
In Turner, T., Szwillus, G., Czerwinski, M. and Paterno, F. (Eds.) Proceedings of ACM CHI’2000 Conference on Human Factors in Computing Systems,
97-104. New York: ACM Press.

Instructional Interventions in Computer-Based Tutoring:
Differential Impact on Learning Time and Accuracy

Albert Corbett
Human Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

+1 412 268 8808
corbett@cmu.edu

Holly Trask
American Management Systems

12601 Fair Lakes Circle
Fairfax, VA 22030 USA

+1 703 227 4885
holly_trask@amsinc.com

ABSTRACT
We can reliably build “second generation” intelligent
computer tutors that are approximately half as effective as
human tutors. This paper evaluates two interface
enhancements designed to improve the effectiveness of one
successful second generation tutor, the ACT Programming
Tutor. One enhancement employs animated feedback to
make key data structure relationships salient. The second
enhancement employs subgoal scaffolding to support
students in developing simple programming plans. Both
interventions were successful, but had very different impacts
on student effort required to achieve mastery in the tutor
environment and on subsequent posttest accuracy. These
results represent a step forward in closing the gap between
computer tutors and human tutors.

Keywords
Intelligent Tutoring Systems, Instructional Interface
Design, Animation, Plan Scaffolding, Student Modeling

INTRODUCTION
Computer-based learning environments first appeared three
decades ago that afford one advantage of human tutors:
individualized interactive learning support. Fifteen years
ago "second generation" computer tutors began to appear
that incorporate artificial intelligence technology and we can
reliably build intelligent tutors that are about half as
effective as human tutors. How will we develop "third
generation" tutors that approach the effectiveness of human
tutors? A significant effort to bridge the gap focuses on
natural language dialogs between student and tutor [8, 12].
In contrast, this paper evaluates two enhancements
embedded directly in the problem solving interface. These
enhancements are designed to increase the educational
efficiency of cognitive mastery learning in the ACT
Programming Tutor (APT).

APT is a computer-based problem solving environment in
which students learn to write short programs. It is a
cognitive tutor that employs a detailed cognitive model of

the programming knowledge students are acquiring to
support students in learning. Cognitive tutors [2] are
designed to (a) provide students an authentic problem
solving interface, (b) provide assistance if needed on each
problem solving action, (c) monitor the students growing
knowledge in the course of problem solving and (d) provide
sufficient learning opportunities for the student to reach
mastery.

As described in the first two main sections of the paper,
APT is a highly successful learning environment.
However, there is evidence that providing more and more
problems in the standard problem solving interface
ultimately yields diminishing educational gains and some
students fall short of genuine mastery. This paper reports
two interface modifications that were developed in response
to this evidence. As described in the third and fourth main
sections these interventions are introduced early in the Lisp
curriculum when students confront the first two substantial
learning challenges. The first intervention employs
animated feedback to help clarify basic operator
functionality. The second intervention employs subgoal
scaffolding to support students in planning very simple
algorithms. The final sections report an empirical
evaluation of these enhancements. The two interface
interventions proved to be successful, but had very different
impacts on learning.

THE ACT PROGRAMMING TUTOR
APT is a cognitive tutor which helps students learn to
write short programs in Lisp, Prolog or Pascal. Each of
these three programming language is constructed around a
language-specific cognitive model of the knowledge the
student is acquiring. The cognitive model enables the tutor
to trace the student's solution path through a complex
problem solving space in a process we call model tracing.
The tutor provides feedback on each problem solving action
and, if requested, provides advice on steps that achieve
problem solving goals.

Figure 1 displays the APT Lisp Module midway through
an exercise. The student has previously read text presented
in the window at the lower right and is completing a
sequence of corresponding exercises. The problem
description appears in the upper left window and the
student's solution appears in the code window immediately

Figure 1. The APT Lisp Tutor interface.

below. The student selects operator templates and types
constants and identifiers in the user action window in the
middle right. In this figure the student has encoded the
operator defun used to define a new operator, has entered
the operator name, declared input variables and begun
coding the body of the definition. The three angle-bracket
symbols in the figure, <EXPR1>, <PROCESS1> and
<EXPR0> are placeholders which the student will either
replace with additional Lisp code or delete.
Communications from the tutor appear in the Hint window
in the lower left. In this figure the student has asked for a
hint on how to proceed.

Cognitive Tutor Effectiveness
We have been developing cognitive tutors for mathematics
and programming at Carnegie Mellon for more than a
decade. APT has been used to teach self-paced
programming courses here since 1984. More recently we
have developed cognitive tutor-based algebra and geometry
courses that are in use in more than 100 schools around the
country. We have completed several summative
evaluations comparing the effectiveness of cognitive tutors
and traditional problem solving activities. In research
which compared college students working with APT to
those completing the same programming problems in a
conventional programming environment, APT was shown
to speed learning by as much as a factor of three and yield
small but reliable increases in test performance [2].
Evaluations of the cognitive mathematics tutors have

compared classroom use of the cognitive tutors to
conventional classroom problem solving activities
(seatwork and blackboard work). Time on task is constant
in these studies and students in the cognitive tutor
condition score about one standard deviation higher (or
about a letter grade higher) on achievement tests than
students in the conventional classroom condition [2, 9]. A
one standard deviation effect size is two or three times
larger than the average obtained by conventional computer-
based instruction [5], and about half as large as the effect
size that can be achieved by individual human tutors [4].

KNOWLEDGE TRACING: COGNITIVE MASTERY
Following the ACT-R theory of skill knowledge [3], the
ACT Programming Tutor assumes that goal oriented
problem-solving knowledge can be represented as a set of
independent production rules that associate problem states
and goals with problem solving actions and consequent
state changes. For example, Table 1 displays two
productions that are acquired early in the Lisp curriculum.
The tutor curriculum is structured around production sets.
In each curriculum section students read text that introduces
a small set of production rules. Then the tutor provides
problems that exercise those rules. As the student works,
the tutor monitors the student's growing knowledge in a
process we call knowledge tracing. The tutor employs
some simple learning and performance assumptions and a
Bayesian computational procedure to estimate the

probability that the student has learned each of the
productions. As each opportunity arises to apply a rule,
the tutor updates its estimate of the probability that the
student has learned the rule, contingent on the student's
action. (See [6] for more details). The Skill Meter in the
upper right corner of Figure 1 depicts the tutor's model of
the student's knowledge state. Each entry in the Skill
meter represents a production rule in the underlying
cognitive model and the shading represents the probability
that the student knows the rule. A check mark indicates
that the student has mastered the rule.

IF the goal is to return the elements of a list in
 reverse order,
 THEN code the function reverse, and set a goal to
 code the list as an argument.

 IF the goal is to insert an expression at the beginning
 of a list,
 THEN code the function cons, set a goal to code the
 expression as the first argument, and set a goal to
 code the list as the second argument.

Table 1: Two early productions in the Lisp curriculum.

This knowledge tracing process is employed to implement
cognitive mastery learning in APT. In each curriculum
section the student completes a small fixed set of required
problems that introduce all the productions being traced.
The tutor then continues providing problems in the section
until the student reaches a criterion probability for each rule
in the set. This mastery criterion in the tutor is a
probability of 0.95.

Cognitive Mastery Learning Successes
Cognitive mastery has proven effective in APT, by several
criteria: (a) Average posttest scores are reliably higher for
students who work to cognitive mastery than for students
who complete a fixed set of required tutor problems [1]; (b)
Similarly, twice as many cognitive mastery students reach
“A” level performance (at least 90% correct) on posttests in
the early Lisp curriculum [6]; (c) Individualized remediation
reduces total time invested by a group of students in
reaching mastery. (The number of remedial problems varies
substantially across students and, in the absence of such
individualization, mastery could only be ensured if all
students complete the greatest number of problems any
student needs); and (d) The knowledge tracing model that
guides mastery learning in the tutor reliably predicts
individual differences in posttest performance across
students [6].

Cognitive Mastery Learning Shortcomings
Nevertheless, there are noteworthy shortcomings in
cognitive mastery learning: (a) A substantial proportion of

students in the cognitive mastery condition still fall short
of “A” level performance in the early Lisp curriculum [6];
(b) Students are investing substantial amounts of time and
effort to reach mastery. In a typical study, students in the
cognitive mastery condition completed an average about
75% more problems than students who completed the fixed
set of required tutor problems [6]; (c) There is an inverse
correlation between the number of problems students
required to reach mastery and students’ test performance.
The students who struggle the most and complete the most
problems do not do as well on the test as students who
perform well in the tutor [6]; and (d) The tutor’s knowledge
tracing model slightly but systematically overestimates
average test performance. Evidence suggests that this
occurs because some students are learning sufficient, but
suboptimal productions [7].

These shortcomings represent converging evidence that
providing more and more remedial problems of the same
type yields diminishing educational returns. In this study
we explore two forms of augmented support in the problem
solving interface designed to speed learning and increase
asymptotic test performance in early sections of the Lisp
curriculum.

AUGMENTED SUPPORT FOR EARLY
CHALLENGES IN THE LISP CURRICULUM
This study focuses on the first four sections in the APT
Lisp curriculum. These sections introduce (a) two data
types, atoms (symbols) and lists (hierarchical groupings of
symbols), (b) three “extractor” functions, car, cdr and
reverse, that take a single list as an argument and return a
component or transformation of the argument, (c) three
“combiner” functions, append, cons, and list , that take
multiple arguments and return new lists, and (d) the syntax
and functionality of simple algorithms involving embedded
function calls. Table 2 displays sample exercises from each
of these sections.

Section 1: Write a lisp function call that takes the list
 (c d e) and returns (d e)
 Solution: (cdr ‘(c d e))

Section 2: Write a lisp function call that takes the
 arguments (a b) c (d) and returns
 ((a b) c (d))
 Solution: (list ‘(a b) ‘c ‘(d))

Section 3: Write a function call that takes the list
 (a b c d) and returns the last element, d.
 Solution: (car (reverse ‘(a b c d)))

Section 4: Write a function call that takes the lists
 (a b c) and (d e f) and returns (a f e d).
 Solution: (cons (car ‘(a b c)) (reverse ‘(d e f)))

Table 2. A sample problem in each of four tutor sections.

Students have little difficulty with the three extractor
functions, car, cdr and reverse and with extractor
algorithms in section 3. However, many students struggle
with the differences among the three combiner functions,
append, cons and list in section 2 and with the
combiner/extractor algorithm problems in section 4. The
two instructional interventions described below focus on
these two curriculum sections.

Supporting Data Structure Parsing: Animated
Feedback
In curriculum section 2 students are learning to distinguish
among three combiner functions and the subtlety of this
distinction is captured in the text excerpt displayed in
Table 3. There are multiple reasons that this discrimination
is difficult. First, the terminology is difficult, with
semantically related and confusable terms for novices –
atoms, elements, arguments, expressions. Second,
students have trouble grasping the hierarchical structure of
lists. They may not understand that they need to analyze
the structural relationship among the input arguments and
results and, finally, students have trouble visually parsing
the parentheses when they do try to analyze these structural
relationships.

Study the following examples to see how list, append
and cons are distinguished from each other.

 (list '(a b) '(c (d e) f)) returns ((a b) (c (d e) f))

 (append '(a b) '(c (d e) f)) returns (a b c (d e) f)

 (cons '(a b) '(c (d e) f)) returns ((a b) c (d e) f)

The function list can take one or more arguments, and
makes a new list by "wrapping parentheses" around its
arguments. The function append takes one or more
lists as arguments, makes a new list by "removing the
parentheses" from around each of its arguments and
merging all the elements into one long list. The
function cons always takes two arguments and inserts
the first argument at the beginning of the second.

Table 3. An excerpt from the Lisp text describing the
operators append, cons and list.

The college students in our samples do eventually learn
this discrimination reasonably well. Students’ performance
is quite good by conventional standards, but falls short of
the mastery ideal that all students may become “A”
students. There is evidence that students’ posttest
performance falls short of true mastery because some
students encode rules that are correlated with, but different
from optimal rules [7]. For example, students may encode
a heuristic that if the arguments in a problem are all lists,
then append is the appropriate function.

Can we help all students become “A” students? The
effectiveness of natural language instruction is limited here

by terminology confusion and the perceptual challenge of
parsing parentheses. Instead, to highlight the key structural
relationships among input arguments and results, we
developed an augmented interface for combiner function
calls that provides animated graphical feedback, as
displayed in Figures 2 and 3.

Figure 2 Animated feedback window for combiner
function calls in curriculum section 2.

After the student has selected a combiner function in a tutor
problem the feedback window displayed in Figure 2
appears. This window appears whether or not the student
selects the correct function, since there is a 1/3 chance of
selecting the correct one by guessing. When the student
clicks the animate button at the bottom of the window, the
structural relation between the arguments and result is
animated. Arguments and parentheses move on the screen
to display this structural relationship. Figure 3 depicts the
animation for the function cons, in which the initial
parenthesis of the second argument slides over to the left
and the first argument slides to the right to become the first
element of the second argument. In the case of list , the
input arguments slide together and an encompassing set of
parentheses descends. In the case of append, the outer
parentheses of each input argument descend off the screen,
the arguments slide together on the screen, and two new
parentheses encompass the result.

Plan Support: Subgoal Scaffolding
Consider the section 4 problem displayed in Table 4. The
tutor’s structure editor supports top-down programming so
under the ACT-R model, students need to satisfy three
planning goals before they begin coding. Under cognitive
mastery learning, the students should have mastered the
final five coding productions at the bottom of the table in
the first three curriculum sections. The unique components
of this section are the productions needed to satisfy the
three planning goals. Again, students master this task
reasonably well, but often require many remedial problems
to do so.

(
(hut)

(hut)
(

Figure 3. The initial state, two intermediate states and the
final state in animating the structural relationship
between input arguments and the output list for the
function cons.

To support more efficient learning in this curriculum
section, we developed a plan reification interface as
displayed in Figure 4. Panel 4a displays the standard
coding interface at the beginning of a programming
problem. Students simply select the <code> symbol and
begin generating Lisp code. Panel 4b displays the plan
reification interface which requires the student to post the

 Exercise: Write a function call that takes the lists
 (a b c) and (d e f) and returns the list
 (a f e d).

 Solution: (cons (car ‘(a b c)) (reverse ‘(d e f)))

 Recognize that a must be extracted from (a b c).
 Recognize that the list (d e f) must be reversed.
 Recognize that a and (f e d) must be combined
 in a list.
 Code a call to cons
 Code a call to car.
 Code the first given as the argument to car.
 Code a call to reverse.
 Code the second given as the argument to reverse.

Table 4. Planning and coding goals for a section 4
problem

two expressions that must be extracted from the given
arguments before entering any code. In this example,
students must type b for <subgoal1> and (f g h) for
<subgoal2> before entering the code (list (car (cdr ‘(a b c)))
(cdr ‘(e f g h))).

Figure 4a. The standard coding interface.

Figure 4b. The plan scaffolding interface

DESIGN OF THE STUDY
In this evaluation of animated parenthesis feedback and
subgoal scaffolding interface enhancements, students worked
through the first four sections in the ACT Programming
Tutor Lisp curriculum and completed three programming
tests.

Participants
Thirty nine college students were recruited to participate in
the study for pay. These students had an average
Mathematics SAT score of 648 and had completed an
average of 1.3 programming courses previously, although
none had prior experience with Lisp. Both these variables
were controlled in assigning students to two groups.
Eighteen students completed the study with the standard
coding interface. Twenty-one completed the study with
augmented feedback and subgoal scaffolding as described
above.

Procedure
Students in this study completed the first four sections in
the APT Lisp curriculum. In each curriculum section,
students read text describing Lisp, completed one or two
sets of quiz questions on the text, completed a small fixed
set of required programming exercises that covers the rules
being introduced, then completed remedial exercises as
needed to bring all production rules in the section to a

mastery criterion (knowledge probability > 0.95). Students
in the standard interface condition completed all exercises
in the standard APT coding interface. Students in the
Augmented Support group received animated parenthesis
feedback in the second curriculum section on basic
combiner functions and subgoal scaffolding in the fourth
section on combiner/extractor algorithms.

Students completed programming tests following the first,
third and fourth sections. These tests were cumulative and
contained six, twelve and eighteen programming exercises
respectively. The test exercises were similar to the tutor
exercises and the test interface was identical to the standard
tutor interface, except that students could freely edit their
code. No tutorial assistance and no augmented support of
any kind was available in testing.

RESULTS
Two measures were employed to evaluate the students’
learning effort in reaching cognitive mastery: number of
problems needed to reach mastery and elapsed time in
reaching mastery. The first measure is theoretically
relevant, since learning is assumed to occur at opportunities
to fire productions. The second measure is of more
practical significance. We also employed two measures of
learning outcomes, mean test accuracy and proportion of
students reaching “A” level performance (at least 90%
correct) on the posttests.

Learning Effort: Number of Problems to
Mastery
Table 5 displays the mean number of problems required to
reach mastery in each curriculum section for students in the
two conditions. All students completed 21 required
problems in the study. Students in the standard condition
needed an additional 37.2 remedial problems to reach
mastery, while students in the augmented feedback
condition needed 22.8 remedial problems. While this
difference is large, the main effect of interface condition is
not significant, F(1,37) = 1.47. The main effect of
curriculum section is significant, F(3,111) = 18.55, p <
.01, confirming that sections 2 and 4 are more challenging
than sections 1 and 3. More importantly, the interaction of
interface condition and curriculum section is significant,
F(3,111) = 3.09, p < .05).

Students in both groups worked with the standard coding
interface in sections 1 and 3 and essentially completed the
same number of remedial exercises in those sections. Note
that while animated parenthesis feedback was provided to
the Augmented Support group in curriculum section 2, this
augmented feedback had no impact on the number of
problems needed to reach mastery learning. Both groups
completed 9 required problems and an average of about 15
remedial problems in section 2. But, subgoal scaffolding
in section 4 had a large impact on problems needed to reach
mastery. Students in the Standard Coding condition
averaged 15.44 remedial problems, while students in the
Augmented Support condition averaged only 2.05
problems. This difference is marginally significant, t(37) =
1.83, p < 0.08.

Standard
Interface

Augmented
Support

Problems Time Problems Time

Extractors 6.3 9.0 6.3 6.2

Combiners 24.7 28.3 23.7 32.7

Extractor
Algorithms

8.8 10.7 8.7 9.0

Combiner
Algorithms

18.4 35.2 5.1 15.2

Total 58.2 83.2 43.8 63.1
Table 5. Average Number of APT Tutor Problems
Required to Reach the Mastery Criterion and elapsed time
(minutes) in reaching mastery for Students in the Standard
Interface and Augmented Support conditions.

Learning Effort: Time to Reach Cognitive
Mastery
Table 5 also displays the mean time students spent
completing tutor problems in reaching cognitive mastery.
Students in the Standard Interface group needed 30% more
time to reach mastery than the Augmented Support group,
but this difference is not reliable, F(1,37) = 1.2. The main
effect of curriculum section is again significant, F(3,111) =
13.46, p < .01, and more importantly, the interaction of
interface condition and curriculum section is significant,
F(3,111) = 2.9, p < .05).

Note that the two groups spent virtually the same amount
of time reaching mastery in the first three curriculum
sections (48.0 minutes vs. 47.9 minutes). The entire 20
minute difference in elapsed time occurs in the fourth,
combiner algorithm section in which the Augmented
Support condition benefited from subgoal scaffolding.
However, the difference between the means in curriculum
section 4 is not reliable, t(37) = 1.6, ns.

While mean learning time did not vary reliably across
groups in section 4, the variance in learning times in that
section is much larger for the Standard Interface group
(3089 vs 160) and this difference is reliable F(17,20) =
19.3, p < .01. An inspection of the learning time
distributions in this section makes the impact of subgoal
scaffolding more apparent. In both conditions about 80% of
students completed section 4 in 30 minutes or less. The
remaining 20% of subgoal scaffolding students finished in
less than an hour, while the remaining 20% of standard
coding students required between 2 and 3.5 hours. So, the
main impact of subgoal scaffolding on learning time is to
greatly reduce the time needed for the slowest students to
reach cognitive mastery.

To further explore this evidence that subgoal scaffolding
primarily helped the slowest students, we divided each
group of students in half based on Math SAT scores and
reanalyzed the learning effort data for the section 4 combiner
algorithms just for the students with lower Math SAT
scores. The average Math SAT score for this subset of

students was 571. As displayed in Table 6, students with
lower SAT scores in the standard interface condition
required an average of 33.6 problems and 60.7 minutes to
reach mastery while students working in the subgoal
scaffolding condition required 6 problems and 19.8
minutes. The difference in number of problems is reliable,
t(18) = 2.11, p < .05 and the difference in elapsed time is
marginally reliable t(18) = 1.87, p < .08.

Standard
Interface

Augmented
Support

Lower SATs Lower SATs
Problems Time Problems Time

Combiner
Algorithms

33.6 60.7 6.0 19.8

Table 6. Average Number of APT Tutor Problems
Required to Reach the Mastery Criterion and elapsed time
(minutes) in reaching mastery for Students in the Standard
Interface and Augmented Support conditions.

Test Performance
Posttest performance of the two groups is displayed in
Table 7. Two performance measures are displayed: (1)
mean percent correct and (2) the probability that students
reach “A” level performance (90% correct).

Standard
Interface

Augmented
Support

%C P> 0.9 %C P > 0.9
Test 1

Total 94% 0.72 98% 0.90

Test 2
Total 86% 0.50 96% 0.90

Extractors 92% 0.83 97% 0.81
Combiners 80% 0.39 95% 0.86

Test 3
Total 83% 0.40 88% 0.65

Extractors 95% 0.72 95% 0.76
Combiners 81% 0.39 96% 0.76
Combiner

Algorithms
71% 0.28 75% 0.24

Table 7. Mean percent correct and probability of reaching
“A” level performance on three posttests for the Standard
Interface and Augmented Support Groups.

Students in both groups perform very well on the basic
extractor problems in Test 1 characteristic of curriculum
section 1. Test 2 was administered after curriculum section
3 and contained problems characteristic of the first three
sections. Students in the Standard Interface condition
perform very well on this test. They average 86% correct
and half the students reach “A” level performance.
However, students in the Augmented Support condition

perform even better. They score 96% correct and 90% of
students reach “A” level performance. The difference in
average percent correct is reliable, F(1,37) = 8.7, p < .01,
as is the difference in proportion of students reaching “A”
level (z = 2.8, p < .01). Two subscores are reported for
Test 2. The first includes extractor and extractor
algorithms questions from sections 1 and 3. As can be
seen, there is little difference between the two groups on
these questions. However, students in the augmented
feedback condition perform substantially better on the
combiner problems in testing. The main effect of problem
type is reliable F(1,37) = 5.5, p < .05, so the combiner
problems are reliably more difficult, and the interaction of
interface condition and problem type is marginally reliable,
F(1,37) = 2.7, p = 0.10. In pairwise comparisons, the
difference between the two interface groups on the extractor
problems is non-significant, t(37) = 1.6, while the
difference between the two groups on the combiner
problems is significant t(37) = 2.7, p < .01. Similarly, the
difference in proportion of students reaching “A” level
performance in the combiner section is reliable, (0.86 vs.
0.39), z = 3.0, p < .01.

Test 3 was administered following the fourth curriculum
section and contained problems characteristic of all four
sections. Overall, students again performed quite well on
this test. The Augmented Support students performed
slightly better than the Standard Interface students, and this
overall difference is marginally reliable, F(1,37) = 3.8, p <
.06. The proportion of students reaching “A” level
performance overall did not vary significantly, z = 1.7.
Three test subscales are reported in Table 7, extractor
problems including extractor algorithms, basic combiner
problems and combiner/extractor algorithm problems. The
main effect of problem type is significant, F(2,74) = 326.1,
p < .01, and the interaction of interface condition and
problem type is reliable, F(2,74) = 5.5, p < .01. Again,
there is very little difference between the two groups on the
extractor and extractor algorithm problems. The
Augmented Support students continue to perform better on
the section 2 combiner problems than the Standard Interface
students (96% vs 81%). In a pairwise test, this difference is
reliable, t(47) = 3.1, p < .01, as is the difference in
proportion of students reaching “A” level (76% vs 39%), z
= 2.4, p < .05. Finally, performance on the section 4
combiner/extractor algorithm problems is virtually identical
for the two groups. Students in the Augmented Support
condition completed an average of just 5 tutor problems in
section 4, yet reached the same level of test performance on
those problems as the Standard Interface students who
averaged 18 tutor problems in section 4.

DISCUSSION
The two interface enhancements evaluated in this study led
to very different gains in educational efficiency. Animated
parenthesis feedback was introduced in curriculum section 2
to make relevant data structures salient in discriminating
among three combiner functions. This intervention had no
impact on the effort required to satisfy the tutor’s cognitive
mastery criterion, but this augmented feedback resulted in a
substantial gain in test performance, both in mean accuracy

and proportion of students reaching “A” level performance.
In contrast, the section 4 subgoal scaffolding designed to
help students organize productions they mastered in
previous lessons, led to a large decrease in number tutor
problems required to reach cognitive mastery, but did not
lead to increased posttest accuracy. Overall, subgoal
scaffolding also sharply reduced the maximum elapsed time
that students needed to reach cognitive mastery, but this
effect was marginally reliable only for students with lower
Math SAT scores.

Although the educational impact of animation in
technology enhanced learning has been mixed at best [10,
11], animated parenthesis feedback had a decisive positive
impact on test performance in this study. It did not make
learning “easier” as measured by time on task or number of
tutor problems, but fostered programming knowledge that
transferred more successfully to the test environment. This
successful transfer implies that students are acquiring a
deeper, more optimal encoding of relevant aspects of list
structure. Indeed, we believe that animation was successful
because it addressed a crucial topic that students find hard
to grasp and that does not lend itself well to natural
language discussion.

Subgoal scaffolding, in contrast, decreased the average
number of problems required to reach mastery in the tutor,
but did not reliably reduce average learning time, nor
enhance subsequent test performance. This suggests that
scaffolding did make it easier for students to organize
previously mastered operator knowledge into more complex
plans, but did not lead to a substantially deeper knowledge
of the operators nor of the plans. Reducing the learning
effort needed to reach equivalent performance levels is an
important accomplishment, though, and subgoal scaffolding
did dramatically reduce section 4 learning time for about
20% of students, from a maximum of 2 to 3.5 hours to a
maximum of 1 hour.

This study raises some interesting questions to be pursued.
For example, the animated parenthesis feedback was
provided retrospectively, after the student selected a
combiner function, while students posted subgoals
prospectively, before selecting the subsequent combiner
function. Perhaps subgoal scaffolding could lead to deeper
understanding if subgoal posting followed rather than
preceded the initial combiner selection. Another intriguing
question is why the Augmented Support students’ superior
understanding of basic combiner functionality demonstrated
in section 2 problems did not transfer to higher test
accuracy in section 4 combiner/extractor algorithm
questions.

Nevertheless, these results are very encouraging. Relatively
simple interface enhancements can have a substantial impact
on learning rate and asymptotic test performance. These
results serve as a reminder that as we continue to develop
computer-based learning environments, that we should not
limit ourselves to studying the strategies that make human
tutors effective, but need to assess domain specific
challenges and tailor instructional interventions to meet
those challenges.

ACKNOWLEDGMENTS
This research was supported by the Office of Naval Research
grant number N00014-95-1-0847 and by NSF grant number
9720359 to CIRCLE: Center for Interdisciplinary Research
on Constructive Learning Environments. We thank Dana
Heath and Susan Klein for help in data collection and
Megan McLaughlin for help in manuscript preparation.

REFERENCES
1. Anderson, J.R., Conrad, F. and Corbett, A.T. (1989).

Skill acquisition and the LISP Tutor. Cognitive
Science, 13, 467-505.

2. Anderson, J.R., Corbett, A.T., Koedinger, K.R., and
Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4, 167-
207.

3. Anderson, J.R., and Lebiere, C. (1998). The atomic
components of thought . Mahwah, NJ: Erlbaum.

4. Bloom, B. S. (1984). The 2 sigma problem: The
search for methods of group instruction as effective as
one-to-one tutoring. Educational Researcher, 13, 4-16.

5. Cohen, P. A., Kulik, J. A., & Kulik, C. C. (1982).
Educational outcomes of tutoring: A meta-analysis of
findings. American Educational Research Journal, 19,
237-248.

6. Corbett, A.T. and Anderson, J.R. (1995). Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction, 4, 253-278.

7. Corbett, A.T. and Bhatnagar, A. (1997). Student
modeling in the ACT Programming Tutor: Adjusting a
procedural learning model with declarative knowledge.
Proceedings of the Sixth International Conference on
User Modeling. New York: Springer-Verlag Wein.

8. Graesser, A.C., Person, N.K., & Magliano, J.P.
(1995). Collaborative dialogue patterns in naturalistic
one-on-one tutoring. Applied Cognitive Psychology, 9,
359-387.

9. Koedinger, K.R., Anderson, J.R., Hadley, W.H. &
Mark, M.A. (1995). Intelligent tutoring goes to school
in the big city. Proceedings of the 7th World
Conference on Artificial Intelligence in Education.

10. Pane, J.F., Corbett, A.T. and John, B.E. (1996).
Assessing dynamics in computer-based instruction.
Proceedings of ACM CHI’96 Conference on Human
Factors in Computing Systems, 197-204.

11. Rieber, L.P., Boyce, M.J., and Assad, C. (1990). The
effects of computer animation on adult learning and
retrieval tasks. Journal of Computer-Based Instruction,
17, 46-52.

12. VanLehn, K., Siler, S., Murray, C. & Bagget, W.
(1998). What makes a tutorial event effective? In: M. A.
Gernsbacher & S. Derry (Eds.) Proceedings of the
Twenth-first Annual Conference of the Cognitive
Science Society, Hillsdale, NJ: Erlbaum. pp. 1084-
1089.

