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1. What is the multigrid method?

2. High level survey of applications of multigrid 
methods across science and engineering.  (Articles 
on this are hard to find!)
– what is the state of the art?

– what are multigrid’s strengths & weaknesses?

– what is current research?
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• Typical problem:
– Solving a PDE over simple domain (e.g. square)

– Get sparse system Av=f

• If we solve iteratively with Gauss-Seidel
– initial iterations reduce residual a lot

– later iterations yield less benefit

– why?  Iterations reduce high frequencies in residual

• Idea:
– iterate on coarser grids to reduce lower frequencies
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• Sweep of Gauss-Seidel “relaxes” each grid value to 
be the average of its four neighbors plus an f offset

• Many relaxations required to solve this on a fixed 
grid.

• Multigrid solves it on a hierarchy of grids.
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• relax on a given grid a few times

• coarsen (restrict) a grid

• refine (interpolate) a grid
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Full Multigrid V Cycle:

time
coarsest grid 1×1

finest grid k×k

k/2×k/2

...

final solution

=relax =interpolate =restrict
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• Gauss-Seidel
– converges for all symmetric positive definite A

• Conjugate Gradient (CG) Method
– convergence rate determined by condition number
– note that condition number typically larger for finer grids

• Preconditioned Conjugate Gradient
– instead of solving Av=f, solve M-1Av=M -1f where M-1 is cheap and M 

is close to A
– often much faster than CG, but conditioner M is problem-dependent

• Multigrid
– convergence rate is independent of condition number, problem size
– but algorithm must be tuned for a given problem; not as general as 

others
note: don’t need matrix A in memory – can compute it on the fly!
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on 2-D Poisson Equation, k×k grid, n=k2 unknowns

METHOD COST

Gaussian Elimination O(k6) = O(n3)

Gauss-Seidel O(k4logk) = O(n2logn)

Conjugate Gradient O(k3) = O(n1.5)

FFT/cyclic reduction O(k2logk) = O(nlogn)

multigrid O(k2) = O(n)
optimal!
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2-D:
finest grid:       k2 (v & f arrays)

k2/4

k2/16

...

coarsest grid:   1

total: k2(1+1/4+1/16+1/64+...) = 4/3×k2

Costs only 33% more memory than storing the solution
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• works well for certain problems
– in particular, elliptic PDE's (linear or nonlinear) with smooth boundary
– solves a problem with n unknowns in O(n) time

• constants usually small, e.g. 10 "work units"
• 1 work unit = the work of one relaxation on the fine grid

• but multigrid methods are currently several orders of 
magnitude slower for non-elliptic steady-state (time-
independent BV) problems

• low memory requirements: need mem for v & f on finest grid, 
plus coarser grids; don’t need A

• parallelizes easily
– (but requires more communication than some other parallel 

solvers)  
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• less theory than some other methods
– it's a bit of a black art

• requires careful tuning to get it working on a new problem
– not a black box, like, say, the conjugate gradient method or Gauss-

Seidel

– but when it works well, it's often the fastest

• but other fast methods often require tuning too
– to get top performance out of the conjugate gradient method often 

requires an application-specific preconditioner
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• 1964: first paper, Fedorenko, Russia
– large constants: ~40,000 work units, no implementation?

• 1977: Achi Brandt, Israel, made it practical, wrote seminal paper

• late 70's: Nicolaides, Hackbusch, and others proved convergence for certain 
PDE's; Brandt proved fast convergence

• interest took off around 1981

• but there was (and still is) much skepticism from some because there was 
little theory

• today used to solve PDE's in many disciplines

• current research: a drive to achieve "textbook efficiency" for general flow 
simulations (all Mach numbers and Reynolds numbers)

• somewhat superseded by wavelet methods?
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• “multigridders” prefer structured grids

• grid and relaxation method are the only parts of the method that are highly 
problem-dependent; restriction and interpolation are generic

• on complex domains, need extra relaxation steps near boundary
– for rough boundary conditions

– for concave corners

• grid can be adaptive: can restrict processing at finer levels to subdomains

• schedule parameters (how many relaxation steps and V cycles) can be:
– fixed

– accommodative
e.g. software loops until residual at each step is below some tolerance

• for CFD, align the grid with the boundary and the flow
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• To do multigrid research, you should "very gradually increase 
the complexity of the problems” you attempt

• "we insist on obtaining for each problem the full efficiency” 
(e.g. 10 work units)

• strives for linear time with small constants
• "stalling numerical processes must be wrong”
• constants are particularly important when discussing 

algorithms that are O(n); more than for algorithms that are, 
say, O(n2)

• strives for convergence proofs with small constants: “almost 
all other multigrid theories give estimates which are not 
quantitative or very unrealistic, rendering them useless in 
practice”



15 Nov. 2000 15-859B - Introduction to Scientific Computing 15

• equations
– Euler equation - linear, inviscid (no viscosity)

– Navier-Stokes equation - nonlinear, models viscosity

• now possible to simulate flow around an airplane, with engines

– first achieved in 1986

– done with multigrid?

• Reynolds Number (Re)

– a measure of the ratio of inertial and viscous forces

– Re large => turbulence, difficult simulation

– for an airplane, Re ~ 10^7
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• transonic flow

– flow is both below and above speed of sound (Mach no. <1 or >1)

– => PDE is elliptic where subsonic and hyperbolic where supersonic

• high Reynolds number steady state flows

=> non-elliptic

• use boundary-fitted structured grids

• boundary layer tricky
– in viscous simulation, flow near surface (of e.g. wing) has high gradient, since 

flow speed at surface is zero, but speed inches away could be high

– you often want the elements (grid quadrilaterals) to be highly stretched (e.g. 
"aspect ratio" of 4000:1) in boundary layer to get accurate simulations

– high aspect ratio slows convergence or complicates the relaxation method
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• computational fluid dynamics (CFD)
– application for which multigrid has been most used
– weather prediction (whole earth simulations)

• structured grid generation
– use elliptic PDE to define geometry of grid nodes, create grid using 

multigrid!

• ill-posed (underdetermined) problems
– edge detection in noisy image

• can find all straight features (lines, edges) in kxk pixel image in O(k log k) 
time

– image segmentation
– tomography (i.e. CAT scan)
– approximating noisy data with a piecewise smooth function with 

known or unknown discontinuities
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• integral operators
– multiplication by a dense nxn matrix in O(n) time

– easy if matrix (or kernel) is smooth; slower if not

– n-body force computations
• gravity

• molecular interactions

• thermal radiation

– Fast Multipole Method is faster than O(n2) alg. only for n>1000, they 
say

• is Brandt's method faster? (unpublished)
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• global optimization
– works even if many local minima

– "each step can be interpreted as an optimization over a certain 
subspace"

– protein folding

• constrained optimization
– optimal control, e.g. robot motion planning 

• solid mechanics
– set up using finite element methods (unstructured grid), not finite 

difference
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• quantum chemistry
– compute eigenfunctions of Schroedinger's eqn. (the PDE governing

quantum mechanics) to find electron density functions

• macroscopic from microscopic
– statistical physics, particle physics (QCD)

• derive macroscopic properties (e.g. nonlinear elasticity) by using multigrid 
on microscopic level (on atomic forces)

– unified wave/ray methods for simulating electromagnetic radiation
• combine wave model (to simulate diffraction, interference, when 

wavelength comparable to scale of objects) and

• ray model (to simulate free flight of photons in air/vacuum)

• VLSI design
– highly nonlinear
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• unstructured multigrid
– uses an unstructured grid (irregular topology), not structured one

– this complicates relaxation, restriction, & interpolation, but permits 
solution on complex domains (e.g. around an aircraft wing with flaps)

• algebraic multigrid
– multigrid without the grid

– analyze and do clustering on graph implied by matrix A 

– input is A only -- no high level problem knowledge

• domain decomposition
– divide domain into (possibly overlapping) pieces

– solve alternately on each piece, using solution of other pieces as 
boundary conditions

– useful for complex domains, parallelizes easily
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my comments in italics

Brandt, 1988, The Weizmann Insitute Research in Multilevel Computation: 1988 Report, 
Proc. Copper Mtn. Conf. on Multigrid Methods, 1989 (53 pp.) Survey of recent 
applications. I found this quite thought-provoking.

Brandt, 1982, Guide to Multigrid Development, in Hackbusch & Trottenberg, eds., 
Multigrid Methods, pp. 220-312. Guidelines for multigrid implementers.  Long.

Brandt, 1997, The Gauss Center Research in Multiscale Scientific Computation, Proc. 
Copper Mtn. Conf. on Multigrid Methods, on web (50 pp.) 
http://www.wisdom.weizmann.ac.il/research.html More esoteric than 1988 report 
above.

Brandt, 1980, Multilevel Adaptive Computations in Fluid Dynamics, AIAA J., vol. 18, pp. 
1165-1172. Short, fairly readable.

Brandt, 1977, Multi-Level Adaptive Solutions to Boundary-Value Problems, Mathematics of 
Computation, pp. 333-390. The seminal paper on multigrid.
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Wesseling, 1992, An Intro. to Multigrid Methods, chapter 8.  Good textbook.

Parsons & Hall 1990, The Multigrid Method in Solid Mechanics, Intl. J. for Numer. Meth. in 
Eng., vol. 29, pp. 719-754.  Experiments applying MG to mechanical engineering.

Chan, Go, & Zikatanov, 1997, Lecture Notes on Multilevel Methods for Elliptic Problems on 
Unstructured Grids, 77 pp., http://www.math.ucla.edu/~chan/mgpapers.html                      
State of the art in unstructured multigrid and domain decomposition.

Shlomo Ta’asan, CMU Math (conversation)

Gary Miller, CMU CS (conversation)

Omar Ghattas, CMU CE (conversation)


