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Abstract— Prior work motivated the use of sequential decoding
for the problem of large-scale detection in sensor networks.
In this paper we develop the metric for sequential decoding
from first principles, different from the Fano metric which i s
conventionally used in sequential decoding. The difference in the
metric arises due to the dependence between codewords, which
is inherent in sensing problems. We analyze the behavior of this
metric and show that it has the requisite properties for use in
sequential decoding, i.e., the metric is, 1) expected to increase if
decoding proceeds correctly, and 2) expected to decrease ifmore
than a certain number of decoding errors are made. Through
simulations, we show that the metric behaves according to theory
and results in much higher accuracies than the Fano metric.
We also show that due to an empirically-observed computational
cutoff rate, we can perform accurate detection in large scale
sensor networks, even when the optimal Viterbi decoding is not
computationally feasible.

I. I NTRODUCTION

The term “large scale detection” characterizes sensor net-
work detection problems where the number of hypotheses is
exponentially large. Examples of such applications include
the use of seismic sensors to detect vehicles [5], the use of
sonar to map a large room [6] and the use of thermal sensors
for high resolution imaging [10]. In these applications the
environment can be modeled as a discrete grid, and each
sensor measurement is effected by a large number of grid
blocks simultaneously (‘field of view’), sometimes by more
than 100 grid blocks [10]. Conventionally, there have been
two types of approaches to such problems. The first set
of algorithms are computationally expensive such as Viterbi
decoding and belief propagation [7]. These algorithms are
at least exponential in the size of the field of view of the
sensor, making them infeasible for many common sensing
problems. The second set of algorithms make approximations
(such as independence of sensor measurements [6]) to make
the problem computationally feasible, at the cost of accuracy.
Thus, there has existed a trade-off between computational
complexity and accuracy of detection.

Our previous work in [8] has defined the concept of ‘sensing
capacity’ as the ratio of target positions to number of sensors,
required to detect an environment to within a specified accu-
racy. Based on parallels between communication and sensing
established by this work, [10] built on an analogy between
sensor networks and convolutional codes, to apply a heuristic
algorithm similar to the sequential decoding algorithm of
convolutional codes, for the problem of detection in sensor
networks. The average decoding effort of sequential decoding

is independent of the code memory, if the rate is below
the computational cutoff rate of the channel. Therefore, by
analogy, it is expected that the same independence applies to
the problem of sensor network decoding, so long as enough
measurements are collected (to keep the rate below the cutoff
rate of the sensor network.) Such a computational cutoff rate
behavior was indeed empirically observed in [10]. Thus, the
paper demonstrated that the trade-off between computational
complexity and detection accuracy can be altered by collecting
additional sensor measurements.

While [10] developed the possibility of using sequential
decoding in sensor networks, the metric used there (the Fano
metric) originated in the decoding of convolutional codes.
The Fano metric is not justifiable for sensor networks, except
perhaps in special cases. The main contribution of the present
paper is the derivation of a sequential decoding metric for
sensor networks from first principles, following arguments
analogous to those used by Fano [3] for convolutional codes.
The derived metric differs significantly from the Fano metric,
due to the dependence between the ‘codewords’ that is inherent
in sensor networks [8]. We analyze the behavior of this
metric and show that it has the requisite properties for use
with sequential decoding. i.e., the metric is expected to, 1)
increase if decoding proceeds correctly, and 2) decrease if
more than a certain number of decoding errors are made. In
simulations, the metric behaves as predicted by theory and
results in significantly lower error probability than the Fano
metric. We also show that, due to an empirically-observed
computational cutoff rate, we can perform accurate detection
in large scale sensor networks, even in cases where the optimal
Viterbi decoding is not computationally feasible due to the
wide field of view of the sensors.

II. SENSORNETWORK MODEL

We consider the problem of detection in one-dimensional
sensor networks. While a heuristic sequential decoding pro-
cedure has been applied to complex 2-D problems [10] using
essentially the same model as the one described below, we
present the 1-D case for ease of understanding and analysis.
Motivated by parallels to communication theory and prior
work, we model a contiguous sensor network as shown in
Fig. 1. In this model, the environment is modeled as ak-
dimensional discrete vectorv. Each position in the vector
can represent any binary phenomenon such as presence or
absence of a target. Possible target vectors are denoted by



Fig. 1. Contiguous sensor network model

vi i ∈ 1, . . . , 2k. There aren sensors and each sensor is
connected to (senses)c contiguous locationsvt, . . . , vt+c−1.
The noiseless output of the sensor is a valuex ∈ X that is
an arbitrary function of target bits to which it is connected,
x = Ψ(vt, . . . , vt+c−1). For example, this function could
be a weighted sum, as in the case of thermal sensors, or
location of the nearest target, as in the case of range sensors.
The sensor output is then corrupted by noise according to
an arbitrary p.m.f.PY |X(y|x) to obtain a vector of noisy
observationsy ∈ Y. We assume that the noise in each
sensor is identical and independent so that observed sensor
output vector is related to the noiseless sensor outputs as
PY|X(y|x) =

∏n

l=1 PY |X(yl|xl). Using this outputy, the
decoder must detect which of the2k target vectors actually
occurred. Many applications also have a distortion constraint
that the detected vector must be less than a distortionD ∈
[0, 1] from the true vector, i.e., ifdH(vi,vj) is the Hamming
distance between two target vectors, the tolerable distortion
region of vi is Dvi

= {j : 1
k
dH(vi,vj) < D}. Detection

using this contiguous sensor model is hard because adjacent
locations are often sensed together and have a joint effect on
the sensors sensing them.

III. SEQUENTIAL DECODING FOR DETECTION

We adopt a sequential decoding procedure for inference,
based on the stack algorithm described in [4]. This algorithm
searches a binary tree consisting of all possible target hypothe-
ses. In sequential decoding of convolutional codes, for a code
of rate k

n
, each node in the tree corresponds to a set ofn

transmitted bits. There will be2k branches leaving every node
one for each possible assignment of values to thek input bits
that generated then transmitted bits. Similarly, in the case
of sensor networks, each node in the tree corresponds to a
group of sensors sensing the same set of locations, and each
branch in tree corresponds to a hypothesis of the values of
the locations sensed only by these sensors and not by any
of the sensors previously decoded in the tree. Each of these
hypothesis is evaluated using an appropriate metric and then
inserted into a stack which holds all currently active hypothe-
sis. This stack is then sorted according to metric values. All the
branches extending from the topmost hypothesis in the stack
(the hypothesis with the largest metric) are evaluated and the
new hypotheses are inserted into the stack. This procedure
is repeated until either a hypothesis of length equal to the
target vector is obtained or some maximum number of steps is
reached. The choice of metric is of primary importance in the
design of sequential decoding algorithms. We now proceed to

derive an appropriate metric for sequential decoding in sensor
networks.

A. Definitions

In this paper we parallel the reasoning in [3], where a
metric for sequential decoding was derived for decoding
convolutional codes and extend that reasoning to the problem
of detection in sensor networks. We use an argument similar
to the random coding argument [11], that deals with the
complications of inter-codeword dependence using arguments
based on the method of types [1]. We first introduce the
notation related to the types used and the random coding
distributions. The rateR of a sensor network is defined as the
ratio of number of target positions being sensed (k) to number
of sensor measurements (n) R = k

n
. D(P ||Q) represents

the Kullback-Leibler distance between two distributionsP

and Q. A sensor network is created as follows. Each sensor
independently connects toc target locations according to the
contiguous sensor network model as described in Section. II.
When we consider all such randomly chosen sensor networks
(similar to the random coding argument in communication
theory), the ideal sensor outputsXi associated with a par-
ticular target configurationvi is random. We can write this
probability asPXi

(xi) =
∏n

l=1 PXi
(xil). A crucial fact is

that the sensor outputs are not independent of each other, and
are only independent given the true target configuration. The
random vectorsXi and Xj corresponding to different target
vectorsvi andvj are not independent. Because of the sensor
network connections to the target vector, similar target vectors
(vs) are expected to result in similar sensor outputs (xs).

We proceed to define the concepts ofcircular c-order types
and circular c-order joint types[1] as they apply to our
problem. A circular sequence is one where the last element
of the sequence precedes the first element of the sequence.
The circular c-order typeγ of a binary target vector sequence
vi is defined as2c dimensional vector where each entry
corresponds to the frequency of occurrence of one possible
subsequences of lengthc. For example for a binary target
vector andc = 2, γ = (γ00, γ01, γ10, γ11), whereγ01 is the
fraction of subsequences of length 2 invi which are 01. While
all types are assumed circular we omit the word “circular” in
the remainder of this section for brevity.

Since each sensor selects the target positions it senses inde-
pendently and uniformly across the target positions,PXi

(xi)
depends only on the typeγ of vi and can be written as
PXi

(xi) = P
γ,n
Xi

(xi) =
∏n

l=1 P
γ
Xi

(xil) and is the same for
all vs of the same typeγ. We defineλ as the vector of
λ(a)(b), the fraction of positionsvi has subsequencea and
vj has subsequenceb. For example whenc = 2, λ =
(λ(00)(00), . . . , λ(11)(11)), where λ(01)(11) is the fraction of
subsequences of length 2 wherevi has 01 andvj has 11. The
joint probabilityPXiXj

(xi,xj) depends only on the joint type
of target vectorsvi andvj and we can writePXiXj

(xi,xj) =

P
λ,n
XiXj

(xi,xj) =
∏n

l=1 Pλ(xil, xjl).
There are two important probability distributions that

arise in the discussions to follow. The first is the joint



distribution between the ideal outputxi when vi oc-
curs, and its corresponding noise corrupted outputy. This
is written as PXiY(xi,y) =

∏n

l=1 PXiY (xil, yil) =∏n

l=1 PXi
(xil)PY |X(yl|xil). The second distribution is the

joint distribution between the ideal outputxj corresponding
to vj and the noise corrupted outputy generated by the
occurrence ofxi corresponding to a different target vectorvi.
This is denoted asQ(i)

XjY
(xj,y) =

∏n

l=1 Q
i
XjY (xjl, yl) =∏n

l=1

∑
a∈X PXjXi

(xjl, xi = a)PY |X(yl|xi = a). Again
the important fact should be noted that even thoughY

was produced byXj, Y and Xi are dependent because
of the dependence ofXi and Xj. We can reduce c-order
type over a binary alphabetV to a 2-order type over a
sequence with symbols in an alphabetV(c−1) of cardinal-
ity 22(c−1) by mapping each shifted binary subsequence of
length c − 1 to a single symbol in this new alphabet. We
define λ

′

= {λ(a)(b), ∀a,b ∈ V(c−1)} as a probability
mass function withλ

′

(a)(b) =
∑

a,b∈V λ(aa),(bb) and λ̃ =

{λ(a)(a)(b)(b), ∀a,b ∈ V(c−1), ∀a, b ∈ V} as a conditional

with λ̃(aa)(bb) =
λ(aa)(bb)

λ(a)(b)
. Correspondingly, we defineγ

′

=

{γ
′

a, ∀a ∈ V(c−1)} with γ
′

a =
∑

a∈V γaa and a conditional
γ̃ = { ˜γaa, ∀a ∈ V(c−1), ∀a ∈ V} defined as ˜γaa =

γ(a)(a)

γ(a)
.

B. Metric derivation

While deriving the metric to be used for detection in
sensor networks, significant changes need to be made from
[3] because the “codeword” sequencesX are not independent
or identically distributed. The optimum decoding procedure
would be the MAP (Maximum A Posteriori) procedure which
looks to find the noiseless sensor outputsX that maximizes
the joint probabilityPXiY. The MAP procedure for the 1-
D contiguous sensor network case reduces to the Viterbi
algorithm, which is computationally expensive. This is feasible
only for sensors with smaller field of view (c) since it requires
the evaluation of each element in a state space of size2c−1

at each step with number of steps linear in the length of the
target vector. The computation grows exponentially withc,
and so we must use sub-optimal procedures. These methods
usually rely on the fact that if probability of error is sufficiently
small, then thea posteriorimost probableX is expected to be
much more probable than all the other code words. We try to
select a condition under which we may expect the performance
of an algorithm to be good. Suppose that given the received
sequencey there exists aXi such that

p(xi,y) ≥
∑

j 6=i

p(xj,y) (1)

If the sensor networks were generated according to the random
scheme described in Section. II, then we can approximate the
left and right hand sides of (1) with their average value overa
random ensemble of sensor network configurations and target
vectors, along the lines of the random coding argument [11]
as applied to sensor networks [8].

PXiY(xi,y) ≥
∑

j 6=i

Q
(i)
Xj,Y

(xj,y) (2)

The right hand side of (2) has an exponential number of terms
because of the exponential number of incorrect codewords

indexed byj. However, as described in Section. III-A these
terms can be represented in terms of the typeγ of xi and joint
typeλ of xi andxj. If we can tolerate errors up to a distortion
D we should require the posterior probability of the correct
codeword to be much greater than that of all other codewords
that have a distortion greater thanD. Let Sγ(D) be the set of
all joint types corresponding to codewords of target vectors v

at a distortion greater thanD.
n∏

l=1

P
γ
Xi

(xil)PY |X(yl|xil) ≥ (3)

∑

λ∈Sγ(D)

β(λ, k)

n∏

l=1

∑

a∈X

Pλ
XjXi

(xjl, xi = a)PY |X(yl|xi = a)

whereβ(λ, k) is the number of vectorsvj having a given joint

type λ with vi, bounded byβ(λ, k) ≤ 2k[H(λ̃|λ
′
)−H(γ̃j|γ

′

j )]

[8]. Since vi and vj have the joint typeλ their types are
the corresponding marginals ofλ(because of our definition of
types being circular) i.e.,γjb =

∑
a∈0,1c λ(a)(b) and γia =∑

b∈0,1c λ(a)(b).There are only a polynomial number of types

C(k) = 22(c−1)k2c−1

(k + 1)2
2(c−1)

[1][8], and the expression
becomes

n∏

l=1

P
γ
Xi

(xil)PY |X(yl|xil) − C(k)2k[H(λ̃∗ |λ∗′)−H(γ̃∗|γ∗′)]

n∏

l=1

∑

a∈X

Pλ∗

XjXi
(xjl, xi = a)PY |X(yl|xi = a) ≥ 0 (4)

for an appropriate choose ofλ∗ from the set of allλs and
whereγ∗ is the marginal type corresponding to the joint type
λ∗. Takinglog2() and applying a limiting argument asn → ∞,
we obtain the general form of the metric (which is expected
to be positive when the probability of the correct codeword
dominates erroneous codewords) to be,
n∑

l=1

log2[P
γ(xil)PY |X(yl|xil)] − (5)

n∑

l=1

log2[P
γ∗

(xil)P
λ∗

Y |X(yl|xil)] − k[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)]

The choice ofλ∗ is based on the properties desired of the
metric and is discussed in Section. III-D. This leads us to the
choice of appropriate metric asSn =

∑n

i=1 ∆i, where∆i is
the increment in the metric as each sensor is decoded.

∆i = log2[P
γ(xil)PY |X(yl|xil)] − (6)

log2[P
γ∗

(xil)P
λ∗

Y |X(yl|xil)] − R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)]

There are two requirements of a metric to be appropriate for
sequential decoding. The first is that the expected value of the
metric increase as the decoding of the target vector proceeds
down the correct branches of the binary hypothesis tree. The
second is that the metric should decrease along any incorrect
path in the tree that is more than a distortionD from the true
target vector. We analyze the metric derived and prove that it
satisfies these requirements for appropriate choices of rate R

and representative joint typeλ∗.



C. Analysis of the metric along the correct path

We calculate the expected value of the increment in the
metric ∆i along the correct decoding path and derive the
condition on the sensor network for the expected value of
these increments to be positive along this path.

EX,Y ∆i = EX,Y log2[P
γ(x)P (y|x)] − (7)

EX,Y log2[P
γ∗

(x)Pλ∗

(y|x)] − R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)]

Where expectation is overX andY which are respectively, the
noiseless and noise corrupted sensor outputs along the correct
path. This reduces to

EX,Y ∆i = D(PXY ||Q
(λ∗)
XiY

)

− R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)] (8)

which will be greater than or equal to0 if we chose rateR
such that

R ≤ min
λ

P

a6=b
λab≥D

P

b
λab=γia

D(PXY ||Q
(λ)
XiY

)

[H(λ̃||λ′) − H(γ̃|γ′)]
(9)

We note that the right hand side of (9) is expression for a lower
bound on sensing capacity for a sensor network derived in [8].
Thus as long as the number of sensors used is sufficiently high
so that the rateR is below the sensing capacity the metric will
increase along the correct path.

D. Analysis of the metric along an incorrect path

We now analyze the change in metric over an incorrect path
corresponding to a vectorvj having a joint typeλ with the true
target vector. We calculate the expected value of the increment
in the metric∆i along this path.

EX
′
,Y ∆i = EX

′
,Y log2 P γ(x)P (y|x) − (10)

EX
′
,Y log2 P γ∗

(x)Pλ∗

(y|x) − R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)]

whereX
′

is the noiseless sensor outputs along the wrong path
andY is the noise corrupted true sensor outputs.

EX
′
,Y ∆i =

∑

X
′
Y

Qλ(x, y) log2(
P γ∗

(x, y)

Qλ∗(x, y)
)

−R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)] (11)

= −D(Qλ||P γ∗

) + D(Qλ||Qλ∗

)

−R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)] (12)

≤ −D(Qλ∗

||P γ∗

) − R[H(λ̃∗||λ∗′

) − H(γ̃∗|γ∗′

)] (13)

≤ 0 (14)

Eqn. (13) is true if choose,

λ∗ = arg min
λ∈Sγ(D)

D(Qλ||P γ∗

) (15)

Eqn. (13) arises from (12) because the setSγ(D) is closed and
convex, and using Theorem 12.6.1 in [2]. Eqn. (14) is from
the positivity of KL divergence [2] and since[H(λ̃∗||λ∗′

) −
H(γ̃∗|γ∗′

)] > 0 since theγs are marginals ofλs .
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Fig. 2. Behavior of new metric and Fano metric along the correct path(in
bold) and incorrect paths at a distortion D=0.02 away from the correct path
for c = 15

The convexity ofSγ(D) can be reasoned as follows. The
set of λ ∈ Sγ(D) are a group of probability mass functions
defined by 1) a normalization constraint to ensure that they are
true probability distributions 2) a set of markov constraints so
that they are associated with real sequences and 3) a distortion
constraint so that they correspond to sequences more than a
distortionD from the true target vector. These constraints are
preserved by a convex combination, implying that a convex
combination of two validλ ∈ Sγ(D) is a valid λ ∈ Sγ(D).
Thus the set ofλ ∈ Sγ(D) is convex and closed. Each
probability distributionQλ is linear in the elements ofλ [8]
and hence the set ofQλ is convex and the theorem can be
applied.

IV. SIMULATION RESULTS

Prior work [10] has compared sequential decoding with
other algorithms such as belief propagation, occupancy grids
and iterated conditional modes for a different sensing task.
Since the inference task in this paper can be solved optimally
by Viterbi decoding, we do not simulate these other approx-
imate algorithms. We simulate a random sensor network at
a specified rateR with sensors drawn randomly according
to the contiguous sensor model. Error rates and runtimes for
sequential decoding are averaged over at least 5000 runs. The
output of each sensor is the weighted sum of target regions in
its field of viewx =

∑c

j=1 wjvt+j . This output is discretized
into one among 50 levels equally distributed between 0 and
the maximum possible value and corrupted with exponentially
distributed noise to obtain the discrete sensor outputsy. This
has to be processed to detect the target vector. If the detected
targetv̂ is more than a distortionD away from the true target
vector an error occurs. An important part of the algorithm is
the computation ofλ∗ and the corresponding correction term.
In this paper we assume thatλ∗ is a joint type at a distortion
D from the true vector and calculate the correction term for
this λ∗ using a dynamic programming algorithm. In Fig. 2
we simulate the growth of the metric along the correct path
and wrong paths at a distortionD from the true path. The
behavior of the new metric is compared to that of the Fano
metric where the increment is defined to be [3]:

∆Fi
= log2[PY |X(yl|xil)] − log2 PYl

(yl) − R (16)
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Fig. 3. Comparison of running times of optimal Viterbi decoding and
sequential decoding for different sensor fields of viewc

Fig. 2 shows the important difference between the new met-
ric and the Fano metric. Even when we proceed along an
erroneous path that is at a distortionD away from the true
path, the Fano metric continues to increase. This is because
the Fano metric was derived assuming that if a path diverges
from the true path at any point, the bits of the two codewords
will be independent from that point onwards. While this is
approximately true for strong convolutional codes with large
memory, where the Fano metric has been used successfully, it
is not a good assumption in sensor networks due to dependent
distribution of codewords. Thus, if because of noise, the
decoder starts along one of these erroneous paths, it could
continue to explore it since the metric increases resultingin
errors in decoding. When the new metric is used, the metric
for the wrong path at distortionD decreases after the error,
while the metric of the correct path is still increasing, verifying
the properties previously derived. Thus we expect that the new
metric would perform better than the Fano metric when used
in a sequential decoder.

The optimal decoding strategy in this sensor network ap-
plication is Viterbi decoding. The computational complexity
of Viterbi decoding increases exponentially in the size of the
sensor field of viewc. However the computational complexity
of sequential decoding is seen to be largely independent of the
sensor rangec. This is illustrated in Fig. 3, which compares
the average running times of sequential decoding and Viterbi
decoding. While Viterbi decoding is not feasible for sensors
with c > 8, sequential decoding can be used for much larger
c values. Many real world sensors such as thermal sensors
[10] or sonar sensors [6] have such large fields of view,
demonstrating the need for sequential decoding algorithms.
As with channel codes, sequential decoding has a higher error
rate than optimal Viterbi decoding, and so is recommended
only when Viterbi decoding is infeasible i.e., for large field of
view sensors. The performance is reasonable given the low
computation time even when Viterbi is too complex to be
feasible.

The primary property of sequential decoding is the existence
of a computational cutoff rate. In communication theory, the
computational cutoff rate is the rate below which average
decoding time of sequential decoding is bounded. The com-
plexity of Viterbi decoding on the other hand, is almost
independent of the rate. We demonstrate through simulations
that a computational cutoff phenomenon exists for detection

0.20.30.40.50.60.70.80.91
10

−2

10
−1

10
0

Rate

W
or

d 
er

ro
r 

ra
te

0.20.30.40.50.60.70.80.91
500

1000

1500

2000

2500

RateS
te

ps
 ti

ll 
co

nv
er

ge
nc

e

Fig. 4. Running times and error rates for sequential decoding at different
rates forc = 15
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Fig. 5. Comparison of error rates of new metric and Fano metric for different
tolerable distortions at rate 0.2 forc = 15

in large scale sensing problems using the new metric. The
results of these simulations are shown in Fig. 4. This leads
us to an alternative to the conventional trade-off between
computational complexity and accuracy of detection, where
this trade-off can be altered by collecting additional sensor
measurements, leading to algorithms that are both accurateand
computationally efficient. Finally we compare the performance
of sequential decoding when the new metric is used and when
the Fano metric is used as a function of the tolerable distortion
in Fig. 5. The Fano metric does not account for the distortion
in any way and we can see that its performance is much worse.
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