# Schema Refinement and Normalization 

15-415, Spring 2003, Lecture 18
R \& G Chapter 19

Nobody realizes that some people expend tremendous energy merely to be normal.

> Albert Camus

## Functional Dependencies (Review)

- A functional dependency $\mathbf{X} \rightarrow \mathbf{Y}$ holds over relation schema $R$ if, for every allowable instance $r$ of $R$ :

$$
t 1 \in r, t 2 \in r, \quad \pi_{X}(t 1)=\pi_{X}(t 2)
$$

(where t1 and t2 are tuples; $X$ and $Y$ are sets of attributes)

- In other words: $\mathbf{X} \rightarrow \mathbf{Y}$ means

Given any two tuples in $r$, if the $X$ values are the same, then the $Y$ values must also be the same. (but not vice versa)

- Can read " $\rightarrow$ " as "determines"


## Normal Forms

- Back to schema refinement...
- Q1: is any refinement needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
- we know that certain problems are avoided/minimized.
- helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
- Consider a relation $R$ with 3 attributes, $A B C$.
- No (non-trivial) FDs hold: There is no redundancy here.
- Given $A \rightarrow B$ : If $A$ is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!
- $1^{\text {st }}$ Normal Form - all attributes are atomic
- $\mathbf{1}^{\text {st }} \supset \mathbf{2}^{\text {nd }}$ (of historical interest) $\supset 3^{\text {rd }} \supset$ Boyce-Codd $\supset . .$.


## Boyce-Codd Normal Form (BCNF)

- Reln $R$ with $F D s$ Fis in BCNF if, for all $X \rightarrow A$ in $F^{+}$
- $A \in X$ (called a trivia/FD), or
- $X$ is a superkey for $R$.
- In other words: " R is in BCNF if the only non-trivial FDs over $R$ are key constraints."
- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
- Say we know FD X $\rightarrow$ A holds this example relation:
- Can you guess the value of the missing attribute?

| $X$ | $Y$ | $A$ |
| :--- | :--- | :--- |
| $x$ | $y 1$ | $a$ |
| $x$ | $y 2$ | $?$ |

- Yes, so relation is not in BCNF


## Decomposition of a Relation Scheme

- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes $A 1$... $A n$. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of $R$, and
- Every attribute of $R$ appears as an attribute of at least one of the new relations.


## Example (same as before)

| S | N | L | R | W |
| :--- | :--- | :--- | :--- | :--- |
| H |  |  |  |  |
| 123-22-3666 | Attishoo | 48 | 8 | 10 |
| 231-31-5368 | Smiley | 22 | 8 | 10 |
| 131-24-3650 | Smethurst | 35 | 5 | 7 |
| 434-26-3751 | Guldu | 35 | 5 | 7 |
| 412-67-4134 | Madayan | 35 | 8 | 10 |

Hourly_Emps

- SNLRWH has FDs $\mathrm{S} \rightarrow$ SNLRWH and $\mathrm{R} \rightarrow \mathrm{W}$
- Q: Is this relation in BCNF?

No, The second FD causes a violation; $W$ values repeatedly associated with $R$ values.

## Decomposing a Relation

- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

| S | N | L | R | H |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 123-22-3666 | Attishoo | 48 | 8 | 40 |  |  |
| 231-31-5368 | Smiley | 22 | 8 | 30 | R | W |
| 131-24-3650 | Smethurst | 35 | 5 | 30 | 8 | 10 |
| 434-26-3751 | Guldu | 35 | 5 | 32 | 5 | 7 |
| 612-67-4134 | Madayan | 35 | 8 | 40 |  |  |

Hourly_Emps2
-Q: Are both of these relations are now in BCNF?
-Decompositions should be used only when needed.
-Q: potential problems of decomposition?

## Problems with Decompositions

- There are three potential problems to consider:

1) May be impossible to reconstruct the original relation! (Lossiness)

- Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.

- Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.

- e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

## Review - Natural Join

- Natural J oin is a fundamental operator of relational algebra
- Semantics of $\mathbf{R} \triangleright \triangleleft \mathbf{S}$ are:
- Compute Cartesian Product of $R$ and $S$
- Select out those tuples where the common attributes of $R$ and $S$ have the same values
- Keep all unique attributes of these tuples plus one copy of each of the common attributes.


## Lossless Decomposition (example)

| S | N | L | R |
| :--- | :--- | :--- | :--- | H



$=\quad$| S | N | L | R | W | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $123-22-3666$ | Attishoo | 48 | 8 | 10 | 40 |
| $231-31-5368$ | Smiley | 22 | 8 | 10 | 30 |
| $131-24-3650$ | Smethurst | 35 | 5 | 7 | 30 |
| $434-26-3751$ | Guldu | 35 | 5 | 7 | 32 |
| $612-67-4134$ | Madayan | 35 | 8 | 10 | 40 |

## Lossy Decomposition (example)

| A | B | C |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 2 | 8 |$\quad \rightarrow$| A | B |
| :--- | :--- | :--- |
| 1 | 2 |
| 4 | 5 |
| 7 | 2 |$\quad$| B | C |
| :--- | :--- |
| 2 | 3 |
| 5 | 6 |
| 2 | 8 |

$A \rightarrow B ; C \rightarrow B$


## Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-ioin w.r.t. a set of FDs $F$ if, for every instance $r$ that satisfies $F$ :

$$
\pi_{X}(r) \bowtie \pi_{Y}(r)=r
$$

- It is always true that $r \subseteq \pi_{X}(\boldsymbol{r}) \bowtie \pi_{Y}(\boldsymbol{r})$
- In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem \#1)


## More on Lossless Decomposition

- The decomposition of $R$ into $X$ and $Y$ is lossless with respect to $\mathbf{F}$ if and only if the closure of F contains:

$$
\begin{aligned}
& X \cap Y \rightarrow X, \quad \text { or } \\
& X \cap Y \rightarrow Y
\end{aligned}
$$

in example: decomposing $A B C$ into $A B$ and $B C$ is lossy, because intersection (i.e., "B") is not a key of either resulting relation.

- Useful result: If $W \rightarrow Z$ holds over $R$ and $W \cap Z$ is empty, then decomposition of R into $\mathrm{R}-\mathrm{Z}$ and WZ is loss-less.


## Lossless Decomposition (example)

| A | B | C |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 2 | 8 |$\quad$| A | C |
| :--- | :--- |
| 1 | 3 |
| 4 | 6 |
| 7 | 8 |$\quad$| B | C |
| :--- | :--- |
| 2 | 3 |
| 5 | 6 |
| 2 | 8 |

$A \rightarrow B ; C \rightarrow B$

| $A$ | $C$ |
| :--- | :--- |
| 1 | 3 |
| 4 | 6 |
| 7 | 8 |$\quad$| B | C |
| :--- | :--- |
| 2 | 3 |
| 5 | 6 |
| 2 | 8 |$=$| A | B | C |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 2 | 8 |

But, now we can't check $A \rightarrow B$ without doing a join!

## Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
- If R is decomposed into $X, Y$ and $Z$, and we enforce the FDs that hold individually on $X$, on $Y$ and on Z , then all FDs that were given to hold on R should also hold. (Avoids Problem \#2 on our list.)
- Projection of set of FDs F: If R is decomposed into $X$ and $Y$ the projection of $F$ on $X$ (denoted $F_{X}$ ) is the set of FDs $\mathrm{U} \rightarrow \mathrm{V}$ in $\mathrm{F}^{+}$(closure of $F$, not just $F$ ) such that all of the attributes $\mathrm{U}, \mathrm{V}$ are in X . (same holds for $Y$ of course)


## Dependency Preserving Decompositions (Cont.)

- Definition: Decomposition of $R$ into $X$ and $Y$ is dependency preserving if $\left(F_{X} \cup F_{Y}\right)^{+}=F^{+}$
- i.e., if we consider only dependencies in the closure $\mathrm{F}+$ that can be checked in X without considering Y , and in Y without considering $X$, these imply all dependencies in $F^{+}$.
- Important to consider $\mathrm{F}^{+}$in this definition:
- $A B C, A \rightarrow B, B \rightarrow C, C \rightarrow A$, decomposed into $A B$ and $B C$.
- Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- note: $F^{+}$contains $F \cup\{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...
- FAB contains $A \rightarrow B$ and $B \rightarrow A ; F B C$ contains $B \rightarrow C$ and $C \rightarrow B$
- $\mathrm{So},(\mathrm{FAB} \cup \mathrm{FBC})^{+}$contains $\mathrm{C} \rightarrow \mathrm{A}$


## Decomposition into BCNF

- Consider relation $\mathbf{R}$ with FDs F . If $\mathbf{X} \rightarrow \mathbf{Y}$ violates BCNF, decompose R into R-Y and XY (guaranteed to be loss-less).
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
- e.g., CSJDPQV, key C, JP $\rightarrow$ C, SD $\rightarrow$ P, J $\rightarrow$ S
- \{contractid, supplierid, projectid,deptid,partid, qty, value\}
- To deal with SD $\rightarrow$ P, decompose into SDP, CSJDQV.
- To deal with J $\rightarrow$ S, decompose CSJDQV into JS and CJDQV
- So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we "'deal with" them could lead to very different sets of relations!


## BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
- e.g., CSZ, CS $\rightarrow$ Z, Z $\rightarrow$ C
- Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJ DPQV into SDP, JS and CJ DQV is not dependency preserving (w.r.t. the FDs $\mathbf{J P} \rightarrow \mathbf{C}, \mathbf{S D} \rightarrow \mathbf{P}$ and $\mathbf{J} \rightarrow \mathbf{S}$ ).
- \{contractid, supplierid, projectid,deptid,partid, qty, value\}
- However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
- but JPC tuples are stored only for checking the f.d. (Redundancy.)


## Third Normal Form (3NF)

- Reln $\mathbf{R}$ with FDs $\boldsymbol{F}$ is in $\mathbf{3 N F}$ if, for all $\mathbf{X} \rightarrow \mathbf{A}$ in $\mathrm{F}^{+}$
$A \in X$ (called a trivia/ FD), or
$X$ is a superkey of $R$, or
A is part of some candidate key (not superkey!) for $R$.
(sometimes stated as "A is prime")
- Minimality of a key is crucial in third condition above!
- If $R$ is in BCNF, obviously in 3NF.
- If $R$ is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no " good" decomp, or performance considerations).
- Lossless-join, dependency-preserving decomposition of $R$ into a collection of 3NF relations always possible.


## What Does 3NF Achieve?

- If 3NF violated by $\mathbf{X} \rightarrow \mathbf{A}$, one of the following holds:
- X is a subset of some key K ("partial dependency")
- We store ( $\mathrm{X}, \mathrm{A}$ ) pairs redundantly.
- e.g. Reserves SBDC (C is for credit card) with key SBD and $S \rightarrow C$
- X is not a proper subset of any key. ("transitive dep.")
- There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an $X$ value with a $K$ value unless we also associate an $A$ value with an $X$ value (different K's, same X implies same A!) problem with initial SNLRWH example.
- But: even if $\mathbf{R}$ is in 3NF, these problems could arise.
- e.g., Reserves SBDC (note: "C" is for credit card here), S $\rightarrow$ C, C $\rightarrow \mathrm{S}$ is in 3NF (why?), but for each reservation of sailor S , same ( $\mathrm{S}, \mathrm{C}$ ) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.


## Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
- If $X \rightarrow Y$ is not preserved, add relation XY.

Problem is that $X Y$ may violate 3NF! e.g., consider the addition of CJP to 'preserve' JP $\rightarrow$. What if we also have $J \rightarrow C$ ?

- Refinement: I nstead of the given set of FDs F, use a minimal cover for $F$.


## Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
- Closure of $F=$ closure of G.
- Right hand side of each FD in G is a single attribute.
- If we modify $G$ by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- I ntuitively, every FD in G is needed, and "` as small as possible' in order to get the same closure as F.
- e.g., $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{ABCD} \rightarrow \mathrm{E}, \mathrm{EF} \rightarrow \mathrm{GH}, \mathrm{ACDF} \rightarrow \mathrm{EG}$ has the following minimal cover:
$-\mathrm{A} \rightarrow \mathrm{B}, \mathrm{ACD} \rightarrow \mathrm{E}, \mathrm{EF} \rightarrow \mathrm{G}$ and $\mathrm{EF} \rightarrow \mathrm{H}$
- M.C. implies Lossless-J oin, Dep. Pres. Decomp!!!
- (in book)


## Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
- ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
- Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
- Same if BCNF decomp is unsuitable for typical queries
- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- Note: even more restrictive Normal Forms exist (we don't cover them in this course, but some are in the book.)

