
1

The Relational Model
15-415, Spring 2003, Lecture 3

R & G, Chap. 3

Mine eye hath play’d the painter and hath stell’d
Thy beauty’s form in table of my heart.

Shakespeare, Sonnet XXIV

Admin

• Next assignments: HELP!
– Recitations EVERY week

(Not mandatory, but juicy! Attend!)

– TA office hours
– E-mail newsgroup

• Next 2 assignments: Programming in C
– The longest ones (“front-loaded” semester!)
– Read carefully the web directions
– Ask TAs, attend recitations
– START EARLY!!!!!

Why Study the Relational Model?

• Most widely used model.
– Vendors: IBM, Informix, Microsoft, Oracle,

Sybase, etc.
• “Legacy systems” in older models

– e.g., IBM’s IMS
• Object-oriented concepts have recently

merged in
– object-relational model

• Informix, IBM DB2, Oracle 8i
• Early work done in POSTGRES research

project at Berkeley

Relational Database: Definitions

• Relational database: a set of relations.
• Relation: made up of 2 parts:

– Schema : specifies name of relation, plus
name and type of each column.
• E.g. Students(sid: string, name: string,

login: string, age: integer, gpa: real)
– Instance : a table, with rows and columns.

• #rows = cardinality
• #fields = degree / arity

• Can think of a relation as a set of rows or tuples.
– i.e., all rows are distinct

Ex: Instance of Students Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

• Cardinality = 3, arity = 5 , all rows distinct

• Do all values in each column of a relation instance
have to be distinct?

SQL - A language for Relational DBs

• SQL* (a.k.a. “Sequel”), standard language
• Data Definition Language (DDL)

– create, modify, delete relations
– specify constraints
– administer users, security, etc.

• Data Manipulation Language (DML)
– Specify queries to find tuples that satisfy criteria
– add, modify, remove tuples

* Structured Query Language

2

SQL Overview
• CREATE TABLE <name> (<field> <domain>, …)CREATE TABLE <name> (<field> <domain>, …)CREATE TABLE <name> (<field> <domain>, …)CREATE TABLE <name> (<field> <domain>, …)

• INSERT INTO <name> (<field names>)INSERT INTO <name> (<field names>)INSERT INTO <name> (<field names>)INSERT INTO <name> (<field names>)
VALUES (<field values>)VALUES (<field values>)VALUES (<field values>)VALUES (<field values>)

• DELETE FROM <name> DELETE FROM <name> DELETE FROM <name> DELETE FROM <name>
WHERE <condition>WHERE <condition>WHERE <condition>WHERE <condition>

• UPDATE <name> UPDATE <name> UPDATE <name> UPDATE <name>
SET <field name> = <value>SET <field name> = <value>SET <field name> = <value>SET <field name> = <value>

WHERE <condition>WHERE <condition>WHERE <condition>WHERE <condition>

• SELECT <fields> SELECT <fields> SELECT <fields> SELECT <fields>
FROM <name>FROM <name>FROM <name>FROM <name>
WHERE <condition>WHERE <condition>WHERE <condition>WHERE <condition>

Creating Relations in SQL

• Creates the Students relation.
–Note: the type (domain) of each field is

specified, and enforced by the DBMS
whenever tuples are added or modified.

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa FLOAT)

Table Creation (continued)

• Another example: the Enrolled table holds
information about courses students take.

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Adding and Deleting Tuples

• Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (‘53688’, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Powerful variants of these commands are available;
more later!

Keys

• Keys are a way to associate tuples in
different relations

• Keys are one form of integrity constraint
(IC)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled Students

PRIMARY KeyFORIEGN Key

Primary Keys

• A set of fields is a superkey if:
– No two distinct tuples can have same values in all key

fields
• A set of fields is a key for a relation if :

– It is a superkey
– No subset of the fields is a superkey

• what if >1 key for a relation?
– one of the keys is chosen (by DBA) to be the primary

key. Other keys are called candidate keys.
• E.g.

– sid is a key for Students.
– What about name?
– The set {sid, gpa} is a superkey.

3

Primary and Candidate Keys in SQL
• Possibly many candidate keys (specified using

UNIQUE), one of which is chosen as the primary key.

• Keys must be used carefully!
• “For a given student and course, there is a single grade.”

“Students can take only one course, and no two students
in a course receive the same grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation
that is used to `refer’ to a tuple in another
relation.
– Must correspond to the primary key of the other

relation.
– Like a `logical pointer’.

• If all foreign key constraints are enforced,
referential integrity is achieved (i.e., no
dangling references.)

Foreign Keys in SQL

Example: Only students listed in the Students relation
should be allowed to enroll for courses.
– sid is a foreign key referring to Students:

CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is a
foreign key that references Students.

• What should be done if an Enrolled tuple with a non-
existent student id is inserted? (Reject it!)

• What should be done if a Students tuple is deleted?
– Also delete all Enrolled tuples that refer to it?
– Disallow deletion of a Students tuple that is referred to?
– Set sid in Enrolled tuples that refer to it to a default sid?
– (In SQL, also: Set sid in Enrolled tuples that refer to it to a

special value null, denoting `unknown’ or `inapplicable’.)
• Similar issues arise if primary key of Students tuple is

updated.

Integrity Constraints (ICs)

• IC: condition that must be true for any
instance of the database; e.g., domain
constraints.
– ICs are specified when schema is defined.
– ICs are checked when relations are

modified.
• A legal instance of a relation is one that

satisfies all specified ICs.
– DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is
more faithful to real-world meaning.
– Avoids data entry errors, too!

Where do ICs Come From?

• ICs are based upon the semantics of the real-world
that is being described in the database relations.

• We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true
by looking at an instance.
– An IC is a statement about all possible instances!
– From example, we know name is not a key, but the

assertion that sid is a key is given to us.

• Key and foreign key ICs are the most common;
more general ICs supported too.

4

Logical DB Design: ER to Relational

• Entity sets to tables.

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

Employees

ssn
name

lot

ssn name lot

123-22-3666 Attishoo 48

231-31-5368 Smiley 22

131-24-3650 Smethurst 35

Relationship Sets to Tables

• In translating a many-to-
many relationship set to a
relation, attributes of the
relation must include:
1) Keys for each

participating entity set
(as foreign keys). This
set of attributes forms
a superkey for the
relation.

2) All descriptive
attributes.

CREATE TABLE Works_In(
ssn CHAR(1),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

ssn did since

123-22-3666 51 1/1/91
123-22-3666 56 3/3/93
231-31-5368 51 2/2/92

Review: Key Constraints

• Each dept has at
most one
manager,
according to the
key constraint on
Manages.

Translation to
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Translating ER with Key Constraints

• Since each department has a unique manager, we
could instead combine Manages and Departments.

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees,

FOREIGN KEY (did)
REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

Vs.

dname
budgetdid

since

lot

name
ssn

ManagesEmployees Departments

Review: Participation Constraints

• Does every department have a manager?
– If so, this is a participation constraint: the participation of

Departments in Manages is said to be total (vs. partial).
• Every did value in Departments table must appear in a

row of the Manages table (with a non-null ssn value!)

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Participation Constraints in SQL

• We can capture participation constraints involving one
entity set in a binary relationship, but little else
(without resorting to CHECK constraints).

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

5

Review: Weak Entities
• A weak entity can be identified uniquely only by

considering the primary key of another (owner) entity.
– Owner entity set and weak entity set must participate in a

one-to-many relationship set (1 owner, many weak
entities).

– Weak entity set must have total participation in this
identifying relationship set.

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Translating Weak Entity Sets
• Weak entity set and identifying relationship

set are translated into a single table.
– When the owner entity is deleted, all owned weak

entities must also be deleted.

CREATE TABLE Dep_Policy (
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Review: ISA Hierarchies

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_worked

!As in C++, or other PLs,
attributes are inherited.
!If we declare A ISA B, every A
entity is also considered to be a B
entity.

• Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Translating ISA Hierarchies to Relations

• General approach:
– 3 relations: Employees, Hourly_Emps and Contract_Emps.

• Hourly_Emps: Every employee is recorded in
Employees. For hourly emps, extra info recorded in
Hourly_Emps (hourly_wages, hours_worked, ssn); must
delete Hourly_Emps tuple if referenced Employees tuple
is deleted).

• Queries involving all employees easy, those involving
just Hourly_Emps require a join to get some attributes.

• Alternative: Just Hourly_Emps and Contract_Emps.
– Hourly_Emps: ssn, name, lot, hourly_wages,

hours_worked.
– Each employee must be in one of these two subclasses.

Relational Model: Summary

• A tabular representation of data.
• Simple and intuitive, currently the most widely used

– Object-relational variant gaining ground
• Integrity constraints can be specified by the DBA, based

on application semantics. DBMS checks for violations.
– Two important ICs: primary and foreign keys
– In addition, we always have domain constraints.

• Mapping from ER to Relational is (fairly) straightforward.

• NEXT: FILES< STORAGE, BUFFERS, DISKS…
• READ CHAPTER 9!

