

Cost of External Merge Sort

- Number of passes: $1 + \left\lceil \log_{B-1} \left\lceil N / B \right\rceil \right\rceil$
- Cost = 2N * (# of passes)
- E.g., with 5 buffer pages, to sort 108 page file:
 Pass 0: [108 / 5] = 22 sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: $\lceil 22/4 \rceil = 6$ sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

(I/O cost is 2N	times n	umber of	f passes)			
N	B=3	B=5	B=9	B=17	B=129	B=25
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

N	B=1,000	B=5,000	B=10,000
100	1	1	1
1,000	1	1	1
10,000	2	2	1
100,000	3	2	2
1,000,000	3	2	2
10,000,000	4	3	3
100,000,000	5	3	3
1,000,000,000	5	4	3

Summary

- External sorting is important; DBMS may dedicate part of buffer pool for sorting!
- External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted *runs* of size *B* (# buffer pages). Later passes: merge runs.
 - # of runs merged at a time depends on **B**, and **block** size.
 - Larger block size means less I/O cost per page.
 - Larger block size means smaller # runs merged. - In practice, # of runs rarely more than 2 or 3.

Summary, cont.

- · Choice of internal sort algorithm may matter: - Quicksort: Quick!
 - Heap/tournament sort: slower (2x), longer runs
- · The best sorts are wildly fast:
 - Despite 40+ years of research, we're still improving!
- · Clustered B+ tree is good for sorting; unclustered tree is usually very bad.