

Review: Database Design

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level descr (often done w/ER model)
- Logical Design
 - translate ER into DBMS data model
- Schema Refinement
- consistency, normalization
- Physical Design indexes, disk layout
- · Security Design who accesses what

FD's Continued

- An FD is a statement about *all* allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance r1 of R, we can check if r1 violates some FD f, but we cannot determine if f holds over R.
- · Question: How related to keys?
- if "K → all attributes of R" then K is a superkey for R
- (does not require K to be *minimal*.)
- FDs are a generalization of keys.

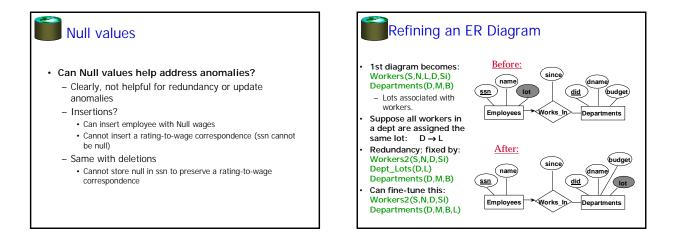
The Evils of Redundancy

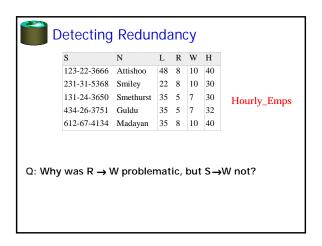
- *Redundancy* is at the root of several problems associated with relational schemas:
- redundant storage, insert/delete/update anomalies
 Integrity constraints, in particular functional
- dependencies, can be used to identify schemas with such problems and to suggest refinements. Main refinement technique: <u>decomposition</u>
- replacing ABCD with, say, AB and BCD, or ACD and ABD. Decomposition should be used judiciously:
- Is there reason to decompose a relation?
- What problems (if any) does the decomposition cause?

Exan

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps: Hourly_Emps (<u>ssn</u>, name, lot, rating, wage_per_hr, hrs_per_wk)
- We sometimes denote a relation schema by listing the attributes: e.g., SNLRWH
- This is really the set of attributes {S,N,L,R,W,H}.

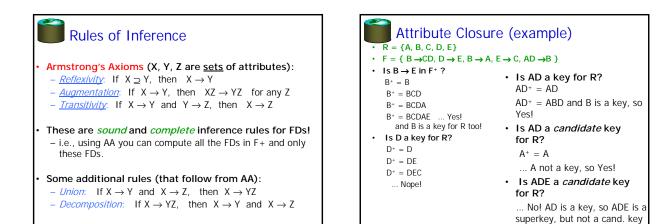

 Sometimes, we refer to the set of *all attributes* of a relation by using the relation name. e.g., "Hourly_Emps" for SNLRWH
 What are some FDs on Hourly_Emps?


> ssn is the key: $S \rightarrow SNLRWH$ rating determines wage_per_hr: $R \rightarrow W$ lot determines lot: $L \rightarrow L$ ("trivial" dependency)

S N L R W H 123-22-3666 Attishoo 48 8 10 40 231-31-5368 Smiley 22 8 10 30 131-24-3650 Smethurst 35 5 7 30 434-26-3751 Guldu 35 5 7 32 612-67-4134 Madayan 35 8 10 40

- <u>Update anomaly</u>: Can we modify W in only the 1st tuple of SNLRWH?
- <u>Insertion anomaly</u>: What if we want to insert an employee and don't know the hourly wage for his or her rating? (or we get it wrong?)
- <u>Deletion anomaly</u>. If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Redundar					d by "choppi	ng′
FD's are u	•				rocess	
	causing tl H into what				is, so decompo ?	se
S	Ν	L	R	Н		
123-22-3666	Attishoo	48	8	40	R W	
231-31-5368	Smiley	22	8	30	K W	
131-24-3650	Smethurst	35	5	30		
434-26-3751	Guldu	35	5	32	5 7	
612-67-4134	Madayan	35	8	40	Wages	


Reasoning About FDs

• Given some FDs, we can usually infer additional FDs: *title* → *studio*, *star* implies *title* → *studio* and *title* → *star title* → *studio* and *title* → *star* implies *title* → *studio*, *star title* → *studio*, *studio* → *star* implies *title* → *star*

But,

title, star \rightarrow *studio* does NOT necessarily imply that *title* \rightarrow *studio* or that *star* \rightarrow *studio*

- An FD *f* is *implied by* a set of FDs *F* if *f* holds whenever all FDs in *F* hold.
- F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F. (includes "trivial dependencies")

Example

- Contracts(*cid*, *sid*, *jid*, *did*, *pid*, *qty*, *value*), and:
 C is the key: C → CSJDPQV
 - Proj purchases each part using single contract: $JP \rightarrow C$
 - Dept purchases at most 1 part from a supplier: $SD \rightarrow P$
- Problem: Prove that SDJ is a key for Contracts
- JP → C, C → CSJDPQV imply JP → CSJDPQV (by transitivity) (shows that JP is a key)
- SD \rightarrow P implies SDJ \rightarrow JP (by augmentation)
- SDJ → JP, JP → CSJDPQV imply SDJ → CSJDPQV (by transitivity) thus SDJ is a key.

Q: can you now infer that SD \rightarrow CSDPQV (i.e., drop J on both sides)?

No! FD inference is not like arithmetic multiplication.

Next Class...

- Normal forms and normalization
- Table decompositions

Attribute Closure

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs *F*. An efficient check:
- Compute <u>attribute closure</u> of X (denoted X⁺) wrt *F*. $X^+ =$ Set of all attributes A such that $X \rightarrow A$ is in F⁺
 - X^+ := X
 - Repeat until no change: if there is in fd $U \to V$ in ${\it F}\,$ such that U is in $X_{^+},$ then add V to $X_{^+}$
- Check if Y is in X⁺
- Approach can also be used to find the keys of a relation.
 If all attributes of R are in the closure of X then X is a superkey for
 - R.Q: How to check if X is a "candidate key"?