
1

Relational Calculus
15-415, Spring 2003, Lecture 10

R&G, Chapter 4

∀

∃

We will occasionally use this
arrow notation unless there
is danger of no confusion.

Ronald Graham
Elements of Ramsey Theory

Relational Calculus
• Comes in two flavors: Tuple relational calculus (TRC)

and Domain relational calculus (DRC).
• Calculus has variables, constants, comparison ops,

logical connectives and quantifiers.
– TRC: Variables range over (i.e., get bound to) tuples.

• Like SQL.

– DRC: Variables range over domain elements (= field
values).

• Like Query-By-Example (QBE)

– Both TRC and DRC are simple subsets of first-order logic.
• Expressions in the calculus are called formulas.
• Answer tuple is an assignment of constants to

variables that make the formula evaluate to true.

2

Tuple Relational Calculus

• Query has the form: {T | p(T)}
– p(T) denotes a formula in which tuple

variable T appears.
• Answer is the set of all tuples T for

which the formula p(T) evaluates to true.
• Formula is recursively defined:

!start with simple atomic formulas (get
tuples from relations or make comparisons of
values)

!build bigger and better formulas using the
logical connectives.

TRC Formulas
• An Atomic formula is one of the following:

R ∈ Rel
R.a op S.b
R.a op constant

op is one of
• A formula can be:

– an atomic formula

– where p and q are formulas
– where variable R is a tuple variable
– where variable R is a tuple variable

< > = ≤ ≥ ≠, , , , ,

qpqpqpp ⇒∨∧¬ ,,,
))((RpR∃
))((RpR∀

3

Free and Bound Variables

• The use of quantifiers and in a formula is
said to bind X in the formula.
– A variable that is not bound is free.

• Let us revisit the definition of a query:

– {T | p(T)}

∃ X ∀ X

• There is an important restriction
— the variable T that appears to the left of `|’ must be

the only free variable in the formula p(T).
— in other words, all other tuple variables must be

bound using a quantifier.

Selection and Projection
• Find all sailors with rating above 7

– Modify this query to answer: Find sailors who are older
than 18 or have a rating under 9, and are called ‘Bob’.

• Find names and ages of sailors with rating above 7.

– Note, here S is a tuple variable of 2 fields (i.e. {S} is a
projection of sailors), since only 2 fields are ever
mentioned and S is never used to range over any
relations in the query.

{S |S ∈ Sailors ∧ S.rating > 7}

{S | ∃ S1 ∈ Sailors(S1.rating > 7
∧ S.sname = S1.sname
∧ S.age = S1.age)}

4

Find sailors rated > 7 who’ve reserved boat
#103

Note the use of ∃ to find a tuple in Reserves
that `joins with’ the Sailors tuple under
consideration.

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid

∧ R.bid = 103)}

Joins

Joins (continued)

• Observe how the parentheses control the scope of
each quantifier’s binding.

• This may look cumbersome, but it’s not so different
from SQL!

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid

∧ R.bid = 103)}

{S | S∈ Sailors ∧ S.rating > 7 ∧
∃ R(R∈ Reserves ∧ R.sid = S.sid

∧ ∃ B(B∈ Boats ∧ B.bid = R.bid
∧ B.color = ‘red’))}

Find sailors rated > 7 who’ve reserved boat #103Find sailors rated > 7 who’ve reserved a red boat

5

Division (makes more sense here???)

• Find all sailors S such that for each tuple B in Boats
there is a tuple in Reserves showing that sailor S has
reserved it.

Find sailors who’ve reserved all boats
(hint, use ∀∀∀∀)

{S | S∈ Sailors ∧
∀ B∈ Boats (∃ R∈ Reserves

(S.sid = R.sid
∧ B.bid = R.bid))}

Division – a trickier example…

{S | S∈ Sailors ∧
∀ B ∈ Boats (B.color = ‘red’ ⇒⇒⇒⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

Find sailors who’ve reserved all Red boats

{S | S∈ Sailors ∧
∀ B ∈ Boats (B.color ≠≠≠≠ ‘red’ ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

Alternatively…

6

a ⇒⇒⇒⇒ b is the same as ¬a ∨ b

• If a is true, b must be
true for the implication
to be true. If a is true
and b is false, the
implication evaluates to
false.

• If a is not true, we don’t
care about b, the
expression is always
true.

a
T

F

T F
b

T

T T

F

Unsafe Queries, Expressive Power

• ∃∃∃∃ syntactically correct calculus queries that have
an infinite number of answers! Unsafe queries.
– e.g.,

– Solution???? Don’t do that!
• Expressive Power (Theorem due to Codd):

– every query that can be expressed in relational algebra
can be expressed as a safe query in DRC / TRC; the
converse is also true.

• Relational Completeness: Query language (e.g.,
SQL) can express every query that is expressible in
relational algebra/calculus. (actually, SQL is more
powerful, as we will see…)

S S Sailors| ¬ ∈

7

Summary
• The relational model has rigorously defined query

languages — simple and powerful.
• Relational algebra is more operational

– useful as internal representation for query evaluation plans.
• Relational calculus is non-operational

– users define queries in terms of what they want, not in
terms of how to compute it. (Declarative)

• Several ways of expressing a given query
– a query optimizer should choose the most efficient version.

• Algebra and safe calculus have same expressive power
– leads to the notion of relational completeness.

Addendum: Use of ∀

• ∀∀∀∀ x (P(x)) - is only true if P(x) is true for
every x in the universe

• Usually:
∀ x ((x ∈ Boats) ⇒⇒⇒⇒ (x.color = “Red”)

• ⇒ logical implication,
a ⇒⇒⇒⇒ b means that if a is true, b must be

true
a ⇒⇒⇒⇒ b is the same as ¬a ∨ b

8

Find sailors who’ve reserved all boats

• Find all sailors S such that for each tuple B
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor S has reserved it.

{S | S∈ Sailors ∧
∀ B((B∈ Boats) ⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

{S | S∈ Sailors ∧
∀ B(¬ (B∈ Boats) ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

... reserved all red boats

• Find all sailors S such that for each tuple B
either it is not a tuple in Boats or there is a tuple in
Reserves showing that sailor S has reserved it.

{S | S∈ Sailors ∧
∀ B((B∈ Boats ∧ B.color = “red”) ⇒
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

{S | S∈ Sailors ∧
∀ B(¬ (B∈ Boats) ∨ (B.color ≠ “red”) ∨
∃ R(R∈ Reserves ∧ S.sid = R.sid

∧ B.bid = R.bid))}

