Relational Algebra

15-415 Spring 2003, Lecture 9 R\&G, Chapter 4

By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and, in effect, increases the mental power of the race.
-- Alfred North Whitehead (1861-1947)

∞
 Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for much optimization.
- Query Languages != programming languages!
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
Relational Algebra: More operational, very useful for representing execution plans.

Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative.)
\boxtimes Understanding Algebra \mathcal{E} Calculus is key to understanding SQL, query processing!

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
- Schemas of input relations for a query are fixed (but query will run over any legal instance)
- The schema for the result of a given query is also fixed. It is determined by the definitions of the query language constructs.
- Positional vs. named-field notation:
- Positional notation easier for formal definitions, named-field notation more readable.
- Both used in SQL

Relational Algebra: 5 Basic Operations

- Selection (σ) Selects a subset of rows from relation (horizontal).
- Projection (π) Retains only wanted columns from relation (vertical).
- Cross-product (X) Allows us to combine two relations.
- Set-difference (-) Tuples in r1, but not in r2.
- Union (\cup) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Examples: $\pi_{\text {age }}(S 2) ; \pi_{\text {sname,rating }}$
- Retains only attributes that are in the "projection list".
- Schema of result:
- exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates (How do they arise? Why remove them?)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

∞					
				sname	rating
Projection				yuppy	9
				lubber	8
				guppy	5
				rusty	10
sid	sname	rating	age	$\pi_{\text {sname,rating }}(S 2)$	
28	yuppy	9	35.0		
31	lubber	8	55.5		
44	guppy	5	35.0		
58	rusty	10	35.0		
S2				35.0	
				55.5	
				$\pi_{a g e}{ }^{(S 2)}$	

Selection (σ)

- Selects rows that satisfy selection condition.
- Result is a relation.

Schema of result is same as that of the input relation.

- Do we need to do duplicate elimination?

sname	rating
yuppy	9
rusty	10

$\sigma_{\text {rating }>8}(S 2) \quad \pi_{\text {sname,rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)$

Union and Set-Difference

- All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
- `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?

Set Difference

sid	sname	rating	age	sid	sname	rating	age
22	dustin	7	45.0	22	dustin	7	45.0
31 58	lubber rusty	$\begin{aligned} & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & 55.5 \\ & 35.0 \end{aligned}$	$S 1-S 2$			

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0
$S 2-S 1$			

Cross-Product

- S1 x R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
- May have a naming conflict. Both S1 and R1 have a field with the same name.
- In this case, can use the renaming operator.

$$
\rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)
$$

Cross Product Example

sid	bid	day
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

R1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1 X S1 = | (sid) | sname | rating | age | (sid) | bid | day |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 | 22 | 101 | $10 / 10 / 96$ |
| 22 | dustin | 7 | 45.0 | 58 | 103 | $11 / 12 / 96$ |
| 31 | lubber | 8 | 55.5 | 22 | 101 | $10 / 10 / 96$ |
| 31 | lubber | 8 | 55.5 | 58 | 103 | $11 / 12 / 96$ |
| 58 | rusty | 10 | 35.0 | 22 | 101 | $10 / 10 / 96$ |
| 58 | rusty | 10 | 35.0 | 58 | 103 | $11 / 12 / 96$ |

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
- These add no computational power to the language, but are useful shorthands.
- Can be expressed solely with the basic ops.
- Intersection takes two input relations, which must be union-compatible.
- Q: How to express it using basic operators?

$$
R \cap S=R-(R-S)
$$

Intersection

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$S 1 \cap S 2$

Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "natural join" (often just called "join"). $\mathrm{R} \bowtie$ S conceptually is:
- Compute R X S
- Select rows where attributes that appear in both relations have equal values
- Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.
- Useful for putting "normalized" relations back together.

Natural Join Example

sid	bid	day
22	101	$10 / 10 / 96$
58	103	$11 / 12 / 96$

R1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
S1			

R1 \triangle S1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

Other Types of Joins

- Condition /oin (or "theta-join"):

$$
R \bowtie_{c} S=\sigma_{c}(R \times S)
$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

$$
S 1 \bowtie_{S 1 . \text { sid }<R 1 . \text { sid }} R 1
$$

- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- Equi-Joir: Special case: condition c contains only conjunction of equalities.

Compound Operator: Division

- Useful for expressing "for all" queries like: Find sids of sailors who have reserved all boats.
- For A / B attributes of B are subset of attrs of A.
- May need to "project" to make this happen.
- E.g., let A have 2 fields, x and y, B have only field y.

$$
A / B=\{\langle x\rangle \mid \forall\langle y\rangle \in B(\exists\langle x, y\rangle \in A)\}
$$

A/ B contains all x tuples such that for every y tuple in B, there is an xytuple in \boldsymbol{A}.

Examples of Division A/B

sno	pno	pno	pno	pno
s1	p1	p2	p2	p1
s1	p2	B1	p4	p2
s1	p3		B2	p4
s1	p4			B3
s2	p1	sno		B3
s2	p2	s1		
s3	p2	s2	sno	
s4	p2	s3	s1	sno
s4	p4	s4	s4	s1
		A/B1	A/B2	A/B3

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
- /dea: For A / B, compute all x values that are not 'disqualified' by some \boldsymbol{y} value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \quad \pi_{x}(A)-$ Disqualified x values
Examples

Reserves	sid	bid	day
	22	101	$10 / 10 / 96$
	103	$11 / 12 / 96$	

Sailors | sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

Boats	bid	bname	color
101	Interlake	Blue	
102	Interlake	Red	
103	Clipper	Green	
104	Marine	Red	

Find names of sailors who've reserved boat \#103

- Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
- Solution 2: $\quad \pi_{\text {sname }}\left(\sigma_{b i d=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }}={ }^{\prime}\right.\right.$ red' ${ }^{\prime}$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
\star A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}{ }^{\left(\left(\pi_{\text {bid }}\right.\right.} \sigma_{\text {color }=\text { ' red }}{ }^{\prime}{ }^{\text {Boats })} \bowtie \operatorname{Res}\right) \bowtie$ Sailors $)$
$\boxtimes A$ query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

- Can identify all red or green boats, then find sailors who've reserved one of these boats:
$\rho\left(\right.$ Tempboats, $\left(\sigma_{\text {color }}=\right.$ ' red' \vee color $=$ ' green' ${ }^{\prime}$ Boats $)$) $\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie \operatorname{Reserves} \bowtie}$ Sailors)

Find sailors who've reserved a red and a green boat

- Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
ρ (Tempred, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ red $^{\prime}{ }^{\text {Boats })} \bowtie$ Reserves $\left.)\right)$
ρ (Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ green' $^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

Find the names of sailors who've reserved all boats

- Uses division; schemas of the input relations to / must be carefully chosen:

$$
\begin{aligned}
& \rho\left(\text { Tempsids, }\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

* To find sailors who've reserved all 'Interlake' boats:

$$
\ldots . . \quad / \pi_{\text {bid }}\left(\sigma_{\text {bname }=\text { ' Interlake' }} \text { Boats }\right)
$$

