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We attempt a high level survey of applications of multigrid methods
across science and engineering. (Articles on this are hard to find!)

 what is the state of the art?
« what are multigrid’'s strengths & weaknesses?
 what is current research?



Partial Differential Equations

types: elliptic, parabolic, hyperbolic
* lllustrate on a simple example PDE; aubu, + cu,=0
— ac-1#>0: elliptic boundary value problem
equilibrium, e.g. Laplace’s equatiop,tiu,, =0
— ac-B¥=0: parabolicinitial value problem
diffusion, e.g. the heat equatiog-w,=0
— ac-B3<0: hyperbolicinitial value problem
e.g. wave equationyu,=0
» steady-state- a boundary value problem
e time-dependen(unsteady) -- initial value problem

« problem can change character (elliptic/parabolic/hyperbolic) when we
go from steady to unsteady, or even from point to point



Linear System Av=f

N linear equations in N unknowns
symmetric positive definitmatrices
— all eigenvalues positive, equivalenthAw>0 for all nonzero v
— occur for many interesting PDE’s
— level surfaces are concentric ellipsoids in N-dimensional space
Sparsematrices
— PDE’s tend to yield sparse matrices, only O(N) nonzeros in matrix
— Integral equations tend to yield dense matrices
properties that often influence convergence

— condition numberratio of max to min eigenvalue
condition number usually increases with problem size (for finer grid)

— spectral radiuslargest magnitude eigenvalue



Some lterative Methods

Gauss-Seidel

— converges for all symmetric positive definite A

— converges twice as fast as Jacobi
Conjugate Gradient (CG) Method

— convergence rate determined by condition number
Preconditioned Conjugate Gradient

— instead of solving Av=f, solve #Av=M-1f where Ml is cheap and M is
close to A

— often much faster than CG, but conditioner M is problem-dependent
Multigrid

— convergence rate is independent of condition number, problem size

— but algorithm must be tuned for a given problem; not as general as others



Critique of Multigrid 1

works well for certain problems

— in particular, elliptic PDE's (linear or nonlinear) with smooth boundary
— solves a problem with N unknowns in O(N) time

« constants usually small, e.g. 10 "work units"

« 1 work unit=the work of one relaxation on the fine grid

but multigrid methods are currently several orders of magnitude slower
for non-elliptic steady-state problems

parallelizes easily

— (but requires more communication than some other parallel
solvers)



Critique of Multigrid 2

* |ess theory than some other methods
— It's a bit of a black art

* requires careful tuning to get it working on a new problem
— not a black box, like, say, the conjugate gradient method or Gauss-Seidel
— Dbut when it works well, it's often the fastest

* but other fast methods often require tuning too

— to get top performance out of the conjugate gradient method often requires
an application-specific preconditioner



History of Multigrid

1964 first paper, Fedorenko, Russia
1977: Achi Brandt, Israel, made it practical, wrote seminal paper

late 70's: Nicolaides, Hackbusch, and others proved convergence for
certain PDE's

Interest took off around 1981

but there was (and still iIs) much skepticism from some because there
was little theory

today used to solve PDE's in many disciplines

current research: a drive to achieve "textbook efficiency" for general
flow simulations (all Mach numbers and Reynolds numbers)



Multigrid Guidelines

“multigridders” prefer structured grids

grid and relaxation method are the only parts of the method that are
highly problem-dependent; restriction and interpolation are generic
on complex domains, need extra relaxation steps near boundary
— for rough boundary conditions
— for concave corners
schedule parameters (how many relaxation steps and V cycles) can be:
— fixed
— accommodative
e.g. software loops until residual at each step is below some tolerance

for CFD, align the grid with the boundary and the flow



Brandt’s Research Philosophy

To do multigrid research, you should "very gradually increase the
complexity of the problems” you attempt

"we insist on obtaining for each problem the full efficiency” (e.g. 10
work units)

strives for linear time with small constants
"stalling numerical processes must be wrong”

constants are particularly important when discussing algorithms that
are O(N); more than for algorithms that are, say,ZD(N

strives for convergence proofs with small constants: “almost all other
multigrid theories give estimates which are not quantitative or very
unrealistic, rendering them useless in practice”



Computational Fluid Dynamics
(CFD)

e equations
— FEuler equation - linear, inviscid (no viscosity)
— Navier-Stokes equation - nonlinear, models viscosity

* now possible to simulate flow around an airplane, with engines
— first achieved in 1986
— done with multigrid?
 Reynolds NumbdRe)
— a measure of the ratio of inertial and viscous forces
— for an airplane, Re ~ 10°7
— Re large => turbulence, difficult simulation



CFD 2

transonic flow
— flow is both below and above speed of sound (Mach no. <1 or >1)

— => PDE is both elliptic and hyperbolic
high Reynolds number steady state flows
=> non-elliptic
use boundary-fitted structured grids

boundary layer tricky

— in viscous simulation, flow near surface (of e.g. wing) has high gradient,
since flow speed at surface is zero, but speed inches away could be high

— Yyou often want the elements (grid quadrilaterals) to be highly stretched
(e.g. 'aspect rati6 of 4000:1) in boundary layer to get accurate
simulations

— high aspect ratio slows convergence or complicates the relaxation method



Multigrid Applications 1

« computational fluid dynamics (CFD)
— application for which multigrid has been most used
— weather prediction (whole earth simulations)

e structured grid generation
— use elliptic PDE to define geometry of grid nodes, create grid using
multigrid!
* ill-posed (underdetermined) problems
— edge detection in noisy image
« can find all straight features (lines, edges) in NxN pixel image in O(N log N)
time
— image segmentation
— tomography (i.e. CAT scan)
— approximating noisy data with a piecewise smooth function with known or
unknown discontinuities



Multigrid Applications 2

* integral operators
— multiplication by a dense NxN matrix in O(N) time
— easy if matrix (or kernel) is smooth; slower if not
— n-body force computations
e gravity
* molecular interactions
« thermal radiation

— FMM is faster than O(N alg. only for n>1000, they say
 is Brandt's method faster? (unpublished)



Multigrid Applications 3

e global optimization
— works even if many local minima
— "each step can be interpreted as an optimization over a certain subspace”
— protein folding
e constrained optimization
— optimal control, e.g. robot motion planning
e solid mechanics

— set up using finite element methods (unstructured grid), not finite
difference



Multigrid Applications 4

e quantum chemistry

— compute eigenfunctions of Schroedinger's egn. (the PDE governing
guantum mechanics) to find electron density functions

e macroscopic from microscopic
— statistical physics, particle physics (QCD)

» derive macroscopic properties (e.g. nonlinear elasticity) by using multigrid on
microscopic level (on atomic forces)

— unified wave/ray methods for simulating electromagnetic radiation

« combine wave model (to simulate diffraction, interference, when wavelength
comparable to scale of objects) and

» ray model (to simulate free flight of photons in air/vacuum)

 VLSI design
— highly nonlinear



Related Methods

e unstructured multigrid
— uses an unstructured grid (irregular topology), not structured one

— this complicates relaxation, restriction, & interpolation, but permits
solution on complex domains (e.g. around an aircraft wing with flaps)

« algebraic multigrid
— multigrid without the grid
— analyze and do clustering on graph implied by matrix A
— input is A only -- no high level problem knowledge

« domain decomposition
— divide domain into (possibly overlapping) pieces
solve alternately on each piece, using solution of other pieces as boundary

conditions
— useful for complex domains, parallelizes easily
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