Semantic Anomaly Detection in Online Data Sources

Orna Raz
Institute for Software
Engineering International
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213 USA

orna.raz@cs.cmu.edu

ABSTRACT

Much of the software we use for everyday purposes incorpo-
rates elements developed and maintained by someone other
than the developer. These elements include not only code
and databases but also dynamic data feeds from online data
sources. Although everyday software is not mission criti-
cal, it must be dependable enough for practical use. This is
limited by the dependability of the incorporated elements.

It is particularly difficult to evaluate the dependability of
dynamic data feeds, because they may be changed by their
proprietors as they are used. Further, the specifications of
these data feeds are often even sketchier than the specifica-
tions of software components.

We demonstrate a method of inferring invariants about
the normal behavior of dynamic data feeds. We use these
invariants as proxies for specifications to perform on-going
detection of anomalies in the data feed. We show the fea-
sibility of our approach and demonstrate its usefulness for
semantic anomaly detection: identifying occasions when a
dynamic data feed is delivering unreasonable values, even
though its behavior may be superficially acceptable (i.e., it
is delivering parsable results in a timely fashion).

1. Introduction

“Reader Toby Doig nearly had a heart attack this
morning when he visited Datek to check out his
share portfolio and found that the Dow Jones In-
dustrial Average (DJIA) had taken the full brunt
of the stock market wobble and slumped just over
10,000 points to stand at 0.20 (down 99.999 per-
cent, roughly)...clearly there had been a terrible
computing error...” [25]

Everyday software must be sufficiently dependable for its

intended purpose. Because this software is not usually mission-

critical, it may be cost-effective to detect improper behav-
ior and notify the user or take remedial actions. Detecting

Philip Koopman
Institute for Complex
Engineered Systems

ECE Department
Carnegie Mellon University
Pittsburgh PA 15213 USA

koopman@cmu.edu

Mary Shaw
Institute for Software
Engineering International
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213 USA

mary.shaw@cs.cmu.edu

improper behavior depends on having a model of proper be-
havior. Unfortunately, specifications of everyday software
are often incomplete and imprecise. The situation is exacer-
bated when the software incorporates third-party resources
such as COTS (Commercial-Off-The-Shelf) software com-
ponents, databases, or dynamic data feeds from online data
sources. The latter case is especially difficult, because the
proprietor of the data source may change its semantics, for-
mat, or even availability while it is being used; further, spec-
ifications for data sources, and therefore data feeds, are often
even sketchier than those for software components.

We are interested in making the use of dynamic data feeds
from online data sources more dependable. Examples of data
sources include stock quotes, weather forecasts, airline ticket
prices, and news reports. A data feed captures a particu-
lar usage of a data source: for example, stock quotes for
a specific company, the weather forecast for a specific city,
airline ticket prices for specific origin and destination, and
news for a specific topic. Such data feeds are fallible, under-
specified, and often unguaranteed — all factors that increase
reuse risks. Like COTS components, data feeds present risks
arising from functional deficiencies and mismatches in in-
terfaces. In addition, data feeds remain under the control
of their proprietors, often with no commitment for support,
continuity, consistency, or notification of change. The result-
ing software systems are fragile, and their practical utility
will depend on improving their dependability.

We are specifically interested in semantic problems with
these data feeds — cases in which the data feed is responsive
and delivers well-formed results, but the results are incon-
sistent, out of range, incorrect, or otherwise unreasonable.
We focus on a particular facet of dependability: availability
or readiness for usage, and change from the traditional fault
model, “fail-silent” (crash failures), to “semantic”.

Dependability is “the trustworthiness of a computer sys-
tem such that reliance can justifiably be placed on the ser-
vice it delivers. The service delivered by the system is its be-
havior as it is perceived [emphasis in original] by its user(s)”
[17]. Classical techniques for dependability assessment and
control of potential risks must be strengthened to reflect the
open and dynamic character of online data sources. Assess-
ment should be dynamic and on-going, not just static and a
priori. Control should include economic mitigation, in addi-
tion to prevention and technical mitigation (fault tolerance).

We investigate anomaly detection, which may be used as
a basis for all these activities. In [24], we suggested soft-
ware insurance for economic mitigation and discussed how

anomaly detection may constitute a first step in that di-
rection. Anomaly detection is also a step towards enabling
dynamic assessment and technical mitigation, including en-
hancing dependability, preserving current quality of service,
and healing. We believe anomaly detection is useful by it-
self in enhancing the users’ perception of dependability: the
more confident users are that they will be notified of prob-
lems, the more they will be able to rely on the service de-
livered. Fault tolerance approaches to failure detection re-
quire specifications of normal, degraded, and abnormal op-
erations. Failure masking does not require detection, yet it
requires specifications of outputs and their selection.

Unfortunately, specifications for software that incorpo-
rates dynamic data feeds are often even less satisfactory than
specifications of COTS components. A software system con-
structed from data feeds may need to dynamically reconfig-
ure these data feeds as they change or fail. This precludes a
priori validation. Further, the sketchy and incomplete spec-
ifications of the underlying data sources may be too weak
to support failure detection. For these non mission-critical
data sources, the cost of providing complete specifications is
likely to be much higher than the cost of a failure. Even if
cost were not an issue, complete specifications would not be
practical: a system that incorporates a data feed can depend
on it in ways that could not be anticipated in advance, and
developers of non-critical interactive systems rarely have the
energy and patience to specify all possible cases.

Our approach observes the behavior of dynamic data feeds
and infers invariants about their usual behavior. These in-
variants can augment the existing specifications to express
expectations for the behavior of the data feed. They thereby
become proxies for missing parts of the specifications. The
augmented specifications can be used to detect anomalous
behavior — that is, behavior that does not conform to the
expectations. We rely on existing Statistical and Machine
Learning techniques to infer these invariants.

We show it is possible to infer useful invariants about
the semantics of dynamic data feeds from their behavior
and that this can be done, to a large extent, automatically.
Such invariants can be effectively used to discover semantic
anomalies in these data feeds. By “effectively” we mean
in a timely manner, within reasonable cost, with low error
rate, where obvious (to a human) problems are detected,
and where integration of such specifications as do exist is
possible.

We introduce concepts and definitions in Section 2. Sec-
tion 3 provides details about invariant inference and seman-
tic anomaly detection. We show the feasibility of our ap-
proach via experiments which are described and discussed
in Section 4. Related work is presented throughout.

2. Semantic quality

Online data sources are in particular need of improved
dependability. On the one hand, timely availability greatly
increases the usefulness of the data feed they provide and
hence the value of this data. On the other hand, it is hard
to detect anomalies in such data sources because of their
incomplete specifications. Although anomalies in a data feed
indicate anomalies in the data source, in our setting the
system developer does not have control over the data source,
so dependability enhancement can only be done by the client
of the data. For the client, the data source is represented
by the data feeds the client uses (Figure 1). We, therefore,

Figure 1: A client software uses a dynamic data feed that
results from a view (query) on the content provided by a
data source. A data source samples phenomena via sensors.

concentrate on data feeds.

Online data sources exhibit various types of failures. In
Section 2.1 we classify such failures and identify the type
with which we are concerned. We need a common language
to discuss anomalies and the data we use for invariant infer-
ence. Section 2.2 provides the necessary definitions.

2.1 Failure types

A software failure is either an outcome that violates the
specifications of that software or an unexpected software be-
havior observed by the user. A software faultis the identified
or hypothesized cause of the software failure [21]. We cate-
gorize failures in online data sources as either connectivity,
syntax/form, or semantic. Our focus is semantic failures.
We provide examples of faults that may cause failures of
these different classes.

Connectivity failures are the inability to get any data or
a very slow rate of service. Faults include server faults,
such as “server overloaded” or “server down”, and network
faults, such as “router down” or “insufficient bandwidth”.
Solutions to individual types of faults exist, in the form of
redundant servers, caching and archiving. Examples of tools
providing such solutions are the Go!Zilla download manager
[10], Alexa’s archive of pages [1] and Google’s caching [9].

Syntaz/form failures are the inability to parse obtained
data. Faults include data source changes, such as refor-
matting, service addition or removal, and client problems,
such as a missing plug-in. Examples of solutions to indi-
vidual types of faults are wrapper induction (a program for
extracting data), wrapper re-induction (detecting problems
in wrappers and adjusting to changes), and languages that
facilitate information exchange among data sources (and
support automatic parsing). Wrapper induction and re-
induction learn the data prototype from labeled examples
and require some domain specific information. Ariadne [14]
and TrIAs [2] are examples of research prototypes for wrap-
per induction and re-induction. RAPTURE [15] is a re-
search prototype for wrapper validation. Kangaroo [13] is a
commercial tool that includes help in extracting information
from HTML. Languages that facilitate information exchange
require well defined semantic and syntactic standards. XML
[28] is an example of a language facilitating information ex-
change among data sources. The Information Manifold re-
search prototype [20] is an example of a system that provides
access to a collection of closely related data sources by using
a language to describe their contents and capabilities.

Semantic failures are unreasonable values of successfully
parsed data. Faults include data source problems that do
not cause connectivity or syntax/form failures, such as re-
porting data provided by an erroneous sensor, relying on
erroneous data provided by a different data source or en-

tered by a human, changing database schema, and changing
the method of reporting. We could not find existing gen-
eral solutions to such problems. The most relevant work
seems to be wrapper re-induction and wrapper validation
[14, 18, 2, 15], but these often require labeled data and do-
main specific information; we seek more general solutions.
GritBot [11] is a commercial tool for finding anomalies in
a data set to prepare it for data mining. It is domain in-
dependent, but provides only a single technique which is
applicable to a single non-dynamic set of data with numeric
and categorical attributes. We are interested in an approach
that can handle various sources of data and various types of
inconsistencies.

As demonstrated above, detection and repair techniques
for individual types of faults exist for many of the connec-
tivity and syntax/form problems, but not for semantic prob-
lems. Our work aims to provide general solutions for seman-
tic problems, thus enhancing the semantic quality of data
sources. We concentrate on detecting semantic anomalies.

We aim to detect those anomalies that will be perceived
by the user as failures. However, in the absence of complete
specifications, the same anomalous behavior sometimes in-
dicates a failure and at other times does not. The example
in Section 1 describes an extreme value change caused by a
fault in a stock quote data source. However, stocks some-
times correctly exhibit extreme value changes. These cases
cannot be distinguished without knowledge of the market,
although both are anomalous.

We suggest an approach for empirically improving speci-
fications of specific applications. We show how to infer in-
variants that serve as proxies for specifications and are used
to detect anomalies.

The idea of inferring invariants from actual behavior is
similar to dynamically discovering likely program invariants,
which underlies the work of Ernst et al. [8, 7]. However, the
domain, emphasis, and goal of our approach are different.
We deal with online data sources rather than programs. We
use off-the-shelf techniques rather than provide a new tech-
nique for inferring invariants. We aim to increase depend-
ability rather than aid in programming tasks. The major
difference between our work and intrusion detection (e.g.,
[16]) is the fault model. Our model is semantic, uninten-
tional faults, whereas intrusion detection assumes malicious
faults. In addition, intrusion detection research often con-
centrates on specific, sequence-related, techniques.

In terms of Anderson’s classification of error detection
checks [27], we provide primarily “reasonableness” checks:
checks that use known semantic properties of the data to de-
tect errors. However, in our setting, we cannot assume that
requirements, or even the particular design of a module, are
available. Rather than having known semantic properties,
we infer potentially relevant semantic properties.

2.2 Definitions

An anomaly is an observed behavior of a data feed that
is different from our expectation. This ezpectation describes
normal behavior of the data feed. It combines whatever
specifications are available (“explicit specifications”) with
inferred abstractions of the historical behavior of the data
feed (“implicit specifications”). Specifications completely
define how to use a component and what a user of a com-
ponent can rely on. Ezplicit specifications are the specifi-
cations that have been explicitly provided for the data feed.

Implicit specifications are likely invariants over the behavior
of the data feed. We are interested in semantic failures, so
the invariants we define describe consistent behavior of the
data feed.

A data feed (Figure 1), DF, is a time-ordered sequence of
observations. An observation at time t is a tuple of attribute
values: OBS; ;(t) = (a1, ...,ar), that contains information
relevant to a data source DS; and a query Q; at a given time
t. A query, Q, specifies a pre-defined (by the data source)
set of content. For a dynamic data feed, the true values (of
the observed phenomena) are not available before the data
is used and may never be available.

An attribute, A, of a data source, has both type and ori-
gin. The type can be numeric, categorical or free (natural
language). The origin can be direct (sensor data) or inter-
preted (the result of applying a model). A numeric attribute
can be comparable or non-comparable to other attributes (ex-
cluding itself) of the same observation. In general, attribute
comparability arises from the semantics of the data feed: two
attributes are comparable if there is a meaningful relation
between them. Because of the characteristics of the tools
used in the experiments reported in Section 4, comparabil-
ity is determined by the data types of the attributes (e.g., it
is not meaningful to numerically compare the current value
of a stock to its daily volume). For example, a stock quote
data source DS; may have the attributes current, daily high,
and daily low. All these attributes are direct, numeric, and
comparable. Attribute values for a particular stock may be
requested by specifying the appropriate ticker symbol as the
query value (e.g., @ = SUNW). As aresult, an observation
at time t may return OBS; ;(t) =(16.2,17,16). The corre-
sponding data feed, DF = DS;, Q;, will consist of multiple,
time-ordered, such observations.

A data feed can be structured, semi-structured, or unstruc-
tured. A structured data feed defines its own grammar (e.g.,
by XML). For a semi-structured data feed we can deduce
a grammar (e.g., by hand-tuned scripts or information ex-
traction methods such as wrapper induction).

An invariant is a function of a sequence of observations
and an inference technique. An invariant can be inferred
from a single data feed or multiple data feeds. The obser-
vations can be used either as “stateless” (singular points in
time) or as “stateful” (time-series or unordered).

All the data feeds we deal with have a temporal aspect,
and multiple data feeds may observe data sources that sam-
ple, possibly with modest delays, the same or different yet
related phenomena. This raises the issue of synchronizing
the results when using multiple data feeds. Redundant data
feeds observe, for similar content, data sources that func-
tion as different sensors of the same underlying phenomena.
An example is stock quotes for the same stock from multi-
ple stock quote data sources. Attributes of redundant data
feeds may have different names and may be scaled and dis-
played differently as well. We, therefore, require a mapping
between attributes of redundant data feeds. Correlated data
feeds observe data sources for content that is correlated in
a way other than redundancy, e.g., causally correlated. An
example is Pittsburgh rainfall amount and river level.

3. Anomaly detection

Fault tolerance approaches often use a state transition
model with explicit transitions to model normal, broken and
degraded operations. In previous work [23] we noted such

models are difficult to work with when the specifications
are inaccurate and suggested an alternative incremental-
improvement model. Our approach to anomaly detection
follows this model, overcoming the limitation of requiring
precise definitions of states and transitions.

In this section, we present the most relevant details for in-
ferring invariants to be used in semantic anomaly detection.
We need to understand how to match data with existing
Statistical and Machine Learning techniques. Section 3.1
defines the characteristics of our data and the implications
of these characteristics on the techniques we can use. In
Section 3.2, we discuss the kind of invariants we can infer,
the actual act of invariant inference, and present a method
for anomaly detection. In our discussion, we concentrate on
a particular type of data, numeric-valued data, which is also
the one we use in our experiments in Section 4.

3.1 Characteristics of data and techniques

The characteristics of our data influence the kind of tech-
niques we can use for invariant inference. We identify these

characteristics and their implications for choice of techniques.

We assume the data is normal most of the time. Nonethe-
less, our data is noisy because it is real world data. There-
fore, the techniques we use need to be able to handle noisy
data or be compatible with mechanisms that can handle
noisy data. Voting is an example of such a mechanism and
one which we use in this paper.

Learning is classified by the Machine Learning community
into supervised, unsupervised and reinforcement, as defined
in [3]. In supervised learning, the desired output is provided
for each input pattern (this is often referred to as labeled
data). In unsupervised learning, no target data is used (this
is often referred to as unlabeled data). Instead of learning an
input output mapping, the goal may be to model the proba-
bility distribution of the input or to discover some structure
in the data. In reinforcement learning, feedback related to
the outputs is provided (good/bad) but not the actual de-
sired values. Reinforcement learning is usually used for con-
trol applications and is, therefore, not relevant here.

Using supervised learning to identify anomalies requires
labeling training data with “normal” (positive ezample) and
“anomaly” (negative ezample). But providing labels can be
a difficult task. Even if a source of labels (e.g., an oracle)
exists, it may be too expensive to use, because either domain
specific information or manual intervention may be required.
We can overcome this problem by not providing labels and
using unsupervised learning techniques or by assuming the
data provides only positive examples (similar to the assump-
tions made by some machine learning approaches to intru-
sion detection [16]) and using supervised learning techniques
that can handle training data that consists solely of positive
examples. The latter is a severe limitation, because many
supervised learning techniques will learn to identify all un-
seen data as positive (thus never detect an anomaly).

However, there are cases for which labeled data is avail-
able. Though the labels are often not of the form “nor-
mal” /“anomaly”, they may be useful. This enables us to
take advantage of supervised learning techniques. A possi-
ble source of labels is a time lagged oracle. Even though we
assume the true values become known too late for validat-
ing the information before usage, they may be acceptable
for training. Using true values as labels can be effective if
the time lag is not too large (it should be within a change

{OBS; ;(t)} Criterion

(1) single data feed; stateless; comparable|internal consistency
(2) single data feed; stateful unordered |reasonable range

(3) redundant data feeds timeliness
accuracy
(4) correlated data feeds inter-consistency

Table 1: Examples of determining semantic quality criteria by
observation properties; numeric attributes.

cycle of the data) and if labeling is cheap. For example, for
a weather forecast, there always exists an oracle in the form
of actual weather observed. We could learn the daily pre-
dominant daytime weather (sunny, rainy, etc.). The training
data (past weather conditions) already contains these labels.
In this paper, we use unlabeled data, and, therefore, un-
supervised learning techniques. The techniques we use are
(1) augmented Daikon and (2) Mean. Daikon [8] is a re-
search prototype for dynamically discovering likely program
invariants. Mean is a statistical method for estimating a
confidence interval for the mean of a distribution based on
sample measures. Further details follow in Section 4.2.

3.2 Inferring invariants

We attempt to infer invariants, using off-the-shelf tech-
niques. We first discuss the difficulties of directly obtaining
invariants. Then we describe our approach to inferring in-
variants and suggest a method for using these invariants for
anomaly detection.

If complete and correct explicit specifications exist, there
is no need to infer invariants. However, it is not realistic to
assume this is the case, especially for the everyday software
with which we are concerned. Moreover, even if some form of
explicit specification exists, it is rarely complete or correct.
Often, the explicit specifications do not match the actual
behavior of the data feed. Inferred invariants could be used
as a way of validating, enhancing, or evolving the explicit
specifications.

If an oracle for the expected behavior exists, we can use
it to obtain invariants. But oracles tend to be time-lagged
or expensive, as discussed in Section 3.1. Humans provide
another kind of oracle. Users are usually good at identify-
ing an anomaly when they see it, but can very rarely give
general rules for identifying it. In addition, it is usually
not reasonable to expect users to inspect an entire body
of data. Although experts may be able to provide general
rules, it may be very hard to find an expert and it may be
prohibitively expensive to get the information needed.

Our approach to the difficulties of obtaining invariants is
to infer a useful subset of invariants. The available observa-
tions (whose structural properties are defined in Section 2.2)
determine relevant semantic quality criteria. These criteria
include: internal consistency, inter-consistency, timeliness,
accuracy, reasonable range, and completeness. Table 1 gives
examples of determining relevant criteria for data feeds of
numeric attributes. The following lists these examples by
rows: (1) use {OBS; ;(t)} over data source DS; with at-
tributes (Ai,.., Ax), k > 1, {A} numeric and comparable,
queried for @Q;, treating each OBS; ;(t) as stateless, to in-
fer invariants that indicate internal consistency (the Daikon
experiment in Section 4 below is an example); (2) view the
observations as stateful, where k = 1 is acceptable, and the
attributes do not need to be comparable, to infer invari-

Technique Tablel | Data
name learning noise Row # | labeled
Daikon | unsupervised | augment | 1 no
Mean unsupervised | ok 2 no

Table 2: Examples of matching data and techniques for rows in
Table 1.

Technique|Bias Invariant form
Daikon |[set of pre-defined invariants |arithmetic exp.
Mean concept within conf. interval|arithmetic exp.

Table 3: Examples of inductive bias and invariant functional
form.

ants that indicate reasonable ranges of values (the Mean
experiment in Section 4 is an example); (3) use observations
from m redundant data feeds {OBS1,;(t)},..,{OBSnm,;(t)},
with any number of numeric attributes, comparable or not,
queried for the same information @;, and a mapping be-
tween attributes, to infer invariants that indicate timeliness,
or invariants that indicate accuracy (treating observations
as either stateless or stateful); (4) if the data feeds are cor-
related, use the observations to infer consistency of values
of attributes from different data feeds (inter-consistency).

A series/set can always be treated as a collection of state-
less observations, so any criterion relevant to a data feed
treated as stateless will also be relevant for the same data
feed treated as stateful. Similarly, any criteria relevant to a
single data feed is also relevant when this data feed is one
of multiple feeds.

An inference technique is relevant to specific data and
semantic quality criteria. To find techniques for invariant
inference, we match properties of the data with properties
of the techniques. Properties of the data include the struc-
tural properties of observations together with a semantic
quality criterion (e.g., a row in Table 1), as well as how the
data is labeled. Properties of a technique are the required
structural properties of its input, the criterion to which the
invariants it can infer are relevant (again, exemplified by a
row in Table 1), as well as the learning task it is suited for
and its noise handling capabilities (as described in Section
3.1). For each technique, we also specify the form of the
invariants it can produce. Tables 2 and 3 provide examples
of a data—technique match.

The form of invariants may be any arbitrary function.
However, we do not use explicit specifications nor domain
knowledge in this paper, so we do not expect to infer com-
plex models. For example, in the experiments described in
Section 4, the invariants are simple arithmetic expressions.
The form of invariants is determined by the technique we
use to infer invariants (Table 3 provides examples). This
is a result of the “inductive bias” of the technique. Induc-
tive bias, in Machine Learning terminology, is the a priori
assumptions regarding the identity of the target concept.
Such assumptions are necessary for generalizing beyond the
observed data [22].

Our approach consists of three major steps, as summa-
rized in Figure 2: (1) initial inference of an expectation, (2)
applying the expectation over unseen data to detect anoma-
lies, and (3) updating the expectation. If additional data
is available it can be used. For example, the underlying
rate and character of change of the phenomenon may be
useful in identifying normal changes in the data. Observa-

1. Obtain expectation

(a) Find techniques that match the data

i. Determine relevant criteria to infer i
ii. Match data with various candidate techniques

(b) (Optional). Pre-processing: augment technique with
noise handling capabilities; provide additional input
(c) Apply each technique from step la to the data

2. Apply expectation (detect anomalies)

(ag Apply expectation to newly observed data

(b) (Optional). Post-processing: use attribute origin as
a hint for comparison; use heuristics to reduce false
alarms

(c¢) If an invariant breaks, report anomaly

3. Update expectation

(a) Update to reflect normal changes in data over time
(b) Goto 2

Figure 2: Anomaly detection method

tions from other queries to the same data source may be
added to the data in an attempt to avoid invariants that
are too specific (“over-fitting”, in Machine Learning termi-
nology, e.g., invariants that fail to capture normal data that
was not part of their training set or invariants that capture
anomalies). Observations from redundant data feeds may
be used in heuristics aimed at reducing the number of false
alarms.

Expectation inference and update produce invariants that
are likely to indicate an anomaly if they are broken. This
is the empirical means we use to detect anomalies. In this
paper we concentrate on steps 1 and 2. The need to update
an expectation follows from the dynamic nature of the data.
We defer this issue to future work.

4. Experiments

We demonstrate the feasibility of our approach by experi-
ments on the single data feed cases of Table 1 and the tech-
niques of Table 2.

We show it is possible to infer useful invariants for a sin-
gle, semi-structured data feed of numeric attributes. The
facets of usefulness we concentrate on are detecting seman-
tic anomalies that would be obvious to a human and having
no more than a reasonable number of false alarms. We con-
sider a number reasonable if it is small enough to allow a
human to hand-check the alarms.

We also demonstrate how detected anomalies help us un-
derstand implicit specifications of a data source.

We describe the experimental methodology in Section 4.1.
In Section 4.2, we present the data and techniques we use
for invariant inference. In Section 4.3, we present the exper-
imental results, which we further discuss in Section 4.4.

4.1 Methodology

We want to improve incomplete specifications. We con-
centrate on the first two steps of our method for anomaly
detection (see Figure 2): obtaining an expectation over a
training set and applying the expectation to detect anoma-
lies over a disjoint validation set. To get an indication of
the strength of implicit specifications, we assume no explicit
specifications are available. The expectation is then com-
posed solely of inferred invariants.

We describe the experimental conditions in Section 4.1.1.
‘We explain how we validate the experimental results of steps

1 and 2 in Sections 4.1.2 and 4.1.3, respectively. For step 2
we also explain the presentation of the results and present
a voting heuristic we use in the anomaly detection process
to decrease the number of false alarms.

4.1.1 Experimental conditions

We cover the first two entries of Table 1: a single data feed
viewing observations as stateless and as stateful. We use
techniques matched to the data feeds as indicated in Table 2:
for the single stateless data feed, we use augmented Daikon,
described in Section 4.2.2. For the single stateful data feed
we use an empirical estimate for a confidence interval for the
mean, described in Section 4.2.3.

We apply each experiment to each of three freely available,
distinct, web-based, stock quote data sources, DSo—DS> [4,
5, 6]. Each DS; has multiple comparable numeric attributes,
listed in Table 4.

The data feed is then DF=0BS; o(to), ...,0BS; 0(to+k)=
DS;, Qo, where DS;, i € {0, 1,2} is queried for a stock ticker
symbol Qo (i.e., the same query is issued to all the data
sources). The specific query value (stock symbol) is an ar-
bitrary choice (with respect to invariant effectiveness) for
data with similar change characteristics (beta and volume).
To demonstrate this, we repeat all the experiments for two
additional query values: @) and Q».

Selecting only the comparable attributes might, in gen-
eral, require manual intervention, thus limiting the automa-
tion of our approach. We test the importance of attribute
selection by running two different variants for each experi-
ment. In one, comparable-atirs, the data includes only the
comparable numeric attributes. In the other, all-attrs, the
data includes all numeric attributes.

To summarize, we have two types of experiments, corre-
sponding to the technique used: Daikon and Mean. Each
type of experiment has two variants: comparable-attrs and

all-attrs. Each type of experiment is run over data {OBS; ;(t)}

| i € {0,1,2}, j € {0,1,2}. The data is divided into disjoint
training and validation sets. In each experiment, the tech-
nique is used to infer invariants over the training set (step
1). The inferred invariants form the expectation and are
applied to the validation set to detect anomalies (step 2).

4.1.2 Step 1: inferring invariants

For validation and analysis of the experimental results of
step 1, a human judges whether the inferred invariants are
intrinsic or incidental. Intrinsic invariants should always
hold, due to the semantics of the attributes. Incidental in-
variants happen to hold over the training data but either
should not hold in general or may change over time. Invari-
ants inferred by Mean are likely to be incidental, as a result
of treating dynamic data as stateful. Daikon infers both in-
trinsic and incidental invariants. For validation purposes,
we compare the intrinsic invariants Daikon infers to what
we believe it should infer. In addition, for each of Mean
and Daikon, we compare all of the inferred invariants across
experiments.

4.1.3 Step 2: applying inferred invariants

After inferring invariants from the training set these in-
variants are applied to the validation set: each invariant is
evaluated for all observations of the validation set. Analysis
of step 2 includes a measure of merit for the various parts
constituting the result space of detection (see Figure 3).

False True

Positive FP ™
Rate
- =

Negative FN ™

Figure 3: Result space. Right shows how we normalize the re-
sults. The ellipses mark 1-complements.

From our experiments we get:

e True Positives (TP): correctly detected anomalous data

e False Positives (FP): normal data falsely detected as
anomalous

e False Negatives (FN): undetected anomalous data

e True Negatives (TN): correctly detected normal data

e Normal (Nor): Nor=TN+FP; all data that is actually
anomaly-free

e Abnormal (Ab): Ab=TP+FN; all data with actual
anomalies

To normalize the results to the range [0, 1], we divide TP
and FN by Ab, and TN and FP by Nor. We seek accurate
anomaly detection techniques, those with low FP,FN and
high TP, TN. Diagonal quantities are dependent — they are
1-complements. We need only display the independent mea-
sures. We chose the first row: TP rate and FP rate. These
are identical to one minus the type I error rate (F'N/Ab) and
the type Il error rate (F'P/Nor) defined in [26]. When Ab=0
(entailing TP=0,FN=0) we define TP/Ab=1 and FN/Ab=0,
to maintain the complement relation. Similarly, when Nor=0
we define TN /Nor=1 and FP/Nor=0. The overall misclas-
sification: £E j’+F “ [26] (lower is better) summarizes these
error rates.

Applying intrinsic invariants results in true positives only,
by definition of intrinsic. To check if there are false negatives
due to incomplete intrinsic invariants, we first determine all
the intrinsic invariants we expect, given the attributes and
the constraints on the kinds of relations Daikon infers. We
then apply these invariants to all the validation sets.

Note that if an experiment is reported as having detected
100% anomalies (a TP rate of 1), it does not mean all pos-
sible anomalies are detected, just the anomalies reflected by
the invariants. The detection capabilities are limited by two
major factors: the inductive bias of a technique and incom-
plete information. Any technique that is able to generalize
beyond seen data must have an inductive bias. In the ex-
periments, we only count in Ab anomalies that are relevant
to the inductive bias of the technique used.

The other factor limiting detection capabilities is incom-
plete information. When applying incidental invariants it is
hard, or even not possible, to decide what is a false positive
or a false negative, because no oracle is available to tell us
what a specific value should have been. But we are inter-
ested in the kind of problems that can be recognized and
understood by a human (which we call identifiable), not in
determining what the actual value was nor in detecting pre-
cision problems. When in doubt, we consider the report to
be false. Our reported numbers are, therefore, a worst case
for the specific data and technique.

To detect anomalies, we apply the expectation (inferred
invariants) with and without a voting heuristic. The voting
heuristic cross-checks data with another data feed. The goal

of the voting heuristic is to decrease the number of false
positives and to detect some false negatives.

Without the voting heuristic, the invariants obtained from
the training set in step 1 are applied over the validation set.

With the voting heuristic, additional available data (a re-
dundant data feed) is used. The voting heuristic evaluates
the invariants inferred from the training set of the tested
data feed over the validation set of the tested data feed
and over the corresponding observations in a redundant data
feed. If an invariant breaks in both cases, it assumes the data
has indeed changed (i.e., “normal” change) and no anomaly
is reported. This is designed to reduce the number of false
positives. A false negative is indicated if an invariant only
breaks over the redundant data feed.

To validate the experimental results when the voting heuris-
tic is used, we hand-check whether the voting heuristic has
removed true positives or added false positives. We can-
not always determine this, because the true value is often
unknown. The fault tolerance community often uses some
sort of voting, assuming independence of voters, to decide
what a result should be when the truth is unknown. Our
voting heuristic follows this approach and can be viewed as
multi-version comparison. However, it will work only for
independent data feeds. To have more confidence in the re-
sults of the voting heuristic, we can use a larger number of
data feeds for voting, assuming it is unlikely that the major-
ity of the underlying data sources will have the same subset
of correlated attributes.

4.2 Data and techniques

We use real-world data in our experiments, as we describe
in Section 4.2.1. The techniques we use to infer invariants
are the program invariant detection engine of Daikon, aug-
mented to handle noise, described in Section 4.2.2, and es-
timating a confidence interval for the mean, described in
Section 4.2.3.

4.2.1 Data

‘We chose stock quote data sources because these are semi-
structured, no oracle is available for the value of stocks at
any arbitrary moment in time, and stock quote data sources
include a number of numeric attributes, some of which are
comparable.

We downloaded HTML pages that are the result of query-
ing DSo—DS> for a ticker symbol that is one of Qo—Q2
(CSCO, SUNW, TXN). Stock quotes are provided by each
of these data sources with minimum delays of 20 minutes.
This data was collected Mon—Fri, every ten minutes between
10am and 4pm, for about six weeks. Because we are inter-
ested in semantic anomalies, we ignored pages from all data
sources if any had communication problems at a specific
time. We also ignored syntax/form problems by manually
adjusting our parsing scripts whenever the format of the
HTML page changed. Each OBS;,;(t) results from parsing
one HTML page.

Table 4 lists the numeric attributes of the data sources.
Each resulting data feed has a subset of the following at-
tributes: current value (cur), last value (last), change in
value (change), highest and lowest values in 52 weeks (52h
and 521), highest and lowest daily values (dhigh and dlow),
value when daily trade began (open), stock’s anticipated
fluctuations relative to the market fluctuations (beta), and
stock volume (vol).

DS|Numeric attributes

0 |cur, change, last, 52l, 52h, beta

1 |cur, change, 52I, 52h, open, dlow, dhigh, vol

2 |cur, change, last, 52, 52h, beta, open, dlow, dhigh, vol

Table 4: Numeric attributes. Comparable attributes are in italic.

We use disjoint validation and training sets with equal
sizes for each of the techniques. Each validation set has
observations from a period of one week (about 170 observa-
tions). Each training set has data from two and a half weeks
(425 observations). We use a common approach for dealing
with time-changing data: a moving window [12]. We set the
window size to three and a half weeks, where the last week
in the window is the validation set and the rest is the train-
ing set. At the end of each week we replace the observations
of the oldest week by the observations of the current week:
so for data of six weeks we have three pairs of training and
validation sets for each data feed. This is a simple way to
update the expectation (step 3): re-infer the invariants over
recent data.

Determining the appropriate size of a training set is a
difficult task. Statistical approaches exist for simple cases.
Unfortunately, they often make assumptions that do not
hold for our data. In addition, they can only be applied
when exact information about the statistical techniques used
is available. As more theoretical results become available,
we should incorporate them into our framework. However,
because we use off-the-shelf techniques, full implementation
details are not always available’. We empirically find a good
training set size for Daikon (Section 4.2.2), treating it as a
black box, and use the same size for Mean. In future work,
we plan to develop heuristics for finding a training set size.

4.2.2 Daikon

We use the program invariant detection engine of Daikon.
We reformat the raw data to the input format Daikon re-
quires. The output invariants are relations that hold over
the training data. Each relation can include one to three
attributes.

Daikon was originally designed for finding invariants over
program executions. This affects the vocabulary it uses
and its assumptions regarding its input. The first is not
a problem: we map Daikon’s program points and variables
to our observations and attributes, respectively. Unfortu-
nately, Daikon assumes there is no noise in the data. While
justified for data structure invariants, this assumption is not
justified for our data. Therefore, we augment Daikon with
a noise handling capability: we use Daikon as a black box
over distinct subsets of a training set. We only take invari-
ants that are frequent (in this experiment, appear at least
twice). This can be viewed as a form of voting. This way, we
use Daikon to discover invariants that should usually (rather
than always) hold.

Daikon needs data with enough instances of distinct val-
ues to justify an invariant. However, the more data (larger
period of time) the more likely it is to contain an anomaly,
thus falsifying a valid invariant. The period of time over
which the training data should be collected depends on the
change characteristics of the data. We chose stocks that
have large beta, implying frequent changes. We empirically

'Full details are available for Daikon because it is described
in technical papers and distributed in source form.

DS | Invariants |
0 cur < 52h, cur > 521

1,2 | cur < dhigh, cur > dlow, dhigh < 52h, dlow > 521,
dhigh > open, dlow < open

Table 5: Intrinsic invariants inferred by Daikon

found the time constant for one stock and it applied to the
other stocks as well. For our data, data from half a week
is sufficient for Daikon to infer a single set of invariants.
Because we need to augment Daikon with noise handling
capabilities, inference of several initial sets of invariants is
required for creating the final set. The cost of this augmen-
tation is more data. Training sets of two and a half weeks
(425 observations) seem to suffice.

4.2.3 Mean

We use a technique that provides an estimate for a sym-
metric confidence interval for the mean (p) of the distribu-
tion of an attribute. This is estimated separately for each
attribute and is relevant only for this attribute. The output
invariants are an interval for each attribute.

The technique we use is a very simple one, based on the
form of a confidence interval for the mean of a normal distri-
bution. We would get a similar form of a confidence interval
for p by using Hoeffding’s inequality with the sample vari-
ance. Hoeffding’s inequality does not make any assumptions
about the underlying distribution. It does, however, assume
that the samples are independent. This in not true for our
data: the current value depends on previous values.

Let X1, ..., X, denote a random sample from a normal
distribution. Then (X — %7 X+ C\/Lﬁl) is a confidence in-
terval for p, with a (1 — a) confidence coefficient, where
p is the true mean, X = %E?ZIXZ- is the sample mean,

0_12 _ 1 n

T2 (X — X’)2 is the sample variance, and c is
an arbitrary constant.

If our data were normal or the samples independent, we
could fix o and find the appropriate ¢,n. Because this is
not the case, we choose both n and c to be large, and make
no claims about the confidence coefficient. We empirically

chose ¢ = 50. As for Daikon, n = 425 observations.

4.3 Results

We find that the inferred invariants (step 1) are useful in
detecting anomalies in the tested data feed. Furthermore,
anomalous behavior of a data feed, detected by applying the
inferred invariants to unseen data (step 2), suggests feasible
implicit specifications of the data source. We explain these
results further: in Section 4.3.1 we look at the inferred in-
variants; in Section 4.3.2 we look at the detected anomalies.

4.3.1 Step 1: inferring invariants

The invariants in comparable-attrs are a proper subset of
the invariants in all-attrs for both Daikon and Mean, be-
cause the attributes in comparable-attrs are a proper subset
of the attributes in all-attrs. All invariants over two at-
tributes (Daikon) in comparable-attrs are intrinsic, because
comparable-attrs includes only attributes that are meaning-
ful to compare.

Dasikon: intrinsic invariants are similar both within a sin-
gle query value Q; (ticker symbol) and between different
queries. Table 5 shows these invariants.

Daikon’s output helped us to identify intrinsic invariants.

Qo Q1 Q-

DSg |D51 |D,S'2 DSg |DSl |D52 DSg |D51 |D52

Ab
atr 0| 34| 52 4 1| 44 8 0 0
obs 0| 14| 45 4 1| 44 3 0 0
M |atr 0| 20| 32 4 0 0 8 0 0
obs 0| 14| 16 4 0 0 3 0 0
Nor

D jatr [2040 3026 (3519 2008 (3017 3477 2032 (3060 3570
obs | 510 | 496 | 465 | 499 | 502 | 459 | 502 | 510 | 510
M jatr 2040 (3040 3538 [2008 [3018 (3521 2032 (3060 3570
obs | 510 | 496 | 494 | 499 | 503 | 503 | 502 | 510 | 510
Table 6: Total number of abnormal (Ab) and normal (Nor)
data in the validation sets, found by either technique. Counted
by attributes (atr) and by distinct observations (obs), in the
comparable-attrs variant for Daikon (D) and for Mean (M)

We had some relations in mind, yet after examining the
inferred invariants, we realized additional relations should
hold. For example, in advance of these experiments, we did
not think of invariants related to the attribute open.

In the majority of the experiments (26 out of 27 for each
of comparable-attrs, all-attrs), all intrinsic invariants were
inferred. Often, an inferred invariant does not include equal-
ity (e.g., < rather than <), because the training examples
do not include equality. In one experiment (DS2,Q2) two
invariants were missing (dhigh < 52h, dhigh > open). This
is due to the training data containing anomalies related to
the involved attributes in at least four of the subsets used
in the noise handling augmentation.

Incidental invariants over one attribute differ slightly within
a single query, indicating normal changes in data, and sig-
nificantly between different queries, as expected for differ-
ent stocks. In one experiment (for each of comparable-attrs
and all-attrs; DS>,Qo) Daikon learned an anomalous value
(521 = 8). This is balanced by intrinsic invariants that de-
tect these observations as anomalous. In all-attrs, incidental
invariants over two non-comparable attributes exist, due to
the different units used for these attributes. Examples in-
clude: cur < vol, dlow > change.

Mean: all Mean invariants are incidental. These invari-
ants always involve specific values of an attribute, for ex-
ample: 42.31 < cur < 63.65. Although such values may be
inherent to an attribute, resulting in an intrinsic invariant,
this was not the case for our data. We examine X and o’.
These vary significantly between different attributes. For
a specific data source, query, and attribute, the values are
rather similar. For specific query and attribute across differ-
ent data sources, the values are usually similar. Cases that
are not similar may suggest a difference in implicit specifi-
cations, as discussed in Section 4.4.4 below.

4.3.2 Step 2: applying inferred invariants

We apply the invariants inferred in step 1 over the vali-
dation set. An anomaly is detected if an invariant does not
hold over the validation set. The results are summarized in
Table 6 and in Figure 4.

A single observation can trigger multiple warnings, be-
cause it contains multiple attributes. An observation is
anomalous if it contains at least one anomalous attribute.
The numbers we report in Table 6 are, for each comparable-
attrs variant of an experiment (Daikon or Mean applied to

{OBS; ;(t)} for all DS;,Q; combinations), the total abnor-
mal data and the total normal data, as reported by the two
techniques, counted by attributes and by distinct observa-
tions.

The number of observations is the same for both comparable-

attrs and all-attrsvariants. The number of attributes is
larger in all-attrs: 33% more for DSy, 25% more for DS,
and 30% more for DS>. The majority of identifiable anoma-
lies involve invariants solely over comparable attributes. Only
in one case is there an identifiable anomaly over a non-
comparable attribute (beta), in three different observations
(for @2, DSp). Some anomalies involve multiple attributes of
the same observation (Table 6, Qo, DS1 and DSs; Q2, DSo:
the number of abnormal attributes is larger than the number
of abnormal observations). It seems that often an anoma-
lous attribute indicates the raw data used by the data source
was somehow corrupted and therefore other attributes are
anomalous as well. In addition, some attributes are calcu-
lated based on others (e.g., 52! is based on dlow) and an
anomaly might propagate.

0.4 Daikon,comparable:no h 0.4 Daikon,comparable:with h 0.4 Daikon,comparable:with h-
©
E *
go2 O w02 A 02
& O x
0 + 0 Q % 0 Q %
0 0.5 1 0 05 0 05
0.4 Daikon,all:no h 0.4 Daikon,all:with h 0.4 Daikon,all:with h—
E o
So0.2 % 02 02
& 0 ®
0 0 O X% 0 O %
0 0.5 1 0 0.5 0 0.5
0.4 Mean,comparable:no h 0.4 Mean,comparable:with h 0.4 Mean,comparable:with h—
£
So.2 02 02
E * ﬁ Y 00
O 10
0 0 & —@}w
0 0’5 % 0 05 % i (2)2 05
0.4 Mean,all: no h 0.4 Mean,all:with h P2 1:1 Mean,all:with h—
2 0 02
£ 0,2
g 0.2 e 0.2 * 1,2
a O 2,2

TP/anomalies TP/anomalies TP/anomalies

Figure 4: TP (True Positives) ratio vs. FP (False Positives) ra-
tio. Best possible result: (T'P/anomalies, FP/normal) = (1,0).
Each data feed is indicated by a single marker denoted in the
legend by i,j, corresponding to DS;,Q;. Rows 1-2 depict results
for Daikon, rows 3—4 for Mean. For each of Daikon/Mean, first
row is the comparable-attrs variant, second row is all-attrs. First
column is results without heuristic (h); second with h; third with
h, after manually removing attributes that seem to be computed
differently by the different data sources (h-).

Figure 4 shows that Daikon and Mean detect most of the
anomalies in the tested data feeds (most of the points are at
the lower right corner), with T'P/Ab near 1 and FP/Nor less
than 0.3. The overall misclassification is always under 0.3.
With the voting heuristic it is always under 0.15 and usually
under 0.02, and with the voting heuristic after manually
removing attributes that seem to be computed differently by
different data sources (h-; Section 4.4.4) it is always under
0.02. Although the worst cases we encountered have a lot of
data points, most of these data points were misclassified due
to only one or two invariants — so it was easy to deal with

+
00 0.5 ® % 00 0.5 %7 0[‘] ((;.5 %

manually. In addition, the voting heuristic is very effective
in removing false positives, provided attributes in different
data sources are independent.

4.4 Discussion

In Section 4.4.1 we compare the all-attrs and comparable-
attrs variants and find that they produce similar results. In
Section 4.4.2 we compare the two techniques we use and find
it is helpful to use both. In Section 4.4.3 we demonstrate
how detected anomalies can help us find feasible implicit
specifications. Section 4.4.4 discusses the voting heuristic,
which we find to be very effective in reducing the number of
false positives, but not the number of false negatives. Re-
maining challenges, including a discussion of how automatic
we can make our approach, are presented in Section 4.4.5.

Whenever we indicate DS;,Q; the experiment can be found
in Figure 4 by using the indices ¢, j to locate the appropriate
marker symbol.

4.4.1 comparable-attrs vs. all-attrs

The same anomalies are detected in both comparable-
attrs and all-attrs variants. Using all numeric attributes
sometimes produces more false alarms than using compa-
rable attributes only. This is to be expected, because the
total number of attributes is larger. Still, the results are
good, as summarized at the end of Section 4.3.2. This is
due to comparable-attrs invariants being a proper subset of
all-attrs invariants and to the additional all-attrs invariants
rarely triggering anomalies. For Daikon, non-comparability
of attributes helps to explain the latter: the units are cali-
brated differently. Comparability of attributes is not mean-
ingful for Mean, because it uses only a single attribute per
invariant. These results are encouraging, as they indicate
attribute selection is not a major issue for Daikon and for
Mean. Due to the similarity of comparable-attrs and all-
attrs, the following analysis is relevant to both.

4.4.2 Daikon vs. Mean

We found Mean useful for inferring invariants over sin-
gle attributes and Daikon useful for inferring invariants over
multiple attributes. Daikon invariants for single attributes
contain exact values, which may result in a large false pos-
itives rate (Figure 4). However, this is easily solved by ig-
noring these few invariants. There are some anomalies that
Mean does not and cannot be expected to detect. These
are anomalies that stem from a relation that should hold
between attributes, where the values for each attribute are
reasonable (not very different from other values of the at-
tribute). In our experiments these anomalies are discovered
by the Daikon intrinsic invariants: open < dhigh, open >
dlow (data feeds: Qo,DS2; Q1,DS;1 and DS»), and inci-
dental invariants for 52h and 52! that accompany the in-
trinsic invariants: dhigh < 52h and dlow > 521 (Qo,DS1).
However, Mean is able to identify anomalous attributes that
Daikon cannot. In the case of DSy,Q2 (0,2 in Figure 4), a
Daikon incidental invariant involving 52! detects 4 anoma-
lous observations. The same observations are detected by
Mean invariants involving beta and last. The Mean invari-
ant involving 52/ does not detect anomalies. Only by using
both techniques do we notice that these observations include
multiple anomalous attributes.

In addition, the combination of Daikon and Mean in-
variants makes it easier to decide what anomalies are true.

Whereas Daikon intrinsic invariants are easy to understand,
Mean can explain some anomalies detected by applying the
Daikon incidental invariants, which otherwise seem acciden-
tal. For example, for DSy,Q01 Daikon 52h = 129.31 does not
hold in 4 observations and for DSp,Q» Daikon 521 = 35.00
does not hold in 4 observations. This might be due to normal
changes. But Mean invariants involving 52h or 521 break as
well. Manual inspection of the data shows that these val-
ues are inconsistent: other values before, between, and after
these observations have not changed. In general, when both
Daikon and Mean invariants break over a observation, our
confidence regarding the validity of the warning increases.

4.4.3 Exposing implicit specifications

Even though the data sources underlying the data feeds
we test provide a similar service, and may even use the same
raw data, the anomalies detected in the experiments help us
expose some differences in the behavior of the data sources,
beyond the stated 20 minute delay. Such differences are a
manifestation of incomplete specifications and entail feasible
implicit specifications. Daikon and Mean invariants involv-
ing dhigh, 52h, dlow, 521, detect anomalies in DS1,Qo and
in DS»,Qo, that help us expose such implicit specifications.
DS, immediately updates the 52k or 52! value whenever it
is exceeded by the dhigh or dlow value; DS1 does not. The
behavior of DS, causes inconsistent values of 521 or 52h
whenever the dlow or dhigh values are anomalous, which
is detected by Mean invariants and by Daikon incidental
invariants. The behavior of DS; causes dhigh < 52h or
dlow > 52l to break whenever dlow or dhigh are anoma-
lous.

4.4.4 \oting heuristic

The voting heuristic is usually very effective in eliminat-
ing false positives for both Daikon and Mean. Moreover,
it sometimes exposes additional implicit specifications. The
heuristic is not effective in eliminating false negatives. How-
ever, the number of false negatives is small and all the cases
in which anomalous attributes are missed include multiple
anomalous attributes for a single observation. At least one
of these attributes is always detected.

The voting heuristic sometimes either adds false positives
(Figure 4, Mean, all-attrs, DS1,Qo and DS>,Qo), as a re-
sult of problems at the redundant data feed, or does not
reduce the number of false positives significantly (DSo,Qo),
as a result of the data feeds being dependent. Using more
data feeds for voting should alleviate these problems, as we
hope only a minority of data sources are dependent with
respect to the same attributes. Dependent data feeds can
also cause the voting heuristic to eliminate true positives, as
consistently happens for DS1,Qo and DS>,Q0, where both
data feeds have the same anomalous values for dhigh, dlow,
hinting the underlying data sources may be using the same
raw data feed. However, the detection is still effective be-
cause the processing of this raw data (e.g., 52, 52h) seems
to be independent (as exposed in the description of the im-
plicit specifications in Section 4.4.3), and the voting heuris-
tic works well with independent voters.

If the voting heuristic is ineffective in reducing false pos-
itives even when a larger number of data feeds is used in
voting, true differences among the data sources may exist
(implicit specifications). We found attributes that seemed
to be calculated and updated differently in the different data

sources by looking at these cases (DSo,Qo for attributes 521
and beta; Mean, DS1,Qo and DS2,Qo for vol). For example,
by looking at 521 in DS and in D.S> we discover additional
implicit specifications of DS>: we already know 52l, 52h
change immediately with dlow, dhigh. In addition, we real-
ize that whenever the values of dhigh or dlow do not exceed
those of 52h or 521, 52h and 52! are updated infrequently:
less frequently than once in a few weeks. DSy seems to up-
date 52h, 521 about every week. For DS; and DS> we notice
differences in the calculation of vol, which seem to exist only
for Qo (the values of vol are consistently and significantly
different). This is an example of implicit specifications that
apply only to a specific stock. Demanding that such speci-
fications be made explicit is not reasonable.

Suspected anomalies help us understand the origin of each
attribute (direct vs. interpreted), which gives us hints as
to reasons for differences in values (implicit specifications).
For direct attributes, the reasons are usually different up-
date policies. For interpreted attributes, the reasons may
also include different calculation methods. Such suspected
anomalies may indicate true problems at one of the data
feeds. However, because we cannot determine this, we indi-
cate these cases as false positives. We should have a way to
flag these as suspected different implicit specifications.

The graphs involving h— in Figure 4 display the results
of applying the voting heuristic after manually eliminating
attributes that seem to be computed differently by different
data sources. This is part of checking our former assump-
tion regarding the heuristic exposing implicit specifications.
We check whether a large number of false alarms involves
attributes which we have identified as being computed dif-
ferently. We see that this is indeed the case. Manually elim-
inating such attributes always improves the results (reduces
false positives). However, to verify that this is indeed due
to different computation methods, we would need additional
information about the data sources.

4.4.5 Remaining challenges

The major challenges which we still need to address are
how automatic we can make our approach and demonstrat-
ing the generality of our approach.

We aim to make our approach for anomaly detection as
automatic as possible. We want user intervention to be in-
versely proportional to its expected frequency. Automation
challenges are related to the data and techniques. These
challenges include attribute selection, determining training
set size, and handling normal changes in the data. We do
not consider attribute extraction an obstacle to automation,
because Information Integration research [19] deals with pro-
viding solutions for automatic extraction. Attribute selec-
tion can be a difficult task and may require user intervention.
This is a subject of current research in Machine Learning
and Data Mining and we plan to take advantage of this re-
search. Finding a good training set size is a challenge, as we
discussed in Section 4.2.1. The need to update the expec-
tation arises from the dynamic nature of the data, because
normal changes should not be identified as anomalies. Han-
dling concept drift is an area of current research in Machine
Learning [12]. Techniques adjusted for concept drift or tra-
ditional techniques that are re-applied over a moving win-
dow or with partially forgetting older data may be used to
update the expectation. Many techniques have parameters
which are data dependent, but no mechanisms for adjusting

the parameters. These parameters need to be stated and
explained as part of the information supplied for matching
data and techniques in our approach, because it might not
always be possible to provide heuristics for setting these pa-
rameters.

We believe our approach should generalize over different
types of data feeds, including those with categorical and free
attributes?, over different criteria, over different candidate
techniques, and when some specifications do exit. We hope
our approach can provide a unifying high level view for var-
ious types of data feeds.

We also believe that using multiple, independent data
feeds can improve the effectiveness of our approach. In this
paper we presented an example using a single data feed. We
plan to support using data from a single as well as multiple
data feeds.

5. Conclusions

We have presented our approach for inferring invariants
to be used as proxies for missing specifications in semantic
anomaly detection. The work presented is the first step in
providing a method to assess and improve the dependability
of dynamic data feeds.

The experimental results demonstrate it is possible to in-
fer useful invariants over a single data feed of numeric at-
tributes and that this can be done, to a large extent, auto-
matically (in the context of stock market tickers). In par-
ticular, Daikon, which was originally designed for detecting
program invariants from program executions, and which we
augmented to handle noise, is effective in inferring useful
invariants that indicate internal consistency, when viewing
observations as singular points in time. Estimating a con-
fidence interval for the mean is effective for inferring useful
invariants that indicate reasonable values, when viewing ob-
servations as stateful.

The inferred invariants were effective in discovering se-
mantic anomalies in a data feed. Moreover, we were able to
deduce implicit specifications of the underlying data source.
The number of false positives and false negatives was reason-
able for a human to handle. The voting heuristic described
in Section 4.1.3 worked well in reducing the number of false
positives. Nonetheless, more data feeds are needed for vot-
ing (we assume values for each attribute are independent
among the majority of such data feeds). Attribute selection
was not a major issue for the data and techniques we used.
Moreover, except for the selection of a training set size and
an additional parameter (¢ for Mean), invariant inference
and anomaly detection were fully automated.

6. Acknowledgments

We greatly thank Michael Ernst, Aaron Greenhouse, Rosie
Jones, Gal Kaminka, Beth Latronico, Roy Maxion, and Dan
Pelleg for helpful discussions and suggestions.

This research was supported by the National Science Foun-
dation under Grant CCR-~0086003 and by the Software In-
dustry Center at Carnegie Mellon University.

References

[1] Alexa browser enhancement. www.alexa.com. Accessed
April 2001.

2However, free text raises additional challenges which are
beyond the scope of our work

[2] M. Bauer and D. Dengler. Trias: Trainable information as-
sistants for cooperative problem solving. In 3rd Int’l Con-
ference on Autonomous Agents, 1999.

[3] C.Bishop. Neural Networks for Pattern Recognition. Claren-
don Press, Oxford, 1996.

[4] Stock quotes data source. finance.northernlight.com. Ac-
cessed September—November 2000.

[5] Stock quotes data source. qgs2.cnnfn.com. Accessed

September—November 2000.

[6] Stock quotes data source. quote.pathfinder.com. Accessed
September—November 2000.

[7] M. Ernst. Dynamically Discovering Likely Program Invari-
ants. PhD thesis, University of Washington, Department of
Computer Science and Engineering, 2000.

[8] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dy-
namically discovering likely program invariants to support
program evolution. In IEEE Transactions of Software En-
gineering, pages 99-123, 2000.

[9] Google search engine. www.google.com. Accessed April 2001.

[10] Go!Zilla download manager. www.gozilla.com. Accessed
April 2001.

GritBot. http://www.rulequest.com/gritbot-info.html. Ac-
cessed January 2002.

=
=

[12] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In 7th Int’l Conference on Knowl-
edge Discovery and Data Mining, 2001.

[13] Kangaroo. www.kangaroonet.com. Accessed August 2001.

[14] C. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accu-
rately and reliably extracting data from the web: A machine
learning approach. In Date Engineering Bulletin, 1999.

[15] N. Kushmerick. Regression testing for wrapper maintenance.
In AAAI-99, pages 74-79, Orlando, 1999.

[16] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection. In ACM Transactions
on Information and System Security, volume 2, pages 295—
331, August 1999.

[17] J. Laprie. Dependability: Basic Concepts and Terminology.
Springer-Verlag, Vienna, 1991.

[18] K. Lerman and S. Minton. Learning the common structure of
data. In 17th National Conference on Artificial Intelligence,
2000.

[19] A.Levy, C. Knoblock, S. Minton, and W. Cohen. Trends and
controversies: Information integration. In IEEE Intelligent
Systems, volume 13, pages 12-24, 1998.

[20] A. Levy, A. Rajaraman, and J. Ordille. Querying heteroge-
neous information sources using source descriptions. In 22nd
Int’l Conference on Very Large Data Bases, September 1996.

[21] M. R. Lyu. Handbook of Software Reliability Engineering.
IEEE Computer Society Press and McGraw-Hill, 1996.

[22] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[23] O. Raz and M. Shaw. An approach to preserving sufficient
correctness in open resource coalitions. In 10th Int’l Work-
shop on Software Specification and Design, 2000.

[24] O. Raz and M. Shaw. Software risk management and insur-
ance. Position paper. In 3rd Workshop on Economics-Driven
Software Engineering Research, 2001.

[25] Dow Jones average collapses to 0.20. TheRegister, March 19
2001. www.theregister.co.uk/content/28/17700.html.

[26] P. Runeson, M. Ohlsson, and C. Wohlin. A classification
scheme for studies on fault-prone components. In Product
focused software process improvement, pages 341-355, 2001.

[27] W. Torres-Pomales. Software fault tolerance: A tutorial.
Technical Report NASA/TM-2000-210616, NASA Langley
Research Center, Hampton, Virginia, 2000.

[28] XML 1.0, W3C recommendation. w3c.org,
http://www.w3.org/TR/2000/REC-xml-20001006. Ac-
cessed Nov. 2001.

