

- Informix, IBM DB2, Oracle 8i
- Early work done in POSTGRES research
- project at Berkeley

200

Relational Database: Definitions

- Relational database: a set of relations.
- Relation: made up of 2 parts:
 - *Schema* : specifies name of relation, plus name and type of each column.
 - E.g. Students(*sid*: string, *name*: string, *login*: string, *age*: integer, *gpa*: real)
 - Instance : a table, with rows and columns.
 - #rows = *cardinality*
 - #fields = *degree / arity*
- Can think of a relation as a set of rows or tuples.
 - i.e., all rows are distinct

Ex: Instance of Students Relation						
sid	name	login	age	gpa		
53666	Jones	jones@cs	18	3.4		
53688	Smith	smith@eecs	18	3.2		
52650	Smith	smith@math	19	3.8		

- Cardinality = 3, arity = 5, all rows distinct
- Do all values in each column of a relation instance have to be distinct?

• CREATE TABLE <name> (<field> <domain>,)</domain></field></name>
• INSERT INTO <name> (<field names="">) VALUES (<fleld values="">)</fleld></field></name>
• DELETE FROM <name> WHERE <condition></condition></name>
• UPDATE <name> SET <field name=""> = <value> WHERE <condition></condition></value></field></name>
• SELECT <fields> FROM <name> WHERE <condition></condition></name></fields>

Table Creation (continued)
 Another example: the Enrolled table holds information about courses students take.
 CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2))
 Power more

Primary Keys

- A set of fields is a <u>superkey</u> if:

 No two distinct tuples can have same values in all key fields
 A set of fields is a *leaving* production if .
- A set of fields is a <u>key</u> for a relation if :
 It is a superkey
 - No subset of the fields is a superkey
- what if >1 key for a relation?
- one of the keys is chosen (by DBA) to be the *primary key*. Other keys are called *candidate* keys.
- E.g.
 - *sid* is a key for Students.
 - What about name?
- The set { sid, gpa} is a superkey.

Integrity Constraints (ICs)

- IC: condition that must be true for any instance of the database; e.g., <u>domain</u> <u>constraints.</u>
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A *legal* instance of a relation is one that satisfies all specified ICs.
 - DBMS should not allow illegal instances.
- If the DBMS checks ICs, stored data is more faithful to real-world meaning.
 - Avoids data entry errors, too!

- Where do ICs Come From?
- ICs are based upon the semantics of the real-world that is being described in the database relations.
- We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at an instance.
 - An IC is a statement about *all possible* instances!
 - From example, we know *name* is not a key, but the assertion that *sid* is a key is given to us.
- Key and foreign key ICs are the most common; more general ICs supported too.

Relationship Sets to Tables						
 In translating a many-to- many relationship set to a relation, attributes of the relation must include: Keys for each participating entity set (as foreign keys). This 	REATE TABLE Works_In(ssn CHAR(1), did INTEGER, since DATE, PRIMARY KEY (ssn, did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments)					
set of attributes forms	ssn	did	since			
relation.	123-22-3666	51	1/1/91			
2) All descriptive	123-22-3666	56	3/3/93			
attributes	231-31-5368	51	2/2/92			

Relational Model: Summary

- A tabular representation of data.
- Simple and intuitive, currently the most widely used
 Object-relational variant gaining ground
- Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
 Two important ICs: primary and foreign keys
 - In addition, we *always* have domain constraints.
- Mapping from ER to Relational is (fairly) straightforward.
- NEXT: FILES< STORAGE, BUFFERS, DISKS
- READ CHAPTER 9!