Relational Calculus

15-415, Spring 2003, Lecture 10
R\&G, Chapter 4

We will occasionally use this arrow notation unless there is danger of no confusion.

Ronald Graham Elements of Ramsey Theory

∞
 Relational Calculus

- Comes in two flavors: Tuple relational calculus(TRC) and Domain relational calculus (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
- TRC: Variables range over (i.e., get bound to) tuples.
- Like SQL.
- $\underline{D R C}$: Variables range over domain elements (= field values).
- Like Query-By-Example (QBE)
- Both TRC and DRC are simple subsets of first-order logic.
- Expressions in the calculus are called formulas.
- Answer tuple is an assignment of constants to variables that make the formula evaluate to true.

Tuple Relational Calculus

- Query has the form: $\{T \mid p(T)\}$
- $\boldsymbol{p}(\boldsymbol{T})$ denotes a formula in which tuple variable \boldsymbol{T} appears.
- Answer is the set of all tuples \boldsymbol{T} for which the formula $p(7)$ evaluates to true.
- Formula is recursively defined:
*start with simple atomic formulas (get tuples from relations or make comparisons of values)
*build bigger and better formulas using the logical connectives.

TRC Formulas

- An Atomic formula is one of the following:
$R \in R e l$
R.a op S.b
R.a op constant

$$
o p \text { is one of } \quad<,>,=, \leq, \geq, \neq
$$

- A formula can be:
- an atomic formula
$-\neg p, p \wedge q, p \vee q, p \Rightarrow q$ where p and q are formulas
- $\exists R(p(R))$ where variable R is a tuple variable
- $\forall R(p(R))$ where variable R is a tuple variable

Free and Bound Variables

- The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to bind X in the formula.
- A variable that is not bound is free.
- Let us revisit the definition of a query:
- $\{T \mid p(T)\}$

- There is an important restriction

- the variable T that appears to the left of ' \mid ' must be the only free variable in the formula $p(T)$.
- in other words, all other tuple variables must be bound using a quantifier.

Selection and Projection

- Find all sailors with rating above 7

$$
\{S \mid S \in \text { Sailors } \wedge \text { S.rating }>7\}
$$

- Modify this query to answer: Find sailors who are older than 18 or have a rating under 9, and are called 'Bob'.
- Find names and ages of sailors with rating above 7.
$\{S \mid \exists S 1 \in$ Sailors(S1.rating >7
\wedge S.sname = S1.sname
\wedge S.age = S1.age) \}
- Note, here S is a tuple variable of 2 fields (i.e. $\{S\}$ is a projection of sailors), since only 2 fields are ever mentioned and S is never used to range over any relations in the query.

Find sailors rated > 7 who've reserved boat \#103
$\{S \mid S \in$ Sailors \wedge S.rating $>7 \wedge$ $\exists R(R \in$ Reserves \wedge R.sid = S.sid \wedge R.bid $=103)\}$

Note the use of \exists to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

Joins (continued)
\{S | $\mathrm{S} \in$ Sailors \wedge S.rating > $7 \wedge$ $\exists R(R \in$ Reserves \wedge R.sid $=$ S.sid $\wedge \exists \mathrm{B}(\mathrm{B} \in$ Boats \wedge B.bid = R.bid \wedge B.color $=$ 'red') $)\}$

Find sailors rated > 7 who've reserved a red boat

- Observe how the parentheses control the scope of each quantifier's binding.
- This may look cumbersome, but it's not so different from SQL!

Find sailors who've reserved all boats (hint, use \forall)
\{S | $\mathrm{S} \in$ Sailors \wedge
$\forall B \in$ Boats $(\exists R \in$ Reserves
(S.sid = R.sid
\wedge B.bid $=$ R.bid $)$)

- Find all sailors S such that for each tuple B in Boats there is a tuple in Reserves showing that sailor \boldsymbol{S} has reserved it.

> Division - a trickier example...

Find sailors who've reserved all Red boats
\{S | $\mathrm{S} \in$ Sailors \wedge
$\forall \mathrm{B} \in$ Boats ($\mathrm{B} . \mathrm{color}=$ 'red' \Rightarrow
$\exists R(R \in$ Reserves \wedge S.sid $=$ R.sid \wedge B.bid $=$ R.bid $)$) $\}$
Alternatively...
\{S | $\mathrm{S} \in$ Sailors \wedge
$\forall \mathrm{B} \in$ Boats ($\mathrm{B} . \mathrm{color} \neq$ 'red' $^{\prime} \vee$
$\exists R(R \in$ Reserves \wedge S.sid $=$ R.sid \wedge B.bid $=$ R.bid $)$)

- If \mathbf{a} is true, \mathbf{b} must be true for the implication to be true. If a is true and b is false, the implication evaluates to false.
- If a is not true, we don't care about b, the expression is always true.

Unsafe Queries, Expressive Power

- \exists syntactically correct calculus queries that have an infinite number of answers! Unsafequeries.
- e.g., $\{S \mid \neg(S \in$ Sailors $)\}$
- Solution???? Don't do that!
- Expressive Power (Theorem due to Codd):
- every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
- Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/ calculus. (actually, SQL is more powerful, as we will see...)

Summary

- The relational model has rigorously defined query languages - simple and powerful.
- Relational algebra is more operational
- useful as internal representation for query evaluation plans.
- Relational calculus is non-operational
- users define queries in terms of what they want, not in terms of how to compute it. (Declarative)
- Several ways of expressing a given query
- a query optimizer should choose the most efficient version.
- Algebra and safe calculus have same expressive power - leads to the notion of relational completeness.

Addendum: Use of \forall

- $\forall \mathrm{x}(\mathrm{P}(\mathrm{x}))$ - is only true if $\mathrm{P}(\mathrm{x})$ is true for every x in the universe
- Usually:
$\forall x\left((x \in\right.$ Boats $) \Rightarrow\left(x . c o l o r={ }^{\prime} \operatorname{Red}^{\prime \prime}\right)$
- \Rightarrow logical implication,
$\mathbf{a} \Rightarrow \mathbf{b}$ means that if a is true, b must be true
$\mathbf{a} \Rightarrow \mathbf{b}$ is the same as $\neg \mathrm{a} \vee \mathrm{b}$

Find sailors who've reserved all boats
\{S | $\mathrm{S} \in$ Sailors \wedge
$\forall \mathrm{B}($ (B \in Boats $) \Rightarrow$
$\exists \mathrm{R}(\mathrm{R} \in$ Reserves \wedge S.sid $=$ R.sid \wedge B.bid = R.bid)) $\}$

- Find all sailors S such that for each tuple B either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor \boldsymbol{S} has reserved it.
$\{S \mid S \in$ Sailors \wedge
$\forall \mathrm{B}(\neg$ ($\mathrm{B} \in$ Boats $) \vee$
$\exists R(R \in$ Reserves \wedge S.sid $=$ R.sid
\wedge B.bid = R.bid) $)$ \}
... reserved all red boats
\{ $\mathrm{S} \mid \mathrm{S} \in$ Sailors \wedge
$\forall B((B \in$ Boats \wedge B.color $=$ "red" $) \Rightarrow$ $\exists \mathrm{R}(\mathrm{R} \in$ Reserves \wedge S.sid $=$ R.sid \wedge B.bid = R.bid)) $\}$
- Find all sailors Ssuch that for each tuple B either it is not a tuple in Boats or there is a tuple in Reserves showing that sailor \boldsymbol{S} has reserved it.
$\{S \mid S \in$ Sailors \wedge

$$
\forall \mathrm{B}\left(\neg(\mathrm{~B} \in \text { Boats }) \vee\left(\text { B.color } \neq{ }^{\prime r e d "}\right) \vee\right.
$$

$\exists R(R \in$ Reserves \wedge S.sid $=$ R.sid
\wedge B.bid = R.bid) $)$ \}

