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Functional Dependencies

Science is the knowledge of
consequences, and dependence
of one fact upon another.

Thomas Hobbes (1588-1679)

15-415, Spring 2003, Lecture 17
R & G Chapter 19

Review: Database Design
• Requirements Analysis

– user needs; what must database do?
• Conceptual Design

– high level descr (often done w/ER model)
• Logical Design

– translate ER into DBMS data model
• Schema Refinement 

– consistency,normalization
• Physical Design - indexes, disk layout
• Security Design - who accesses what

The Evils of Redundancy

• Redundancy is at the root of several problems 
associated with relational schemas:
– redundant storage, insert/delete/update anomalies

• Integrity constraints, in particular functional 
dependencies, can be used to identify schemas with 
such problems and to suggest refinements.

• Main refinement technique:  decomposition
– replacing ABCD with, say, AB and BCD, or ACD and ABD.

• Decomposition should be used judiciously:
– Is there reason to decompose a relation?
– What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)
• A functional dependency X →→→→ Y holds over relation 

schema R if, for every allowable instance r of R:
t1 ∈ r,  t2 ∈ r,  πX (t1) = πX (t2)

implies πY (t1) = πY (t2)
(where t1 and t2 are tuples;X and Y are sets of attributes)

• In other words: X →→→→ Y means
Given any two tuples in r, if the X values are the same, 
then the Y values must also be the same. (but not vice 
versa)

• Can read “→→→→” as “determines”

FD’s Continued
• An FD is a statement about all allowable 

relations.
– Must be identified based on semantics of 

application.
– Given some instance r1 of R, we can check 

if r1 violates some FD f, but we cannot 
determine if f holds over R.

• Question: How related to keys?
• if “K →→→→ all attributes of R” then K is a 

superkey for R
(does not require K to be minimal.)

• FDs are a generalization of keys.

Example:  Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
Hourly_Emps (ssn, name, lot, rating, wage_per_hr, hrs_per_wk)

• We sometimes denote a relation schema by listing the  
attributes: e.g.,  SNLRWH

• This is really the set of attributes {S,N,L,R,W,H}.
• Sometimes, we refer to the set of all attributes of a relation  by 

using  the relation name. e.g., “Hourly_Emps” for SNLRWH
What are some FDs on Hourly_Emps?

ssn is the key:  S → SNLRWH 
rating determines wage_per_hr:    R → W
lot determines lot:    L → L  (“trivial” dependnency)
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Problems Due to R → W

• Update anomaly:  Can we modify W in only the 1st 
tuple of SNLRWH?

• Insertion anomaly:  What if we want to insert an 
employee and don’t know the hourly wage for his or 
her rating? (or we get it wrong?)

• Deletion anomaly: If we delete all employees with 
rating 5, we lose the information about the wage for 
rating 5!  

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Hourly_Emps

Null values

• Can Null values help address anomalies?
– Clearly, not helpful for redundancy or update 

anomalies
– Insertions?

• Can insert employee with Null wages
• Cannot insert a rating-to-wage correspondence (ssn cannot 

be null)

– Same with deletions
• Cannot store null in ssn to preserve a rating-to-wage 

correspondence

Detecting Redundancy
S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

Hourly_Emps

Q: Why was R →→→→ W problematic, but S →→→→W not?

Decomposing a Relation
• Redundancy can be removed by “chopping” 

the relation into pieces.
• FD’s are used to drive this process.

R → W is causing the problems, so decompose 
SNLRWH into what relations?

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7

Hourly_Emps2

Wages

Refining an ER Diagram

• 1st diagram becomes:           
Workers(S,N,L,D,Si)       
Departments(D,M,B)
– Lots associated with 

workers.
• Suppose all workers in            

a dept are assigned the 
same lot:     D →→→→ L

• Redundancy; fixed by: 
Workers2(S,N,D,Si) 
Dept_Lots(D,L) 
Departments(D,M,B)

• Can fine-tune this: 
Workers2(S,N,D,Si) 
Departments(D,M,B,L) 

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname

budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:

Reasoning About FDs
• Given some FDs, we can usually infer additional FDs:

title → studio, star  implies title → studio and title → star 
title → studio and title → star  implies  title → studio, star
title → studio,  studio → star   implies title → star

But,
title, star → studio  does NOT necessarily imply that 
title → studio or that star → studio

• An FD f is implied by a set of FDs F if f holds 
whenever all FDs in F hold.

• F+ = closure of  F is the set of all FDs that are implied 
by F.   (includes “trivial dependencies”)
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Rules of Inference

• Armstrong’s Axioms (X, Y, Z are sets of attributes):
– Reflexivity:  If  X ⊇ Y,  then   X → Y 
– Augmentation:  If  X → Y,  then   XZ → YZ   for any Z
– Transitivity:  If  X → Y  and  Y → Z,  then   X → Z

• These are sound and complete inference rules for FDs!
– i.e., using AA you can compute all the FDs in F+ and only 

these FDs.

• Some additional rules (that follow from AA):
– Union:   If X → Y  and  X → Z,   then  X → YZ
– Decomposition:   If X → YZ,   then  X → Y  and  X → Z

Example
• Contracts(cid,sid,jid,did,pid,qty,value), and:

– C is the key:   C → CSJDPQV
– Proj purchases each part using single contract: JP → C
– Dept purchases at most 1 part from a supplier: SD → P

• Problem: Prove that SDJ is a key for Contracts
• JP →→→→ C,  C →→→→ CSJDPQV   imply   JP →→→→ CSJDPQV

(by transitivity)  (shows that JP is a key)
• SD →→→→ P   implies   SDJ →→→→ JP (by augmentation)
• SDJ →→→→ JP,   JP →→→→ CSJDPQV   imply   SDJ →→→→ CSJDPQV

(by transitivity) thus SDJ is a key.

Q: can you now infer that SD →→→→ CSDPQV (i.e., drop 
J on both sides)?

No! FD inference is not like arithmetic multiplication.

Attribute Closure

• Computing the closure of a set of FDs can be expensive.  (Size of 
closure is exponential in # attrs!)

• Typically, we just want to check if a given FD X →→→→ Y is in the 
closure of a set of FDs F.  An efficient check:
– Compute attribute closure of X (denoted X+) wrt F.           X+ =  Set of 

all attributes A such that X → A is in F+

• X+ := X
• Repeat until no change: if there is in fd U → V in F such that U        is in 

X+, then add V to X+

– Check if Y is in X+

– Approach can also be used to find the keys of a relation.
• If all attributes of R are in the closure of X then X is a superkey for 

R.
• Q: How to check if X is a “candidate key”?

Attribute Closure (example)
• R = {A, B, C, D, E}
• F = { B →→→→CD, D →→→→ E, B →→→→ A, E →→→→ C, AD →→→→B }
• Is B →→→→ E in F+  ?

B+ = B
B+ = BCD
B+ = BCDA
B+ = BCDAE   … Yes!                                                           

and B is a key for R too!
• Is D a key for R?

D+ = D
D+ = DE
D+ = DEC 

… Nope!

• Is AD a key for R? 
AD+ = AD
AD+ = ABD and B is a key, so 
Yes!

• Is AD a candidate key     
for R?
A+ = A
… A not a key, so Yes!

• Is ADE a candidate key  
for R?
… No! AD is a key, so ADE is a 
superkey, but not a cand. key

Next Class…

• Normal forms and normalization
• Table decompositions


