
1

External Sorting

“There it was, hidden in alphabetical
order.”

Rita Holt

15-415, Spring 2003, Lecture 7
R & G Chapter 13

Why Sort?

• A classic problem in computer science!
• Data requested in sorted order

– e.g., find students in increasing gpa order
• Sorting is first step in bulk loading B+ tree index.
• Sorting useful for eliminating duplicate copies in a

collection of records (Why?)
• Sorting is useful for summarizing related groups of

tuples
• Sort-merge join algorithm involves sorting.
• Problem: sort 1Gb of data with 1Mb of RAM.

– why not virtual memory?

Streaming Data Through RAM

• An important detail for sorting & other DB operations
• Simple case:

– Compute f(x) for each record, write out the result
– Read a page from INPUT to Input Buffer
– Write f(x) for each item to Output Buffer
– When Input Buffer is consumed, read another page
– When Output Buffer fills, write it to OUTPUT

• Reads and Writes are not coordinated
– E.g., if f() is Compress(), you read many pages per write.
– E.g., if f() is DeCompress(), you write many pages per read.

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT

2-Way Sort: Requires 3 Buffers

• Pass 0: Read a page, sort it, write it.
– only one buffer page is used (as in previous slide)

• Pass 1, 2, 3, …, etc.:
– requires 3 buffer pages
– merge pairs of runs into runs twice as long
– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort

• Each pass we read + write
each page in file.

• N pages in the file => the
number of passes

• So total cost is:

• Idea: Divide and conquer: sort
subfiles and merge

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4

4,5
6,6
7,8

General External Merge Sort

• To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce sorted runs

of B pages each.
– Pass 1, 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

! More than 3 buffer pages. How can we utilize them?

2

Cost of External Merge Sort

• Number of passes:
• Cost = 2N * (# of passes)
• E.g., with 5 buffer pages, to sort 108 page file:

– Pass 0: = 22 sorted runs of 5 pages
each (last run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages
each (last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages
– Pass 3: Sorted file of 108 pages

 1 1+ −log /B N B

 108 5/

 22 4/

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

(I/O cost is 2N times number of passes)

Internal Sort Algorithm

• Quicksort is a fast way to sort in memory.
• Alternative: “tournament sort” (a.k.a. “heapsort”,

“replacement selection”)
• Keep heap H in memory

read B-2 pages of records, inserting into H;

while (records left) {

m = H.removeMinUnmarked (); append m to output buffer;

if (m=NULL => all entries in H are marked) {

H.unmark(all);

start new output run;

} else {

read in new record r (use 1 buffer for input pages);

H.insert(r at m’s position);
if (r < m) H.mark(r);

}

}

More on Heapsort

• Fact: average length of a run in heapsort is 2(B-2)
– The “snowplow” analogy

• Worst-Case:
– What is min length of a run?
– How does this arise?

• Best-Case:
– What is max length of a run?
– How does this arise?

• Quicksort is faster, but ... longer runs often means
fewer passes!

B

I/O for External Merge Sort

• Actually, do I/O a page at a time
– Not an I/O per record

• In fact, read a block (chunk) of pages
sequentially!

• Suggests we should make each buffer
(input/output) be a block of pages.
– But this will reduce fan-out during merge passes!
– In practice, most files still sorted in 2-3 passes.

Example: Double Buffering

• To reduce wait time for I/O request to
complete, can prefetch into `shadow block’.
– Potentially, more passes; in practice, most files

still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

3

Number of Passes of Optimized Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

! Block size = 32, initial pass produces runs of size 2B.

Sorting Records!

• Sorting has become a blood sport!
– Parallel sorting is the name of the game ...

• Minute Sort: how many 100-byte records can you sort in
a minute?
– Typical DBMS: 10MB (~100,000 records)
– Current World record: 21.8 GB

• 64 dual-processor Pentium-III PCs (1999)

• Penny Sort: how many can you sort for a penny?
– Current world record: 12GB

• 1380 seconds on a $672 Linux/Intel system (2001)
• $672 spread over 3 years = 1404 seconds/penny

• See
http://research.microsoft.com/barc/SortBenchmark/

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf
pages.

• Is this a good idea?
• Cases to consider:

– B+ tree is clustered Good idea!
– B+ tree is not clustered Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most
leaf, then retrieve all leaf
pages (Alternative 1)

• If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched just
once.

! Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Unclustered B+ Tree Used for Sorting

• Alternative (2) for data entries; each data
entry contains rid of a data record. In general,
one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

External Sorting vs. Unclustered Index

! p: # of records per page
! B=1,000 and block size=32 for sorting
! p=100 is the more realistic value.

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

4

Summary

• External sorting is important; DBMS may dedicate
part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer pages).

Later passes: merge runs.
– # of runs merged at a time depends on B, and block

size.
– Larger block size means less I/O cost per page.
– Larger block size means smaller # runs merged.
– In practice, # of runs rarely more than 2 or 3.

Summary, cont.

• Choice of internal sort algorithm may matter:
– Quicksort: Quick!
– Heap/tournament sort: slower (2x), longer runs

• The best sorts are wildly fast:
– Despite 40+ years of research, we’re still

improving!
• Clustered B+ tree is good for sorting;

unclustered tree is usually very bad.

