starts along one of these erroneous paths, it cdffid@9e scale sensing problems using the new metric. The
continue to explore it since the metric increases resulifing results of these simulations are shown in Fig. 4. This leads

errors in decoding. When the new metric is used, the metHé to an alternative to the conventional trade-off between
for the wrong path at distortio® decreases after the errorCOMputational complexity and accuracy of detection, where

while the metric of the correct path is still increasing,ifigng  this trade-off can be altered by collecting additional sens
the properties previously derived. Thus we expect that éve nmeasurements, leading to algorithms that are both accamalte

metric would perform better than the Fano metric when uségmputationally efficient. Finally we compare the perfonoe
in a sequential decoder. of sequential decoding when the new metric is used and when

The optimal decoding strategy in this sensor network afi Fano metric is used as a function of the tolerable distort

plication is Viterbi decoding. The computational comptgxi iz ;g'vié-rgﬁ dF\?vgocg]negéce?r?:fitrsmea:?grorﬁgalgi;hzl?éit(\j\:(t)l:)sne
of Viterbi decoding increases exponentially in the sizehaf t y way P :

sensor field of viewe. However the computational complexity
of sequential decoding is seen to be largely independethieof t REFERENCES
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