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Relational Calculus
15-415, Spring 2003, Lecture 10

R&G, Chapter 4

∀

∃

We will occasionally use this
arrow notation unless there 
is danger of no confusion.

Ronald Graham
Elements of Ramsey Theory

Relational Calculus
• Comes in two flavors:  Tuple relational calculus (TRC) 

and Domain relational calculus (DRC).
• Calculus has variables, constants, comparison ops, 

logical connectives and quantifiers.
– TRC:  Variables range over (i.e., get bound to) tuples. 

• Like SQL.

– DRC:  Variables range over domain elements (= field 
values).

• Like Query-By-Example (QBE)

– Both TRC and DRC are simple subsets of first-order logic.
• Expressions in the calculus are called formulas.  
• Answer tuple is an assignment of constants to 

variables that make the formula evaluate to true.
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Tuple Relational Calculus

• Query has the form: {T | p(T)}
– p(T) denotes a formula in which tuple 

variable T appears. 
• Answer is the set of all tuples T for 

which the formula p(T) evaluates to true.
• Formula is recursively defined:

!start with simple atomic formulas  (get 
tuples from relations or make comparisons of 
values)

!build bigger and better formulas using the 
logical connectives.

TRC Formulas
• An Atomic formula is one of the following:

R ∈ Rel 
R.a op S.b
R.a op constant

op is one of
• A formula can be:

– an atomic formula

– where p and q are formulas
– where variable R is a tuple variable
– where variable R is a tuple variable 

< > = ≤ ≥ ≠, , , , ,
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Free and Bound Variables

• The use of quantifiers and         in a formula is 
said to bind X in the formula.
– A variable that is not bound is free. 

• Let us revisit the definition of a query:   

– {T | p(T)}

∃ X ∀ X

• There is an important restriction
— the variable T that appears to the left of `|’ must be 

the only free variable in the formula p(T).
— in other words, all other tuple variables must be 

bound using a quantifier.

Selection and Projection
• Find all sailors with rating above 7

– Modify this query to answer: Find sailors who are older 
than 18 or have a rating under 9, and are called ‘Bob’. 

• Find names and ages of sailors with rating above 7.

– Note, here S is a tuple variable of 2 fields (i.e. {S} is a 
projection of sailors), since only 2 fields are ever 
mentioned and S is never used to range over any 
relations in the query.

{S |S ∈ Sailors ∧ S.rating > 7}

{S | ∃ S1 ∈ Sailors(S1.rating > 7 
∧ S.sname = S1.sname
∧ S.age = S1.age)}
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Find sailors rated > 7 who’ve reserved boat 
#103 

Note the use of ∃ to find a tuple in Reserves 
that `joins with’ the Sailors tuple under 
consideration.   

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid 

∧ R.bid = 103)}

Joins

Joins (continued)

• Observe how the parentheses control the scope of 
each quantifier’s binding.

• This may look cumbersome, but it’s not so different 
from SQL!

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid 

∧ R.bid = 103)}

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid 

∧ ∃ B(B∈ Boats ∧ B.bid = R.bid
∧ B.color = ‘red’))}

Find sailors rated > 7 who’ve reserved boat #103Find sailors rated > 7 who’ve reserved a red boat
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Division (makes more sense here???)

• Find all sailors S such that for each tuple B in Boats 
there is a tuple in Reserves showing that sailor S has 
reserved it.

Find sailors who’ve reserved all boats
(hint, use ∀∀∀∀ )

{S | S∈ Sailors ∧
∀ B∈ Boats (∃ R∈ Reserves 

(S.sid = R.sid
∧ B.bid = R.bid))}

Division – a trickier example…

{S | S∈ Sailors ∧
∀ B ∈ Boats ( B.color = ‘red’ ⇒⇒⇒⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

Find sailors who’ve reserved all Red boats

{S | S∈ Sailors ∧
∀ B ∈ Boats ( B.color ≠≠≠≠ ‘red’  ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

Alternatively…
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a ⇒⇒⇒⇒ b is the same as ¬a ∨ b

• If a is true, b must be 
true for the implication 
to be true.  If a is true 
and b is false, the 
implication evaluates to 
false.

• If a is not true, we don’t 
care about b, the 
expression is always 
true.

a
T

F

T          F
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Unsafe Queries,  Expressive Power

• ∃∃∃∃ syntactically correct calculus queries that have 
an infinite number of answers!  Unsafe queries.
– e.g.,

– Solution???? Don’t do that!
• Expressive Power (Theorem due to Codd):

– every query that can be expressed in relational algebra 
can be expressed as a safe query in DRC / TRC; the 
converse is also true. 

• Relational Completeness:  Query language (e.g., 
SQL) can express every query that is expressible in 
relational algebra/calculus.  (actually, SQL is more 
powerful, as we will see…)

S S Sailors| ¬ ∈
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Summary
• The relational model has rigorously defined query 

languages — simple and powerful.
• Relational algebra is more operational

– useful as internal representation for query evaluation plans.
• Relational calculus is non-operational

– users define queries in terms of what they want, not in 
terms of how to compute it.  (Declarative)

• Several ways of expressing a given query
– a query optimizer should choose the most efficient version.

• Algebra and safe calculus have same expressive power
– leads to the notion of relational completeness.

Addendum: Use of ∀

• ∀∀∀∀ x (P(x)) - is only true if P(x) is true for 
every x in the universe

• Usually:
∀ x ((x ∈ Boats) ⇒⇒⇒⇒ (x.color = “Red”)

• ⇒ logical implication, 
a ⇒⇒⇒⇒ b means that if a is true, b must be 

true
a ⇒⇒⇒⇒ b is the same as ¬a ∨ b
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Find sailors who’ve reserved all boats

• Find all sailors S such that for each tuple B
either it is not a tuple in Boats or there is a tuple in 
Reserves showing that sailor S has reserved it.

{S | S∈ Sailors ∧
∀ B( (B∈ Boats) ⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

{S | S∈ Sailors ∧
∀ B(¬ (B∈ Boats) ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

... reserved all red boats

• Find all sailors S such that for each tuple B
either it is not a tuple in Boats or there is a tuple in 
Reserves showing that sailor S has reserved it.

{S | S∈ Sailors ∧
∀ B( (B∈ Boats ∧ B.color = “red”) ⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

{S | S∈ Sailors ∧
∀ B(¬ (B∈ Boats) ∨ (B.color ≠ “red”) ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}


