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ABSTRACT

Sequential decoding can be used for detection in sensor net-
works, where conventional techniques such as optimal de-
tection or belief propagation are infeasible. In this paper,
we study the performance of sequential decoding when dif-
ferent kinds of sensors are used. We show that the perfor-
mance of sequential decoding in a 1-D sensing task depends
on certain properties of the sensor physics. We show that
data preprocessing can improve the performance of the de-
coder, and also demonstrate simple practical modifications to
sensors that substantially improve their performance with se-
quential decoding. We outline simple extensions to 2-D sens-
ing tasks.

Index Terms— Sensor networks,sequential decoding

1. INTRODUCTION

In this paper, we study a general model of sensor networks
(shown in Fig.1) where a group of linear sensors are used to
solve a detection problem. The environment can be modeled
as a discrete grid, and each sensor measurement is effected by
a large number of grid blocks simultaneously (defined by the
“field of view” of the sensors). General approaches to these
problems fall into two categories (i)computationally expen-
sive algorithms like Viterbi decoding and belief propagation
or (ii) algorithms that make drastic approximations to reduce
computation and are error prone.

Sensors are cheap and are becoming cheaper everyday. So
we expect that sensor networks will have many sensors tak-
ing diverse measurements of the environment. In [1] an algo-
rithm (similar to the sequential decoding algorithm of convo-
lutional codes) was applied to the problem of detection in sen-
sor networks which demonstrated that the trade-off between
computational complexity and detection accuracy can be al-
tered by collecting additional sensor measurements. Sequen-
tial decoding algorithms have the interesting computational
property that increasing the number of measurements makes
them both faster and more accurate. Sequential decoding is
then computationally tractable even when belief propagation
or optimal detection are infeasible, allowing us to perform

Fig. 1. General model of a 1-D sensor network, !v is the dis-
crete environment, ψ is a linear function with weights !w of
length c, and !y are noisy sensor measurements

detection in large scale networks. In [2] we considered mod-
ifications of the sequential decoding algorithm that improve
performance for sensor networks. In this paper we consider
the complementary problem where we pre-process the data
or modify properties of the sensor to suit the properties of se-
quential decoding. We note that in general any processing of
sensor measurements cannot improve the performance of op-
timal ML decoding (by the data processing inequality). We
show that certain processing can improve the performance of
sequential decoding substantially.

2. BACKGROUND ON SEQUENTIAL DECODING

Motivated by parallels to communication theory in prior
work, we model a contiguous sensor network as shown in
Fig.1. We consider the case where ψ is a linear function,
and sensors are regularly spaced. The sensor measurements
are then !y = !v ∗ !w + !n where, !v represents the environ-
ment, !w are the sensor weights and !n is the Gaussian noise
in the measurements. We adopt a sequential decoding pro-
cedure for inference, based on the stack algorithm. This
algorithm searches a binary tree consisting of all possible
target hypotheses. [1] has a detailed explanation of sequential
decoding applied to sensor networks and a practical applica-
tion. The complexity of the algorithm can be measured by
the number of nodes explored in each incorrect subtree. The
computation of sequential decoding is a random variable that
depends on a number of factors such as sensor properties,
number of sensors and the uncertainty in the environment. As
shown in Fig.2, certain sensors require a much larger SNR
to achieve low error rate (and fast detection). Given sensor
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(a) Sensing functions
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(b) Min phase sensing functions
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Fig. 2. Error rates of different sensing functions

measurements from sensors of Type 2 or 3, we can process
the data (using a minimum phase pre-processing explained
later) to simulate sensors of Type 4 or 5, and improve per-
formance. If an optimal detection strategy, in this case a
dynamic program (Viterbi decoding) were to be used, both
sensor configurations would have the same error rate at equal
SNRs. Sensors of Type 2 or 3 are obtained by zeroing out
some parts of the field of view of sensors of Type 1, and
would have a higher error rate under optimal detection, but
perform better under sequential decoding (for some SNRs).
The pre-processing is purely for computational reasons to
better suit the algorithm, leading to very interesting computa-
tional properties.

3. THE IMPORTANCE OF THE COLUMN
DISTANCE FUNCTION

Recent work [3] has derived results for sequential decoding of
specific (i.e not random) convolutional codes with real sym-
bols over Gaussian memoryless channels, or uncoded trans-
mission over Gaussian Inter-Symbol Interference(ISI) chan-
nels. We note that the sensor network in Fig.1 can be viewed
as just such a convolutional code. The results from [3] pro-
vide an upper bound for the distribution determined by the
number of nodes C explored in each incorrect subset S as
P (C > N) < βe−((k)dc(log2(cN))), for positive constants β
and k. We define the column distance function (CDF) dc(r)
to be the minimum over all pairs of environments of the Eu-
clidean distance between the sensor measurement represen-
tations of two environments that differ in at least the first of
r locations. The upper bound decreases exponentially with

increasing CDF. Also, because of the log function, if lower
computation is required the initial part of the CDF should in-
crease rapidly. This can be intuitively justified as follows. A
rapidly increasing initial CDF means that as we seach the tree,
if noise causes us to start along an incorrect subtree, within a
few steps it looks very different from the correct path. The
algorithm uses its metric to detect this and returns to the cor-
rect path without wasting too much computation. So sequen-
tial decoding will have better computational properties when
used with sensors that have larger initial CDFs.

4. PREPROCESSING SENSOR MEASUREMENTS

One possible approach to modifying the CDF is to pre-
process sensor measurements to ‘simulate’ sensors with the
desired CDF. We find the optimal pre-processing that max-
imizes the initial CDF with constraints placed on what the
pre-processing can do to the noise. One constraint could
be that the noise should remain white. Also, a search over
all possible transformations of the data would be infeasi-
ble. So, in this initial work, we restrict ourselves to linear
pre-processings of the sensor measurements.

At this point it would be interesting to draw a parallel with
another algorithm that is used in communication receivers, the
Decision Feedback Equalizer(DFE). The DFE is derived as-
suming that the feedback consisting of previously estimated
symbols is correct. There is no way for the decoder to back-
track and correct past mistakes. Thus, the error probability of
the DFE is determined by the probability of first error. The
DFE searches for the best linear pre-processing that keeps the
noise white while maximizing the column distance when only
one error is made. In contrast, the sequential decoder is al-
lowed to backtrack and hence other error vectors need to be
considered. Thus, sequential decoding seeks to maximize the
initial CDF where CDF is calculated against all error vectors.

We have found that maximizing the initial CDF is compu-
tationally complex, requiring computation exponential in the
field of view of the sensor. However, when only error vectors
with errors in just the first location are considered, the prob-
lem becomes much easier. The best linear pre-processing that
keeps the noise white while maximizing the minimum Eu-
clidean distance between two environments that differ in only
the first location, is the min-phase solution i.e, the processing
of measurements !y that converts the effective sensing func-
tion !w into a minimum phase signal. We show some results in
Fig.2. If we use the min-phase processing, sensors of Type 3
can be converted into sensors of the Type 5. This gives us sub-
stantial improvement in the performance of sequential decod-
ing, even though we have found a sub optimal preprocessing.
The optimal filter to obtain a min phase equivalent is acausal
and IIR and is stable if filtering is performed sequentially in
a reverse direction. If the filtering is considered computation-
ally complex then there exist finite approximations such as the
FIR-DFE and MMSE-DFE which are computationally much



less demanding and more suitable for distributed estimation.

5. MODIFYING SENSOR PROPERTIES

The method presented in Section 4 works very well for many
sensor functions. However, we discuss a special case where it
fails because of an interesting property of functions. The so-
lution in Section 4 turned out to be the min-phase spectral fac-
torization of the PSD of the sensing function. One interpreta-
tion of the min phase solution is that it is obtained by moving
all zeros of the original transfer function inside the unit cir-
cle. In situations where the zeros of the sensing function are
close to or on the unit circle then the min-phase equivalent
and the original sensing function will be largely similar and
there is not much gain in the min-phase modification. Some
sensor functions are symmetric in the spatial dimension, and
coefficients do not grow very rapidly from one coefficient to
the next. The z transform of such sensing functions results
in a special kind of palindromic equation. From the funda-
mental theorem of palindromic polynomials, such equations
have all their zeros on the unit circle and hence the min-phase
solution will be the same as the original symmetric function.
One example is the sensing function of Type 1 (the averaging
sensor). In such cases, we need to modify the sensor to break
the symmetry of the sensor. In many cases we cannot modify
the weights arbitrarily. We can however use masks in front of
the sensor to zero out certain weights. Once the symmetry is
broken the min-phase processing can be performed as before.
For example zeroing out 6 weights (2 weights) in sensors of
Type 1 leads to sensors of Type 3 (Type 2) and the min phase
processing leads to sensors of Type 5 (Type 4) resulting in
substantial improvements in error rate and speed.

An important point needs to be made here. In the intro-
duction it was mentioned that the motivation for the process-
ing was to improve the performance of the sequential decod-
ing algorithm not the performance of optimal ML decoding.
The processing we are introducing (by masking weights) ac-
tually reduces the SNR of the system. Thus the new modified
sensor would perform worse if optimal ML decoding were
used. For some SNRs we see that masked sensors of Type
3 perform worse than the original with sequential decoding.
However, the results in Fig.2 show that we can gain a sub-
stantial improvement in speed and accuracy of sequential de-
coding with the modified sensors after min-phase processing.
In Section 4, we tried to find the optimal pre-processing that
did not change the SNR. The results of this section lead to the
conclusion that in many cases a better tradeoff of performance
and accuracy can be obtained if we are allowed to decrease
the SNR in Section 4. This is another direction of future re-
search - finding the optimal CDF while trading off SNR and
the CDF. Thus, the performance of sensor network detection
with sequential decoding can be improved significantly by (a)
modifying sensors with masks and (b) pre-processing the data
to suit the sequential decoding algorithm.

6. EXTENSION TO 2-D SENSING TASKS

In this section we discuss preliminary extensions of the ideas
from previous sections to 2-D sensing tasks. In [1] a ther-
mal sensor was set up to scan a vertical surface with some
regions at a higher temperature than the background. The
thermal sensor is very low resolution, and gives a weighted
average of the temperature of all regions in its field of view.
We wish to resolve blocks at a much higher resolution. One
way of handling such 2-D tasks is to convert them to 1-D
sensing problems by scanning the 2-D environment with a (i)
horizontal raster scan (ii) vertical raster scan or (iii) a zig-
zag scan. Once the 2-D problem has been reduced to a 1-
D problem sequential decoding can be applied. Raster scans
preserve 2-D convolution as a 1-D convolution when appro-
priately padded. The choice of the scanning procedure can be
made such that the column distance function is maximized.
This change based on the shape and size of the environment
being sensed and the shape and size and weights of the field
of view of the sensor. It is interesting to note that this choice
of scanning direction is a form of data processing to suit the
properties of sequential decoding and would not change the
performance of the sensor network with optimal maximum
likelihood detection. Another approach to 2-D task is to apply
the min-phase approach from the previous section. However,
there is no spectral factorization theorem for 2-D matrices,
and so arbitrary 2-D sensing matrices cannot be converted to
min-phase form. One feature we can exploit in this setting is
the fact that in some sensors the z-transform of the sensing
function can be approximately factored into a product of two
functions, one for each dimension. Each dimension can then
be converted into a min-phase form, resulting in a 2-D min-
phase sensor. The best direction to scan would now depend
on the CDFs of each 1-D factor. In cases where the sensing
function cannot be factorized or when either one or both func-
tions are palindromic sequences, we can modify the sensing
function with the use of masks to obtain a min-phase or fac-
torizable sensing function.
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