
1

Concurrency Control

15-415 Spring 2003, Lecture 22
R &G - Chapter 17

Smile, it is the key that fits the 
lock of everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Review

• DBMSs support ACID Transaction semantics.
• Concurrency control and Crash Recovery are 

key compontents here. 
• For Isolation property, a serial execution of 

transactions is safe but slow
– Try to find schedules equivalent to serial execution

• One solution for “conflict serializable” 
schedules is Two Phase Locking (2PL) 

Conflict Serializable Schedules

• We need a formal notion of equivalence that can be 
implemented efficiently…

• Two operations conflict if they are by different transactions, 
they are on the same object, and at least one of them is a 
write.

• Two schedules are conflict equivalent iff:
They involve the same actions of the same transactions, and
every pair of conflicting actions is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent to 
some serial schedule.
– Note, some “serializable” schedules are NOT conflict serializable.
– This is the price we pay for efficiency.

Conflict Equivalence - Intuition
• If you can transform an interleaved schedule by 

swapping consecutive non-conflicting operations 
of different transactions into a serial schedule, 
then the original schedule is conflict serializable.

• Example:

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B)W(A)

R(B)R(B)

R(A)

W(B)

W(A)

W(B)

R(A)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

Conflict Equivalence (Continued)

• Here’s another example:

• Serializable or not????

R(A) W(A)
R(A) W(A)

NOT!

Dependency Graph

• Dependency graph:  One node per Xact; edge 
from Ti to Tj if an operation of Ti conflicts 
with an operation of Tj and Ti’s operation 
appears earlier in the schedule than the 
conflicting operation of Tj.

• Theorem: Schedule is conflict serializable if 
and only if its dependency graph is acyclic



2

Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The 
output of T1 depends on T2, and vice-versa.

T1 T2
A

B

Dependency graph

T1: R(A), W(A),   R(B), W(B)
T2:
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

View Serializability – an Aside
• Alternative (weaker) notion of serializability.
• Schedules S1 and S2 are view equivalent if:

– If Ti reads initial value of A in S1, then Ti also reads 
initial value of A in S2

– If Ti reads value of A written by Tj in S1, then Ti also 
reads value of A written by Tj in S2

– If Ti writes final value of A in S1, then Ti also writes 
final value of A in S2

• Basically, allows all conflict serializable 
schedules + “blind writes”

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

Notes on Serializability Definitions
• View Serializability allows (slightly) more schedules 

than Conflict Serializability does.
– Problem is that it is difficult to implement efficiently.

• Neither definition allows all schedules that you would 
consider “serializable”.
– This is because they don’t understand the meanings of the 

operations or the data.
• In practice, Conflict Serializability is what gets used, 

because it can be done efficiently.
– In order to allow more concurrency, some special cases do 

get implemented, such as for travel reservations, etc.

Two-Phase Locking (2PL)

• Locking Protocol
– Each Xact must obtain a S (shared) lock on object before 

reading, and an X (exclusive) lock on object before writing.
– A transaction can not request additional locks once it 

releases any locks.
– Thus, there is a “growing phase” followed by a “shrinking 

phase”.

• 2PL on its own is sufficient to guarantee conflict 
serializability, but, it is subject to Cascading Aborts.

––X

–�S

XS

Lock
Compatibility
Matrix

Strict 2PL

• Problem:  Cascading Aborts
• Example: rollback of T1 requires rollback of T2!

• To avoid Cascading aborts, use Strict 2PL
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Same as 2PL, except:
– All locks held by a transaction are released only when the 

transaction completes

T1: R(A), W(A),   R(B), W(B), Abort
T2: R(A), W(A)

Strict 2PL (continued)

All locks held by a transaction are released only 
when the transaction completes

• Strict 2PL allows only schedules whose 
precedence graph is acyclic, but it is actually 
stronger than needed for that purpose.

• In effect, “shrinking phase” is delayed until
a) Transaction has committed (commit log record 

on disk), or
b) Decision has been made to abort the xact (then 

locks can be released after rollback).



3

Unlock(B)

Write(B)

B := B +50

Read(B)

PRINT(A+B)

Unlock(B)

Read(B)

Lock_X(B)

Lock_S(B)

Unlock(A)

Read(A)

Unlock(A)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

Non-2PL, A= 1000, B=2000, Output =?

PRINT(A+B)

Unlock(B)

Read(B)

Unlock(A)Unlock(B)

Write(B)

B := B +50

Read(B)

Lock_S(B)

Read(A)

Unlock(A)

Lock_X(B)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

2PL, A= 1000, B=2000, Output =?

Unlock(B)

Unlock(A)

PRINT(A+B)

Read(B)

Lock_S(B)

Read(A)

Unlock(B)

Unlock(A)

Write(B)

B := B +50

Read(B)

Lock_X(B)

Write(A)

A: = A-50

Lock_S(A)Read(A)

Lock_X(A)

Strict 2PL, A= 1000, B=2000, Output =?

Lock Management
• Lock and unlock requests are handled by the Lock 

Manager.
• LM contains an entry for each currently held lock.
• Lock table entry:

– Ptr. to list of transactions currently holding the lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests

• When lock request arrives see if anyone else holding 
a conflicting lock.

– If not, create an entry and grant the lock.
– Else, put the requestor on the wait queue

• Locking and unlocking have to be atomic operations
• Lock upgrade: transaction that holds a shared lock 

can be upgraded to hold an exclusive lock
– Can cause deadlock problems

Lock_X(B)

Write(A)

A: = A-50

Read(A)

Lock_S(A)

Read(B)

Lock_S(B)

Lock_X(A)

Example: Output = ?

Deadlocks

• Deadlock: Cycle of transactions waiting for 
locks to be released by each other.

• Two ways of dealing with deadlocks:
– Deadlock prevention
– Deadlock detection

• Many systems just punt and use Timeouts
– What are the dangers with this approach?



4

Deadlock Prevention

• Assign priorities based on timestamps. 
Assume Ti wants a lock that Tj holds. Two 
policies are possible:
– Wait-Die: If Ti has higher priority, Ti waits for Tj; 

otherwise Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts; 

otherwise Ti waits
• If a transaction re-starts, make sure it gets its 

original timestamp
– Why?

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj

to release a lock

• Periodically check for cycles in the waits-for 
graph

Deadlock Detection (Continued)

Example:

T1:  S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3

Multiple-Granularity Locks

• Hard to decide what granularity to lock 
(tuples vs. pages vs. tables).

• Shouldn’t have to make same decision for all 
transactions!

• Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains

Solution: New Lock Modes, Protocol

• Allow Xacts to lock at each level, but with a special 
protocol using new “intention” locks:

• Still need S and X locks, but before locking an item, 
Xact must have proper intension locks on all its 
ancestors in the granularity hierarchy.

� IS – Intent to get S lock(s) at 
finer granularity.

� IX – Intent to get X lock(s) 
at finer granularity.

� SIX mode: Like S & IX at 
the same time. Why useful?

IS IX SIX

IS

IX
SIX

S X

S

X

�

�� � � -
�

�

�

-

--

-
--

� -
-
-
-

---
-
-

Tuples

Tables

Pages

Database

Multiple Granularity Lock Protocol

• Each Xact starts from the root of the hierarchy.
• To get S or IS lock on a node, must hold IS or IX on 

parent node.
– What if Xact holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold IX or SIX 
on parent node.

• Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Tuples

Tables

Pages

Database



5

Examples – 2 level hierarchy

• T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then get X lock on tuples that are 

updated.
• T2 uses an index to read only part of R:

– T2 gets an IS lock on R, and repeatedly gets an S lock on 
tuples of R.

• T3 reads all of R:
– T3 gets an S lock on R. 
– OR, T3 could behave like T2; can                                

use lock escalation to decide which.
– Lock escalation dynamically asks for 

coarser-grained locks when too many
low level locks acquired

IS IX SIX

IS
IX
SIX

�

�

�

� �

�

S X

�S
X

�

�

Tuples

Tables

Locking in B+ Trees

• What about locking indexes --- why is it needed?
• Tree-based indexes present a potential concurrency 

bottleneck:
• If you ignore the tree structure & just lock pages while 

traversing the tree, following 2PL.
– Root node (and many higher level nodes) become bottlenecks 

because every tree access begins at the root.

• How can we efficiently lock a particular leaf node?
– Btw, don’t confuse this with multiple granularity locking!

Two Useful Observations

• 1) In a B+Tree,  higher levels of the tree only direct 
searches for leaf pages.

• 2) For inserts, a node on a path from root to 
modified leaf must be locked (in X mode, of course), 
only if a split can propagate up to it from the 
modified leaf.  (Similar point holds w.r.t. deletes.)

• We can exploit these observations to design efficient 
locking protocols that guarantee serializability even 
though they violate 2PL.

A Simple Tree Locking Algorithm: 
“crabbing”

• Search:  Start at root and go down; repeatedly, S 
lock child then unlock parent.

• Insert/Delete: Start at root and go down, obtaining X 
locks as needed.  Once child is locked, check if it is 
safe:
– If child is safe, release all locks on ancestors.

• Safe node: Node such that changes will not 
propagate up beyond this node.
– Inserts:  Node is not full.
– Deletes:  Node is not half-empty.

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Search 38*
2)  Delete 38*
3)  Insert 45*
4)  Insert 25*

23

A Better Tree Locking Algorithm 
(From Bayer-Schkolnick paper)

• Search: As before.
• Insert/Delete:

– Set locks as if for search, get to leaf, and set X lock 
on leaf.

– If leaf is not safe, release all locks, and restart Xact
using previous Insert/Delete protocol.

• Gambles that only leaf node will be modified; if not, S 
locks set on the first pass to leaf are wasteful.  In 
practice, better than previous alg.



6

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Delete 38*
2)  Insert 25*
4)  Insert 45*
5)  Insert 45*, 

then 46*  

23

Dynamic Databases – The “Phantom” 
Problem

• If we relax the assumption that the DB is a fixed collection 
of objects, even Strict 2PL (on individual items) will not 
assure serializability:

• Consider T1 – “Find oldest sailor”
– T1 locks all records, and finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; age = 96 and commits.
– T1 (within the same transaction) checks for the oldest sailor again 

and finds sailor aged 96!!
• The sailor with age 96 is a “phantom tuple” from T1’s point 

of view --- first it’s not there then it is.
• No serial execution where T1’s result could happen!

The “Phantom” Problem – example 2

• Consider T3 – “Find oldest sailor for each rating”
– T3 locks all pages containing sailor records with rating = 

1, and finds oldest sailor (say, age = 71).
– Next, T4 inserts a new sailor; rating = 1, age = 96.
– T4 also deletes oldest sailor with rating = 2 (and, say, 

age = 80), and commits.
– T3 now locks all pages containing sailor records with 

rating = 2, and finds oldest (say, age = 63).
• T3 saw only part of T4’s effects!
• No serial execution where T3’s result could happen!

The Problem
• T1 and T3 implicitly assumed that they had locked 

the set of all sailor records satisfying a predicate.
– Assumption only holds if no sailor records are added while 

they are executing!
– Need some mechanism to enforce this assumption.  (Index 

locking and predicate locking.)

• Examples show that conflict serializability on reads 
and writes of individual items guarantees
serializability only if the set of objects is fixed!

Predicate Locking

• Grant lock on all records that satisfy some 
logical predicate,  e.g. age > 2*salary.

• Index locking is a special case of predicate 
locking for which an index supports efficient 
implementation of the predicate lock.
– What is the predicate in the sailor example?

• In general, predicate locking has a lot of 
locking overhead.

Index Locking

• If there is a dense index on the rating field using 
Alternative (2), T3 should lock the index page
containing the data entries with rating = 1.
– If there are no records with rating = 1, T3 must lock the 

index page where such a data entry would be, if it existed!

• If there is no suitable index, T3 must lock all pages, 
and lock the file/table to prevent new pages from 
being added, to ensure that no records with rating = 
1 are added or deleted.

r=1

Data
Index



7

Transaction Support in SQL-92

• SERIALIZABLE – No phantoms, all reads 
repeatable, no “dirty” (uncommited) reads.

• REPEATABLE READS – phantoms may 
happen.

• READ COMMITTED – phantoms and 
unrepeatable reads may happen

• READ UNCOMMITTED – all of them may 
happen.

Optimistic CC (Kung-Robinson)

Locking is a conservative approach in 
which conflicts are prevented. 
Disadvantages:

• Lock management overhead.
• Deadlock detection/resolution.
• Lock contention for heavily used objects.

• Locking is “pessimistic” because it 
assumes that conflicts will happen.

• If conflicts are rare, we might get better 
performance by not locking, and instead 
checking for conflicts at commit.

Kung-Robinson Model

• Xacts have three phases:
– READ: Xacts read from the database, but 

make changes to private copies of objects.
– VALIDATE:  Check for conflicts.
– WRITE: Make local copies of changes 

public.

ROOT

old

new
modified
objects

Validation

• Test conditions that are sufficient to ensure 
that no conflict occurred.

• Each Xact is assigned a numeric id.
– Just use a timestamp.

• Xact ids assigned at end of READ phase, just 
before validation begins. 

• ReadSet(Ti): Set of objects read by Xact Ti.
• WriteSet(Ti): Set of objects modified by Ti.

Test 1

• For all i and j such that Ti < Tj, check that Ti 
completes before Tj begins.

Ti
TjR V W

R V W

Test 2

• For all i and j such that Ti < Tj, check that:

– Ti completes before Tj begins its Write phase AND

– WriteSet(Ti) ���� ReadSet(Tj)  is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?



8

Test 3
• For all i and j such that Ti < Tj, check that:

– Ti completes Read phase before Tj does AND

– WriteSet(Ti) ���� ReadSet(Tj)  is empty AND

– WriteSet(Ti) ���� WriteSet(Tj)  is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?

Applying Tests 1 & 2: Serial Validation
• To validate Xact T:  

valid = true;
// S = set of Xacts that committed after Begin(T)
//    (above defn implements Test 1)
//The following is done in critical section
< foreach Ts in S do {

if ReadSet(T) intersects WriteSet(Ts)
then valid = false;

}
if valid then { install updates; // Write phase

Commit T } >
else Restart T

start
of 
critical 
section

end of critical section

Comments on Serial Validation

• Applies Test 2, with T playing the role of Tj and each
Xact in Ts (in turn) being Ti.

• Assignment of Xact id, validation, and the Write 
phase are inside a critical section!
– Nothing else goes on concurrently.
– So, no need to check for Test 3 --- can’t happen.
– If Write phase is long, major drawback.

• Optimization for Read-only Xacts:
– Don’t need critical section (because there is no Write phase).

Overheads in Optimistic CC

• Must record read/write activity in ReadSet and
WriteSet per Xact.
– Must create and destroy these sets as needed.

• Must check for conflicts during validation, and 
must make validated writes “global’’.
– Critical section can reduce concurrency.
– Scheme for making writes global can reduce clustering 

of objects.

• Optimistic CC restarts Xacts that fail validation.
– Work done so far is wasted; requires clean-up.

``Optimistic’’ 2PL

• If desired, we can do the following:
– Set S locks as usual.
– Make changes to private copies of objects.
– Obtain all X locks at end of Xact, make writes 

global, then release all locks.
• In contrast to Optimistic CC as in Kung-Robinson, this 

scheme results in Xacts being blocked, waiting for 
locks.
– However, no validation phase, no restarts (modulo 

deadlocks).

Other Techniques
• Timestamp CC: Give each object a read-timestamp 

(RTS) and a write-timestamp (WTS), give each Xact a 
timestamp (TS) when it begins:
– If action ai of Xact Ti conflicts with action aj of Xact 

Tj, and TS(Ti) < TS(Tj), then ai must occur before aj.  
Otherwise, restart violating Xact.

• Multiversion CC: Let writers make a “new” copy while 
readers use an appropriate “old” copy.
– Advantage is that readers don’t need to get locks
– Oracle uses a simple form of this.



9

When Xact T wants to read Object O

• If TS(T) < WTS(O), this violates timestamp order of T 
w.r.t. writer of O.
– So, abort T and restart it with a new, larger TS.  (If restarted

with same TS, T will fail again!  Contrast use of timestamps in 
2PL for ddlk prevention.)

• If TS(T) > WTS(O):
– Allow T to read O.
– Reset RTS(O) to max(RTS(O), TS(T))

• Change to RTS(O) on reads must be written to disk!  
This and restarts  represent overheads.

When Xact T wants to Write Object O

• If TS(T) < RTS(O), this violates timestamp order of T 
w.r.t. writer of O; abort and restart T.

• If TS(T) < WTS(O), violates timestamp order of T w.r.t. 
writer of O.
– Thomas Write Rule: We can safely ignore such outdated 

writes; need not restart T!  (T’s write is effectively 
followed by another
write, with no intervening reads.)                     
Allows some serializable but non
conflict serializable schedules:

• Else, allow T to write O.

T1     T2
R(A)

W(A)
Commit

W(A)
Commit

Timestamp CC and Recoverability

• Timestamp CC can be modified                              
to allow only recoverable schedules:
– Buffer all writes until writer commits (but update 

WTS(O) when the write is allowed.)
– Block readers T (where TS(T) > WTS(O)) until writer of 

O commits.
• Similar to writers holding X locks until commit, but still not 

quite 2PL.

T1     T2
W(A)

R(A)
W(B)
Commit

� Unfortunately, unrecoverable 
schedules are allowed:

Multiversion Timestamp CC

• Idea:  Let writers make a “new” copy while 
readers use an appropriate “old” copy:

O O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for 
some active readers.)

� Readers are always allowed to proceed.
– But may be blocked until writer commits.

Multiversion CC (Contd.)

• Each version of an object has its writer’s TS as 
its WTS, and the TS of the Xact that most 
recently read this version as its RTS.

• Versions are chained backward; we can discard 
versions that are “too old to be of interest”.

• Each Xact is classified as Reader or Writer.
– Writer may write some object; Reader never will.
– Xact declares whether it is a Reader when it begins.

Reader Xact

• For each object to be read:
– Finds newest version with WTS < TS(T).

(Starts with current version in the main 
segment and chains backward through 
earlier versions.)

• Assuming that some version of every object 
exists from the beginning of time, Reader
Xacts are never restarted.
– However, might block until writer of the 

appropriate version commits.

T

old                       newWTS timeline



10

Writer Xact

• To read an object, follows reader protocol.
• To write an object:

– Finds newest version V s.t.  WTS < TS(T). 
– If RTS(V) < TS(T), T makes a copy CV of V, 

with a pointer to V, with WTS(CV) = TS(T), 
RTS(CV) = TS(T).  (Write is buffered until T 
commits; other Xacts can see TS values but 
can’t read version CV.)

– Else, reject write.

T

old                       newWTS
CV

V
RTS(V)

Summary

• Correctness criterion for isolation is “serializability”.
– In practice, we use “conflict serializability”, which is somewhat more 

restrictive but easy to enforce.
• Two Phase Locking, and Strict 2PL: Locks directly 

implement the notions of conflict.
– The lock manager keeps track of the locks issued. Deadlocks can 

either be prevented or detected.
• Must be careful if objects can be added to or removed from 

the database (“phantom problem”).
• Index locking common, affects performance significantly. 

– Needed when accessing records via index.
– Needed for locking logical sets of records (index locking/predicate 

locking). 

Summary (Contd.)

• Multiple granularity locking reduces the overhead 
involved in setting locks for nested collections of 
objects (e.g., a file of pages);
– should not be confused with tree index locking!

• Tree-structured indexes:
– Straightforward use of 2PL very inefficient.
– Idea is to use 2PL on data to ensure serializability and use 

other protocols on tree to ensure structural integrity.
– Bayer-Schkolnick illustrates potential for improvement.

Summary (Contd.)

• Optimistic CC aims to minimize CC overheads in an 
``optimistic’’ environment where reads are common 
and writes are rare.

• Optimistic CC has its own overheads however; most real 
systems use locking.

• There are many other approaches to CC that we don’t 
cover here.  These include:
– timestamp-based approaches
– multiple-version approaches
– semantic approaches

Summary (Contd.)

• Timestamp CC is another alternative to 2PL; allows 
some serializable schedules that 2PL does not (although 
converse is also true).

• Ensuring recoverability with Timestamp CC requires 
ability to block Xacts, which is similar to locking.

• Multiversion Timestamp CC is a variant which ensures 
that read-only Xacts are never restarted; they can 
always read a suitable older version. Additional 
overhead of version maintenance. 


