## Relational Algebra

15-415 Spring 2003, Lecture 9 R & G, Chapter 4

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, *increases the mental power of the race*.

-- Alfred North Whitehead (1861 - 1947)





#### **Relational Query Languages**

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- · Relational model supports simple, powerful QLs:
  - Strong formal foundation based on logic.
  - Allows for much optimization.
- Query Languages != programming languages!
  - QLs not expected to be "Turing complete".
  - QLs not intended to be used for complex calculations.
  - QLs support easy, efficient access to large data sets.



## Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

<u>Relational Algebra</u>: More operational, very useful for representing execution plans.

<u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

\* Understanding Algebra & Calculus is key to understanding SQL, query processing!



#### **Preliminaries**

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
  - Schemas of input relations for a query are fixed (but query will run over any legal instance)
  - The schema for the *result* of a given query is also fixed. It is determined by the definitions of the query language constructs.
- Positional vs. named-field notation:
  - Positional notation easier for formal definitions, named-field notation more readable.

S2

- Both used in SQL



## Relational Algebra: 5 Basic Operations

- <u>Selection</u> ( $\sigma$ ) Selects a subset of *rows* from relation (horizontal).
- <u>Projection</u> ( $\pi$ ) Retains only wanted <u>columns</u> from relation (vertical).
- <u>Cross-product</u> (x) Allows us to combine two relations.
- <u>Set-difference</u> (–) Tuples in r1, but not in r2.
- <u>Union</u> (∪) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be *composed!* (Algebra is "closed".)



### **Example Instances**

| R1 | sid | bid | day      |
|----|-----|-----|----------|
|    | 22  | 101 | 10/10/96 |
|    | 58  | 103 | 11/12/96 |

| bid | bname     | color |
|-----|-----------|-------|
| 101 | Interlake | blue  |
| 102 | Interlake | red   |
|     | Clipper   | green |
| 104 | Marine    | red   |

Boats

| S1 | sid | sname  | rating | age  |
|----|-----|--------|--------|------|
|    | 22  | dustin | 7      | 45.0 |
|    | 31  | lubber | 8      | 55.5 |
|    | 58  | rustv  | 10     | 35.0 |

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 28  | yuppy  | 9      | 35.0 |
| 31  | lubber | 8      | 55.5 |
| 44  | guppy  | 5      | 35.0 |
| 58  | rusty  | 10     | 35.0 |



# **Projection**

- Examples:  $\pi_{age}(S2)$  ,  $\pi_{sname,rating}(S2)$
- Retains only attributes that are in the "projection list".
- Schema of result:
  - exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates (How do they arise? Why remove them?)
  - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)



# Projection

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 28  | yuppy  | 9      | 35.0 |
| 31  | lubber | 8      | 55.5 |
| 44  | guppy  | 5      | 35.0 |
| 58  | rusty  | 10     | 35.0 |
|     |        |        |      |

S2

| sname  | rating |
|--------|--------|
| yuppy  | 9      |
| lubber | 8      |
| guppy  | 5      |
| rusty  | 10     |
|        |        |

 $\pi_{sname,rating}(S2)$ 

age 35.0 55.5

 $\pi_{age}(S2)$ 



### Selection ( $\sigma$ )

- Selects rows that satisfy selection condition.
- · Result is a relation.
  - **Schema** of result is same as that of the input relation.
- Do we need to do duplicate elimination?

| si | d | sname               | rating              | ag  | e        |
|----|---|---------------------|---------------------|-----|----------|
| 28 | } | yuppy               | 9                   | 35  | .0       |
| 2  | _ | lubbon              | 9                   | 54  | - 5      |
| ١, | ŀ | lubber              | 0                   | 12. | 7.5      |
| 4  |   | gunny               | - 5                 | 34  | <u> </u> |
| 17 | r | guppy               | 5                   | 12. | ,.0      |
| 5  | 3 | rusty               | 10                  | 3.  | 0.6      |
|    |   | $\sigma$            | g>8 <sup>(S2)</sup> | )   |          |
|    |   | <sup>-</sup> rating | ?>8`~~              |     |          |

 $\begin{array}{c|c} & yuppy & 9 \\ \hline rusty & 10 \\ \hline \pi_{sname,rating}(\sigma_{rating} > 8^{(S2))} \end{array}$ 

sname

rating



### Union and Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
  - Same number of fields.
  - `Corresponding' fields have the same type.
- For which, if any, is duplicate elimination required?



#### Union

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 22  | dustin | 7      | 45.0 |
| 31  | lubber | 8      | 55.5 |
| 58  | rusty  | 10     | 35.0 |

S1

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 28  | yuppy  | 9      | 35.0 |
| 31  | lubber | 8      | 55.5 |
| 44  | guppy  | 5      | 35.0 |
| 58  | rusty  | 10     | 35.0 |

S2



 $S1 \cup S2$ 



#### Set Difference

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 22  | dustin | 7      | 45.0 |
| 31  | lubber | 8      | 55.5 |
| 58  | rusty  | 10     | 35.0 |

dustin 7 45.0 S1-S2

sid sname rating age

22

S1

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 28  | yuppy  | 9      | 35.0 |
| 31  | lubber | 8      | 55.5 |
| 44  | guppy  | 5      | 35.0 |
| 58  | rusty  | 10     | 35.0 |

 sid
 sname
 rating
 age

 28
 yuppy
 9
 35.0

 44
 guppy
 5
 35.0

 S2 - S1

S2



#### **Cross-Product**

- S1 x R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- Result schema has one field per field of \$1 and R1, with field names `inherited' if possible.
  - May have a naming conflict. Both S1 and R1 have a field with the same name.
  - In this case, can use the *renaming operator*:  $\rho$  ( $C(1 \rightarrow sid1, 5 \rightarrow sid2)$ ,  $S1 \times R1$ )

| Cross Product Example |             |    |          |        |        |      |        |         |         |      |
|-----------------------|-------------|----|----------|--------|--------|------|--------|---------|---------|------|
| sid                   | sid bid day |    |          |        |        | sid  | snam   | ie      | rating  | age  |
| 22                    | 101         | 10 | 10/10/96 |        |        | 22   | dusti  | n       | 7       | 45.0 |
| 58                    |             |    |          | 6      |        | 31   | lubber |         | 8       | 55.5 |
|                       |             |    |          |        |        |      |        | 35.0    |         |      |
|                       | R1          |    |          |        |        |      |        | S1      | [       |      |
|                       |             |    | (sid)    | sname  | rating | age  | (sid)  | bid     | day     |      |
|                       |             |    | 22       | dustin | 7      | 45.0 | 22     | 101     | 10/10/9 | 96   |
| R1 X                  | S1 =        |    | 22       | dustin | 7      | 45.0 | 58     | 103     | 11/12/9 | 96   |
| 242 12                |             |    | 31       | lubber | 8      | 55.5 | 22     | 101     | 10/10/9 | 96   |
|                       |             |    | 31       | lubber | 8      | 55.5 | 58     | 103     | 11/12/9 | 96   |
|                       |             | 58 | rusty    | 10     | 35.0   | 22   | 101    | 10/10/9 | 96      |      |
|                       |             |    | 58       | rusty  | 10     | 35.0 | 58     | 103     | 11/12/9 | 96   |



#### Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
  - These add no computational power to the language, but are useful shorthands.
  - Can be expressed solely with the basic ops.
- Intersection takes two input relations, which must be *union-compatible*.
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$



#### Intersection

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 22  | dustin | 7      | 45.0 |
| 31  | lubber | 8      | 55.5 |
| 58  | rusty  | 10     | 35.0 |

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 28  | yuppy  | 9      | 35.0 |
| 31  | lubber | 8      | 55.5 |
| 44  | guppy  | 5      | 35.0 |
| 58  | rusty  | 10     | 35.0 |

S2

 $S1 \cap S2$ 

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 31  | lubber | 8      | 55.5 |
| 58  | rusty  | 10     | 35.0 |



### Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a "<u>natural join</u>" (often just called "join"). R ► S conceptually is:
  - Compute R X S
  - Select rows where attributes that appear in both relations have equal values
  - Project all unique atttributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.
- Useful for putting "normalized" relations back together.



## Natural Join Example

|   | sid | bid | day      |
|---|-----|-----|----------|
| ĺ | 22  | 101 | 10/10/96 |
|   | 58  | 103 | 11/12/96 |

R1

| sid | sname  | rating | age  |
|-----|--------|--------|------|
| 22  | dustin | 7      | 45.0 |
| 31  | lubber | 8      | 55.5 |
| 58  | rusty  | 10     | 35.0 |

S1

R1 ⋈ S1 =

| sid | sname  | rating | age  | bid | day      |
|-----|--------|--------|------|-----|----------|
| 22  | dustin | 7      | 45.0 | 101 | 10/10/96 |
| 58  | rusty  | 10     | 35.0 | 103 | 11/12/96 |



## Other Types of Joins

• Condition Join (or "theta-join"):

$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

| (sid) | sname  | rating | age  | (sid) | bid | day      |
|-------|--------|--------|------|-------|-----|----------|
| 22    | dustin | 7      | 45.0 | 58    | 103 | 11/12/96 |
| 31    | lubber | 8      | 55.5 | 58    | 103 | 11/12/96 |

$$S1 \bowtie S1.sid < R1.sid R1$$

- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.
- <u>Equi-Join</u>: Special case: condition *c* contains only conjunction of *equalities*.



### Compound Operator: Division

- Useful for expressing "for all" queries like: Find sids of sailors who have reserved <u>all</u> boats.
- For A/B attributes of B are subset of attrs of A.
   May need to "project" to make this happen.
- E.g., let A have 2 fields, x and y, B have only field y:

$$A/B \,=\, \Big\{\!\!\big\langle x \big\rangle\!\big| \forall \big\langle y \big\rangle \in \,B(\exists \big\langle x,\,y \big\rangle \in \,A) \Big\}$$

A/B contains all x tuples such that for <u>every</u> y tuple in B, there is an xy tuple in A.



#### Examples of Division A/F

| Exar | nples                | s of Division | A/B      |                |
|------|----------------------|---------------|----------|----------------|
| sno  | pno                  | pno           | pno      | pno            |
| s1   | p1                   | p2            | p2       | p1             |
| s1   | p2<br>p3             | <u>B1</u>     | p2<br>p4 | p2             |
| s1   | p3                   | D1            | B2       | p1<br>p2<br>p4 |
| s1   | p4                   |               | Dω       | B3             |
| s2   | p1                   | sno           |          | DЭ             |
| s2   | p1<br>p2<br>p2<br>p2 | s1            |          |                |
| s3   | p2                   | s2            | sno      |                |
| s4   | p2                   | s3            | s1       | sno            |
| s4   | p4                   | s4            | s4       | s1             |
|      | A                    | A/B1          | A/B2     | A/B3           |

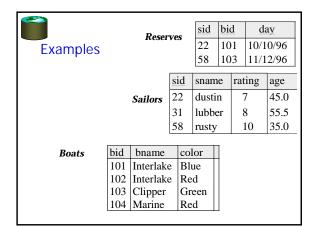


#### Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
  - (Also true of joins, but joins are so common that systems implement joins specially.)
- *Idea*: For *A/B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
  - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Disqualified x values:  $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$ 

A/B:  $\pi_{x}(A)$  – Disqualified x values





#### Find names of sailors who've reserved boat #103

• Solution 1:  $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$ 

• Solution 2:  $\pi_{sname}(\sigma_{bid=103}(\text{Reserves}\bowtie Sailors))$ 



#### Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}^{}Boats)\bowtie \mathsf{Re}\,serves\bowtie Sailors)$$

v A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

\* A query optimizer can find this given the first solution!



#### Find sailors who've reserved a red or a green boat

 Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, ( $\sigma_{color = 'red' \lor color = 'green'}$  Boats))

$$\pi_{sname}$$
 (Temphoats  $\bowtie$  Reserves  $\bowtie$  Sailors)



#### Find sailors who've reserved a red and a green boat

 Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho$$
 (Tempred,  $\pi_{sid}$  (( $\sigma_{color='red'}$  Boats) $\bowtie$  Reserves))

$$\rho \; (\textit{Tempgreen}, \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{green'}} \textit{Boats}) \bowtie \mathsf{Re} \textit{serves}))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$



#### Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho \ (Tempsids, (\pi_{sid,bid}^{Reserves}) / (\pi_{bid}^{Boats}))$$

$$\pi_{\mathit{sname}}(\mathit{Tempsids} \bowtie \mathit{Sailors})$$

 $_{\scriptscriptstyle \mathrm{V}}$  To find sailors who've reserved all 'Interlake' boats:

.... 
$$/\pi_{bid}^{(\sigma)}$$
 bname='Interlake' Boats)