
1

Unary Query
Processing Operators

15-415, Spring 2003, Lecture 8
Not in the Textbook!

A “Slice” Through Query Processing

• We’ll study single-
table queries today
– SQL details
– Query Executor

Architecture
– Simple Query

“Optimization”

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

SQL Query

2

Basic Single-Table Queries

• SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

Basic Single-Table Queries

• SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

• Simplest version is straightforward
– Produce all tuples in the table that satisfy the predicate
– Output the expressions in the SELECT list

• Expression can be a column reference, or an arithmetic
expression over column refs

3

Basic Single-Table Queries

• SELECT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

• Simplest version is straightforward
– Produce all tuples in the table that satisfy the predicate
– Output the expressions in the SELECT list

• Expression can be a column reference, or an arithmetic
expression over column refs

SELECT DISTINCT

• SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

• DISTINCT flag specifies removal of duplicates
before output

4

ORDER BY

• SELECT DISTINCT S.name, S.gpa, S.age*2 AS a2
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa, S.name, a2;

• ORDER BY clause specifies that output should
be sorted
– Lexicographic ordering again!

• Obviously must refer to columns in the output
– Note the AS clause for naming output columns!

ORDER BY

• SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept = ‘CS’
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa DESC, S.name ASC;

• Ascending order by default, but can be
overriden
– DESC flag for descending, ASC for ascending
– Can mix and match, lexicographically

5

Aggregates

• SELECT [DISTINCT] AVERAGE(S.gpa)
FROM Students S
WHERE S.dept = ‘CS’

[GROUP BY <column list>
[HAVING <predicate>]]

[ORDER BY <column list>]

• Before producing output, compute a summary (a.k.a. an
aggregate) of some arithmetic expression

• Produces 1 row of output
– with one column in this case

• Other aggregates: SUM, COUNT, MAX, MIN
• Note: can use DISTINCT inside the agg function

– SELECT COUNT(DISTINCT S.name) FROM Students S
– vs. SELECT DISTINCT COUNT (S.name) FROM Students S;

GROUP BY

• SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S

[WHERE <predicate>]
GROUP BY S.dept
[HAVING <predicate>]

[ORDER BY <column list>]

• Partition the table into groups that have the same value on GROUP BY
columns
– Can group by a list of columns

• Produce an aggregate result per group
– Cardinality of output = # of distinct group values

• Note: can put grouping columns in SELECT list
– For aggregate queries, SELECT list can contain aggs and GROUP BY

columns only!
– What would it mean if we said SELECT S.name, AVERAGE(S.gpa) above??

6

HAVING

• SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S

[WHERE <predicate>]
GROUP BY S.dept
HAVING COUNT(*) > 5

[ORDER BY <column list>]

• The HAVING predicate is applied after grouping and
aggregation
– Hence can contain anything that could go in the SELECT list
– I.e. aggs or GROUP BY columns

• HAVING can only be used in aggregate queries
• It’s an optional clause

Putting it all together

• SELECT S.dept, AVERAGE(S.gpa), COUNT(*)
FROM Students S
WHERE S.gender = “F”
GROUP BY S.dept
HAVING COUNT(*) > 5
ORDER BY S.dept;

7

Context

• We looked at SQL
• Now shift gears and

look at Query
Processing

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

SQL Query

Query Processing Overview

• The query optimizer translates SQL to a special internal
“language”
– Query Plans

• The query executor is an interpreter for query plans
• Think of query plans as “box-and-arrow”

dataflow diagrams
– Each box implements a relational operator
– Edges represent a flow of tuples (columns as specified)
– For single-table queries, these diagrams are

straight-line graphs

SELECT DISTINCT name, gpa
FROM Students

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer

8

iteratorIterators

• The relational operators are all subclasses of the class
iterator:

class iterator {
void init();
tuple next();
void close();
iterator &inputs[];

// additional state goes here
}

• Note:
– Edges in the graph are specified by inputs (max 2, usually)
– Encapsulation: any iterator can be input to any other!
– When subclassing, different iterators will keep different

kinds of state information

Example: Sort

• init():
– generate the sorted runs on disk
– Allocate runs[] array and fill in with disk pointers.
– Initialize numberOfRuns
– Allocate nextRID array and initialize to NULLs

• next():
– nextRID array tells us where we’re “up to” in each run
– find the next tuple to return based on nextRID array
– advance the corresponding nextRID entry
– return tuple (or EOF -- “End of Fun” -- if no tuples remain)

• close():
– deallocate the runs and nextRID arrays

class Sort extends iterator {
void init();
tuple next();
void close();
iterator &inputs[1];
int numberOfRuns;
DiskBlock runs[];
RID nextRID[];

}

9

Postgres Version

• src/backend/executor/nodeSort.c
– ExecInitSort (init)
– ExecSort (next)
– ExecEndSort (close)

• The encapsulation stuff is hardwired into the
Postgres C code
– Postgres predates even C++!
– See src/backend/execProcNode.c for the code that

“dispatches the methods” explicitly!

Sort GROUP BY: Naïve Solution
• The Sort iterator (could be external sorting, as

explained last week) naturally permutes its input so
that all tuples are output in sequence

• The Aggregate iterator keeps running info (“transition
values”) on agg functions in the SELECT list, per group
– E.g., for COUNT, it keeps count-so-far
– For SUM, it keeps sum-so-far

– For AVERAGE it keeps sum-so-far and count-so-far

• As soon as the Aggregate iterator sees a tuple from a
new group:
1. It produces an output for the old group based on the agg

function
E.g. for AVERAGE it returns (sum-so-far/count-so-far)

2. It resets its running info.
3. It updates the running info with the new tuple’s info

Sort

Aggregate

10

An Alternative to Sorting: Hashing!

• Idea:
– Many of the things we use sort for don’t exploit the order of

the sorted data
– E.g.: forming groups in GROUP BY
– E.g.: removing duplicates in DISTINCT

• Often good enough to match all tuples with equal field-
values

• Hashing does this!
– And may be cheaper than sorting! (Hmmm…!)
– But how to do it for data sets bigger than memory??

General Idea

• Two phases:
– Partition: use a hash function hp to split tuples into

partitions on disk.
• We know that all matches live in the same partition.
• Partitions are “spilled” to disk via output buffers

– ReHash: for each partition on disk, read it into
memory and build a main-memory hash table
based on a hash function hr

• Then go through each bucket of this hash table to bring
together matching tuples

11

Two Phases

• Partition:

• Rehash:

Partitions
Hash table for partition

Ri (ki <= B pages)

B main memory buffersDisk

Result

hash
fn
hr

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

hp B-1

Partitions

1

2

B-1

. . .

Analysis

• How big of a table can we hash in one pass?
– B-1 “spill partitions” in Phase 1
– Each should be no more than B blocks big
– Answer: B(B-1).

• Said differently: We can hash a table of size N blocks in about
space

– Much like sorting!
• Have a bigger table? Recursive partitioning!

– In the ReHash phase, if a partition b is bigger than B, then
recurse:

• pretend that b is a table we need to hash, run the Partitioning
phase on b, and then the ReHash phase on each of its
(sub)partitions

N

12

Hash GROUP BY: Naïve Solution
(similar to the Sort GROUPBY)

• The Hash iterator permutes its input so that all tuples
are output in sequence (how?)

• The Aggregate iterator keeps running info (“transition
values”) on agg functions in the SELECT list, per group
– E.g., for COUNT, it keeps count-so-far
– For SUM, it keeps sum-so-far
– For AVERAGE it keeps sum-so-far and count-so-far

• When the Aggregate iterator sees a tuple from a new
group:
1. It produces an output for the old group based on the agg

function
E.g. for AVERAGE it returns (sum-so-far/count-so-far)

2. It resets its running info.
3. It updates the running info with the new tuple’s info

Hash

Aggregate

We Can Do Better!

• Combine the summarization into the hashing process
– During the ReHash phase, don’t store tuples, store pairs of

the form <GroupVals, TransVals>
– When we want to insert a new tuple into the hash table

• If we find a matching GroupVals, just update the TransVals
appropriately

• Else insert a new <GroupVals,TransVals> pair
• What’s the benefit?

– Q: How many pairs will we have to handle?
– A: Number of distinct values of GroupVals columns

• Not the number of tuples!!
– Also probably “narrower” than the tuples

• Can we play the same trick during sorting?

HashAgg

13

1

Even Better: Hybrid Hashing

• What if the set of <GroupVals,TransVals> pairs fits in
memory
– It would be a waste to spill it to disk and read it all back!
– Recall this could be true even if there are tons of tuples!

• Idea: keep a smaller 1st partition in memory during
phase 1!
– Output its stuff

at the end of
Phase 1.

– Q: how do we
choose the
number k?

B main memory buffers DiskDisk

Original
Relation OUTPUT

3

INPUT

2

hh B-k

Partitions

2

3

B-k

. . .
hr

k-buffer hashtable

A Hash Function for Hybrid Hashing

• Assume we like the hash-partition function hp

• Define hh operationally as follows:
– hh(x) = 1 if in-memory hashtable is not yet full
– hh(x) = 1 if x is already in the hashtable
– hh(x) = hp(x) otherwise

• This ensures that:
– Bucket 1 fits in k

pages of memory
– If the entire set of

distinct hashtable
entries is smaller
than k, we do
no spilling!

1

B main memory buffers DiskDisk

Original
Relation OUTPUT

3

INPUT

2

hh B-k

Partitions

2

3

. . .
hr

k-buffer hashtable

14

Context

• We looked at SQL
• We looked at Query

Execution
– Query plans &

Iterators
– A specific example

• How do we map from
SQL to query plans?

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

SQL Query

Query Optimization

• A deep subject, focuses on multi-table queries
– We will only need a cookbook version for now.

• Build the dataflow bottom up:
– Choose an Access Method (HeapScan or IndexScan)

• Non-trivial, we’ll learn about this later!
– Next apply any WHERE clause filters
– Next apply GROUP BY and aggregation

• Can choose between sorting and hashing!
– Next apply any HAVING clause filters
– Next Sort to help with ORDER BY and DISTINCT

• In absence of ORDER BY, can do DISTINCT via
hashing!

– Note: Where did SELECT clause go?
• Implicit!!

Distinct

HeapScan

Filter

HashAgg

Filter

Sort

15

Summary

• Single-table SQL, in detail
• Exposure to query processing architecture

– Query optimizer translates SQL to a query plan
– Query executor “interprets” the plan

• Query plans are graphs of iterators

• Hashing is a useful alternative to sorting
– For many but not all purposes

