Survey of Multigrid Applications

Paul Heckbert 20 Oct. 1998

lecture for "Hierarchical Methods for Simulation" (15-859E)

Carnegie Mellon University

We attempt a high level survey of applications of multigrid methods across science and engineering. (Articles on this are hard to find!)

- what is the state of the art?
- what are multigrid's strengths & weaknesses?
- what is current research?

Partial Differential Equations

types: elliptic, parabolic, hyperbolic

- illustrate on a simple example PDE: $au_{xx} + bu_{xy} + cu_{yy} = 0$
 - ac-b²>0: *elliptic* boundary value problem
 equilibrium, e.g. Laplace's equation u_{xx}+u_{yy}=0
 - ac-b²=0: *parabolic* initial value problem diffusion, e.g. the heat equation u_{xx} - u_t =0
 - ac-b²<0: *hyperbolic* initial value problem
 e.g. wave equation u_{xx}-u_{tt}=0
- *steady-state* -- a boundary value problem
- *time-dependent* (unsteady) -- initial value problem
- problem can change character (elliptic/parabolic/hyperbolic) when we go from steady to unsteady, or even from point to point

Linear System Av=f

N linear equations in N unknowns symmetric positive definite matrices

- all eigenvalues positive, equivalently v^TAv>0 for all nonzero v
- occur for many interesting PDE's
- level surfaces are concentric ellipsoids in N-dimensional space
 sparse matrices
 - PDE's tend to yield sparse matrices, only O(N) nonzeros in matrix
 - integral equations tend to yield dense matrices
- properties that often influence convergence
 - condition number: ratio of max to min eigenvalue
 condition number usually increases with problem size (for finer grid)
 - spectral radius: largest magnitude eigenvalue

Some Iterative Methods

- Gauss-Seidel
 - converges for all symmetric positive definite A
 - converges twice as fast as Jacobi
- Conjugate Gradient (CG) Method
 - convergence rate determined by condition number
- Preconditioned Conjugate Gradient
 - instead of solving Av=f, solve M⁻¹Av=M⁻¹f where M⁻¹ is cheap and M is close to A
 - often much faster than CG, but conditioner M is problem-dependent
- Multigrid
 - convergence rate is independent of condition number, problem size
 - but algorithm must be tuned for a given problem; not as general as others

Critique of Multigrid 1

- works well for certain problems
 - in particular, elliptic PDE's (linear or nonlinear) with smooth boundary
 - solves a problem with N unknowns in O(N) time
 - constants usually small, e.g. 10 "work units"
 - 1 work unit = the work of one relaxation on the fine grid
- but multigrid methods are currently several orders of magnitude slower for non-elliptic steady-state problems
- parallelizes easily
 - (but requires more communication than some other parallel solvers)

Critique of Multigrid 2

- less theory than some other methods
 - it's a bit of a black art
- requires careful tuning to get it working on a new problem
 - not a black box, like, say, the conjugate gradient method or Gauss-Seidel
 - but when it works well, it's often the fastest
- but other fast methods often require tuning too
 - to get top performance out of the conjugate gradient method often requires an application-specific preconditioner

History of Multigrid

- 1964: first paper, Fedorenko, Russia
- 1977: Achi Brandt, Israel, made it practical, wrote seminal paper
- late 70's: Nicolaides, Hackbusch, and others proved convergence for certain PDE's
- interest took off around 1981
- but there was (and still is) much skepticism from some because there was little theory
- today used to solve PDE's in many disciplines
- current research: a drive to achieve "textbook efficiency" for general flow simulations (all Mach numbers and Reynolds numbers)

Multigrid Guidelines

- "multigridders" prefer structured grids
- grid and relaxation method are the only parts of the method that are highly problem-dependent; restriction and interpolation are generic
- on complex domains, need extra relaxation steps near boundary
 - for rough boundary conditions
 - for concave corners
- schedule parameters (how many relaxation steps and V cycles) can be:
 - fixed
 - accommodative
 - e.g. software loops until residual at each step is below some tolerance
- for CFD, align the grid with the boundary and the flow

Brandt's Research Philosophy

- To do multigrid research, you should "very gradually increase the complexity of the problems" you attempt
- "we insist on obtaining for each problem the full efficiency" (e.g. 10 work units)
- strives for linear time with small constants
- "stalling numerical processes must be wrong"
- constants are particularly important when discussing algorithms that are O(N); more than for algorithms that are, say, $O(N^2)$
- strives for convergence proofs with small constants: "almost all other multigrid theories give estimates which are not quantitative or very unrealistic, rendering them useless in practice"

Computational Fluid Dynamics (CFD)

- equations
 - Euler equation linear, inviscid (no viscosity)
 - Navier-Stokes equation nonlinear, models viscosity
- now possible to simulate flow around an airplane, with engines
 - first achieved in 1986
 - done with multigrid?
- Reynolds Number (Re)
 - a measure of the ratio of inertial and viscous forces
 - for an airplane, $Re \sim 10^7$
 - Re large => turbulence, difficult simulation

CFD 2

- transonic flow
 - flow is both below and above speed of sound (Mach no. <1 or >1)
 - => PDE is both elliptic and hyperbolic
- high Reynolds number steady state flows
 - => non-elliptic
- use boundary-fitted structured grids
- boundary layer tricky
 - in viscous simulation, flow near surface (of e.g. wing) has high gradient,
 since flow speed at surface is zero, but speed inches away could be high
 - you often want the elements (grid quadrilaterals) to be highly stretched
 (e.g. "aspect ratio" of 4000:1) in boundary layer to get accurate
 simulations
 - high aspect ratio slows convergence or complicates the relaxation method

- computational fluid dynamics (CFD)
 - application for which multigrid has been most used
 - weather prediction (whole earth simulations)
- structured grid generation
 - use elliptic PDE to define geometry of grid nodes, create grid using multigrid!
- ill-posed (underdetermined) problems
 - edge detection in noisy image
 - can find all straight features (lines, edges) in NxN pixel image in O(N log N) time
 - image segmentation
 - tomography (i.e. CAT scan)
 - approximating noisy data with a piecewise smooth function with known or unknown discontinuities

- integral operators
 - multiplication by a dense NxN matrix in O(N) time
 - easy if matrix (or kernel) is smooth; slower if not
 - n-body force computations
 - gravity
 - molecular interactions
 - thermal radiation
 - FMM is faster than $O(N^2)$ alg. only for n>1000, they say
 - is Brandt's method faster? (unpublished)

- global optimization
 - works even if many local minima
 - "each step can be interpreted as an optimization over a certain subspace"
 - protein folding
- constrained optimization
 - optimal control, e.g. robot motion planning
- solid mechanics
 - set up using finite element methods (unstructured grid), not finite difference

- quantum chemistry
 - compute eigenfunctions of Schroedinger's eqn. (the PDE governing quantum mechanics) to find electron density functions
- macroscopic from microscopic
 - statistical physics, particle physics (QCD)
 - derive macroscopic properties (e.g. nonlinear elasticity) by using multigrid on microscopic level (on atomic forces)
 - unified wave/ray methods for simulating electromagnetic radiation
 - combine wave model (to simulate diffraction, interference, when wavelength comparable to scale of objects) and
 - ray model (to simulate free flight of photons in air/vacuum)
- VLSI design
 - highly nonlinear

Related Methods

- unstructured multigrid
 - uses an unstructured grid (irregular topology), not structured one
 - this complicates relaxation, restriction, & interpolation, but permits solution on complex domains (e.g. around an aircraft wing with flaps)
- algebraic multigrid
 - multigrid without the grid
 - analyze and do clustering on graph implied by matrix A
 - input is A only -- no high level problem knowledge
- domain decomposition
 - divide domain into (possibly overlapping) pieces
 - solve alternately on each piece, using solution of other pieces as boundary conditions
 - useful for complex domains, parallelizes easily

References 1

my comments in italics

- Brandt, 1988, The Weizmann Insitute Research in Multilevel Computation: 1988 Report, Proc. Copper Mtn. Conf. on Multigrid Methods, 1989 (53 pp.) *Survey of recent applications. I found this quite thought-provoking*.
- Brandt, 1982, Guide to Multigrid Development, in Hackbusch & Trottenberg, eds., Multigrid Methods, pp. 220-312. *Guidelines for multigrid implementers. Long.*
- Brandt, 1997, The Gauss Center Research in Multiscale Scientific Computation, Proc. Copper Mtn. Conf. on Multigrid Methods, on web (50 pp.) http://www.wisdom.weizmann.ac.il/research.html *More esoteric than 1988 report above*.
- Brandt, 1980, Multilevel Adaptive Computations in Fluid Dynamics, AIAA J., vol. 18, pp. 1165-1172. *Short, fairly readable*.
- Brandt, 1977, Multi-Level Adaptive Solutions to Boundary-Value Problems, Mathematics of Computation, pp. 333-390. *The seminal paper on multigrid*.

References 2

Wesseling, 1992, An Intro. to Multigrid Methods, chapter 8. *Good textbook*.

Parsons & Hall 1990, The Multigrid Method in Solid Mechanics, Intl. J. for Numer. Meth. in Eng., vol. 29, pp. 719-754. *Experiments applying MG to mechanical engineering*.

Chan, Go, & Zikatanov, 1997, Lecture Notes on Multilevel Methods for Elliptic Problems on Unstructured Grids, 77 pp., http://www.math.ucla.edu/~chan/mgpapers.html *State of the art in unstructured multigrid and domain decomposition.*

Gary Miller, CMU CS (conversation)

Omar Ghattas, CMU CE (conversation)