
1

File Organizations and Indexing

15-415, Spring 2003, Lecture 5

R&G end of Chapter 9 & Chapter 8

"If you don't find it in the index,
look very carefully through the
entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Review: Memory, Disks

• Storage Hierarchy: cache, RAM, disk, tape, …
– Can’t fit everything in RAM (usually).

• “Page” or “Frame” - unit of buffer 
management in RAM.

• “Page” or “Block” unit of interaction with disk.

• Importance of “locality” and sequential access 
for good disk performance. 

• Buffer pool management
– Slots in RAM to hold Pages

– Policy to move Pages between RAM & disk

Today: File Storage

• Page or block is OK when doing I/O, 
but higher levels of DBMS operate on 
records, and files of records.

• Next topics:
– How to organize records within pages.

– How to keep pages of records on disk.

– How to efficiently support operations on 
files of records.

Record Formats:  Fixed Length

• Information about field types same for all 
records in a file; stored in system catalogs.

• Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Page Formats: Fixed Length Records

• Record id = <page id, slot #>.  In first 
alternative, moving records for free space 
management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

. . . . . .

N M10. . .

M ... 3 2 1
PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

Variable Length is more complicated
• Two alternative formats (# fields is fixed):

* Offset approach: pros - direct access to i’th field and
efficient storage of nulls; cons - small directory overhead
and indirection on lookup.

$ $ $ $

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets



2

“Slotted Page” for Variable Length Records

• Record id = <page id, slot #>
• Can move records on page without changing rid; so, 

attractive for fixed-length records too.
• Page is full when data space and slot array meet.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
spaceSLOT DIRECTORY

N . . . 2 1
20 16 24 N

# slotsSlot
Array

Data

System Catalogs
• For each relation:

– name, file name, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

• For each index:
– structure (e.g., B+ tree) and search key fields

• For each view:
– view name and definition

• Plus stats, authorization, buffer pool size, etc.

* Catalogs are themselves stored as relations!

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Files

• FILE: A collection of pages, each containing a 
collection of records. 

• Must support:
– insert/delete/modify record

– read a particular record (specified using record id)

– scan all records (possibly with some conditions on 
the records to be retrieved)

Indexes
• Sometimes, we want to retrieve records by specifying the 

values in one or more fields, e.g.,
– Find all students in the “CS” department
– Find all students with a gpa > 3

• An index on a file speeds up selections on the search key 
fields for the index.
– Any subset of the fields of a relation can be the search key for an 

index on the relation.
– Search key is not the same as key (e.g., doesn’t have to be 

unique).

• An index contains a collection of data entries, and 
supports efficient retrieval of all records with a given 
search key value k.

Index Classification

• Representation of data entries in index
– i.e., what is at the bottom of the index?

– 3 alternatives here

• Clustered vs. Unclustered

• Primary vs. Secondary

• Dense vs. Sparse

• Single Key vs. Composite

• Tree-based, hash-based, other



3

Alternatives for Data Entry k* in Index

1. Actual data record (with key value k)
2. <k, rid of matching data record>
3. <k, list of rids of matching data records>

• Choice is orthogonal to the indexing technique.
– Examples of indexing techniques: B+ trees, 

hash-based structures, R trees, …
– Typically, index contains auxiliary info that 

directs searches to the desired data entries
• Can have multiple (different) indexes per file.

– E.g. file sorted on age, with a hash index on 
salary and a B+tree index on name.

Alternatives for Data Entries (Contd.)

Alternative 1:

Actual data record (with key value k)
– If this is used, index structure is a file 

organization for data records (like Heap 
files or sorted files).

– At most one index on a given collection of 
data records can use Alternative 1. 

– This alternative saves pointer lookups but 
can be expensive to maintain with 
insertions and deletions. 

Alternatives for Data Entries (Contd.)
Alternative 2 

<k, rid of matching data record>
and Alternative 3 

<k, list of rids of matching data records>
– Easier to maintain than Alternative 1. 
– If more than one index is required on a given file, at 

most one index can use Alternative 1; rest must use 
Alternatives 2 or 3.

– Alternative 3 more compact than Alternative 2, but 
leads to variable sized data entries even if search keys 
are of fixed length.

– Even worse, for large rid lists the data entry would 
have to span multiple pages!

Index Classification - clustering

• Clustered vs. unclustered:  If order of data 
records is the same as, or `close to’, order of 
index data entries, then called clustered index.
– A file can be clustered on at most one search 

key.
– Cost of retrieving data records through index 

varies greatly based on whether index is 
clustered or not!

– Note: Alternative 1 implies clustered, but not 
vice-versa.

Clustered vs. Unclustered Index

• Suppose that Alternative (2) is used for data entries, 
and that the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with 

some free space on each page for future inserts).  

– Overflow pages may be needed for inserts.  (Thus, order of 
data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Clustered vs. Unclustered Index

• What are the tradeoffs????

• Clustered Pros
– Efficient for range searches

– May be able to do some types of compression

– Possible locality benefits (related data?)

– ???

• Clustered Cons
– Expensive to maintain (on the fly or sloppy with 

reorganization)



4

Primary vs. Secondary Index

• Primary:  index key includes the file’s primary 
key

• Secondary:  any other index

– Sometimes confused with Alt. 1 vs. Alt. 2/3

– Primary index never contains duplicates

– Secondary index may contain duplicates

• If index key contains a candidate key, no 
duplicates => unique index

Dense vs. Sparse Index

• Dense: at least one 
data entry per key 
value

• Sparse: an entry per 
data page in file
– Every sparse index is 

clustered!
– Sparse indexes are 

smaller; however, some 
useful optimizations are 
based on dense indexes.

– Alternative 1 always 
leads to dense index.

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

Sparse Index
on

Name Data File

Dense Index
on

Age

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

Composite Search Keys
• Search on combination of fields.

– Equality query: Every field is 
equal to a constant value. 
E.g. wrt <sal,age> index:
• age=20 and sal =75

– Range query: Some field 
value is not a constant.    
E.g.:
• age =20; or age=20 and

sal > 10
• Data entries in index sorted by 

search key for range queries.
– Lexicographic or Spatial 

order.

sue 13 75

bob

12

10

20

8011

12

name age sal

cal

joe

<age, sal>

12,20

12,10

11,80

13,75

<sal, age>

20,12

10,12

75,13

80,11

<age>

11

12

12

13

<sal>

10

20

75

80

Data records
sorted by name

Examples of composite key
indexes using lexicographic order.

Tree vs. Hash-based index

• Hash-based index
– Good for equality selections.

• File = a collection of buckets. Bucket = primary page
plus 0 or more overflow pages.

• Hash function h:  h(r) = bucket in which record r
belongs. h looks at only the fields in the search key.

• Tree-based index
– Good for range selections.

• Hierarchical structure (Tree) directs searches

• Leaves contain data entries sorted by search key value

• B+ tree: all root->leaf paths have equal length (height)

Alternative File Organizations

Many alternatives exist, each good for some 
situations, and not so good in others:
– Heap files: Suitable when typical access is a file 

scan retrieving all records.

– Sorted Files: Best for retrieval in search key
order, or for a `range’ of records.

– Clustered Files: Clustered B+ tree file with 
search key

– Heap file w/ unclustered B+ tree index

– Heap file w/ unclustered Hash index

Heap (Unordered ) Files

• Simplest file structure

– contains records in no particular order.

• As file grows and shrinks, disk pages are allocated and de-
allocated.

• To support record level operations, we must:
– keep track of the pages in a file

– keep track of free space on pages

– keep track of the records on a page

• There are many design alternatives for these.



5

Heap File Implemented as a List 

• The header page id and Heap file name must be 
stored someplace.

• Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Heap File Using a Page Directory

• The entry for a page can include the number 
of free bytes on the page.

• The directory is a collection of pages; linked 
list implementation is just one alternative.
– Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Quick and Dirty Cost Model
We ignore CPU costs, for simplicity:

– B:  The number of data pages

– R:  Number of records per page

– D:  (Average) time to read or write disk page

– Measuring number of page I/O’s ignores gains of 
pre-fetching and sequential access; thus, even I/O 
cost is only loosely approximated.   

– Average-case analysis; based on several simplistic 
assumptions.

* Good enough to show the overall trends!

Some Assumptions in The Analysis
• Single record insert and delete.
• Equality selection - exactly one match (Question: what if 

more or less???).
• Heap Files:

– Insert always appends to end of file.
• Sorted Files:

– Files compacted after deletions.
– Selections on search key.

• Clustered Files:
– 67% page occupancy

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

Delete

Insert

Range
Search

Equality
Search

Scan all
records

Clustered FileSorted FileHeap File

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

Delete

Insert

Range
Search

Equality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File



6

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

Delete

Insert

Range
Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

Delete

Insert

((logF 1.5B) +  
#match pg)*D

((log2 B) +  
#match pg)*D

BDRange
Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

Delete

((logF 1.5B)+1) 
* D

((log2B)+B)D  
(because R,W 0.5)

2DInsert

((logF 1.5B) +  
#match pg)*D

((log2 B) +  
#match pg)*D

BDRange
Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File

Cost of 
Operations

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

((logF 1.5B)+1) 
* D

((log2B)+B)D  
(because R,W 
0.5)

0.5BD + DDelete

((logF 1.5B)+1) 
* D

((log2B)+B)D2DInsert

((logF 1.5B) +  
#match pg)*D

((log2 B) +  
#match pg)*D

BDRange
Search

(logF 1.5B) * D(log2 B) * D0.5 BDEquality
Search

1.5 BDBDBDScan all
records

Clustered FileSorted FileHeap File

Summary

• Variable length record format with field offset directory 
offers support for direct access to i’th field and null 
values.

• Slotted page format supports variable length records 
and allows records to move on page.

• File layer keeps track of pages in a file, and supports 
abstraction of a collection of records.
– Also tracks availability of free space

• Catalog relations store information about relations, 
indexes and views.  (Information that is common to all 
records in a given collection.)

Summary (Cont.)

• Many alternative file organizations exist, each 
appropriate in some situation.

• If selection queries are frequent, sorting the file or 
building an index is important.

• Index is a collection of data entries plus a way to 
quickly find entries with given key values.
– Hash-based indexes only good for equality 

search.
– Sorted files and tree-based indexes best for 

range search; also good for equality search.  
(Files rarely kept sorted in practice; B+ tree 
index is better.)



7

Summary (Cont.)

• Data entries in index can be actual data records, <key, 
rid> pairs, or <key, rid-list> pairs.
– Choice orthogonal to indexing structure (i.e. tree, hash, 

etc.).
• Usually have several indexes on a given file of data 

records, each with a different search key.
• Indexes can be classified as 

– clustered vs. unclustered
– Primary vs. secondary
– etc.

• Differences have important consequences for 
utility/performance.


