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We attempt a high level survey of applications of multigrid methods
across science and engineering.  (Articles on this are hard to find!)

• what is the state of the art?

• what are multigrid’s strengths & weaknesses?

• what is current research?



Partial Differential Equations

types: elliptic, parabolic, hyperbolic

• illustrate on a simple example PDE: auxx+ buxy+ cuyy=0
– ac-b2>0: elliptic boundary value problem

equilibrium, e.g. Laplace’s equation uxx+uyy=0

– ac-b2=0: parabolic initial value problem
diffusion, e.g. the heat equation uxx-ut=0

– ac-b2<0: hyperbolic initial value problem
e.g. wave equation uxx-utt=0

• steady-state -- a boundary value problem

• time-dependent (unsteady) --  initial value problem

• problem can change character (elliptic/parabolic/hyperbolic) when we
go from steady to unsteady, or even from point to point



Linear System Av=f

N linear equations in N unknowns

symmetric positive definite matrices
– all eigenvalues positive, equivalently vTAv>0 for all nonzero v

– occur for many interesting PDE’s

– level surfaces are concentric ellipsoids in N-dimensional space

sparse matrices
– PDE’s tend to yield sparse matrices, only O(N) nonzeros in matrix

– integral equations tend to yield dense matrices

properties that often influence convergence
– condition number: ratio of max to min eigenvalue

condition number usually increases with problem size (for finer grid)

– spectral radius: largest magnitude eigenvalue



Some Iterative Methods

• Gauss-Seidel
– converges for all symmetric positive definite A

– converges twice as fast as Jacobi

• Conjugate Gradient (CG) Method
– convergence rate determined by condition number

• Preconditioned Conjugate Gradient
– instead of solving Av=f, solve M-1Av=M-1f where M-1 is cheap and M is

close to A

– often much faster than CG, but conditioner M is problem-dependent

• Multigrid
– convergence rate is independent of condition number, problem size

– but algorithm must be tuned for a given problem; not as general as others



Critique of Multigrid 1

• works well for certain problems
– in particular, elliptic PDE's (linear or nonlinear) with smooth boundary

– solves a problem with N unknowns in O(N) time
• constants usually small, e.g. 10 "work units"

• 1 work unit = the work of one relaxation on the fine grid

• but multigrid methods are currently several orders of magnitude slower
for non-elliptic steady-state problems

• parallelizes easily

– (but requires more communication than some other parallel
solvers)



Critique of Multigrid 2

• less theory than some other methods
– it's a bit of a black art

• requires careful tuning to get it working on a new problem
– not a black box, like, say, the conjugate gradient method or Gauss-Seidel

– but when it works well, it's often the fastest

• but other fast methods often require tuning too
– to get top performance out of the conjugate gradient method often requires

an application-specific preconditioner



History of Multigrid

• 1964: first paper, Fedorenko, Russia

• 1977: Achi Brandt, Israel, made it practical, wrote seminal paper

• late 70's: Nicolaides, Hackbusch, and others proved convergence for
certain PDE's

• interest took off around 1981

• but there was (and still is) much skepticism from some because there
was little theory

• today used to solve PDE's in many disciplines

• current research: a drive to achieve "textbook efficiency" for general
flow simulations (all Mach numbers and Reynolds numbers)



Multigrid Guidelines

• “multigridders” prefer structured grids

• grid and relaxation method are the only parts of the method that are
highly problem-dependent; restriction and interpolation are generic

• on complex domains, need extra relaxation steps near boundary
– for rough boundary conditions

– for concave corners

• schedule parameters (how many relaxation steps and V cycles) can be:
– fixed

– accommodative
e.g. software loops until residual at each step is below some tolerance

• for CFD, align the grid with the boundary and the flow



Brandt’s Research Philosophy

• To do multigrid research, you should "very gradually increase the
complexity of the problems” you attempt

• "we insist on obtaining for each problem the full efficiency” (e.g. 10
work units)

• strives for linear time with small constants

• "stalling numerical processes must be wrong”

• constants are particularly important when discussing algorithms that
are O(N); more than for algorithms that are, say, O(N2)

• strives for convergence proofs with small constants: “almost all other
multigrid theories give estimates which are not quantitative or very
unrealistic, rendering them useless in practice”



Computational Fluid Dynamics
(CFD)

• equations
– Euler equation - linear, inviscid (no viscosity)

– Navier-Stokes equation - nonlinear, models viscosity

• now possible to simulate flow around an airplane, with engines

– first achieved in 1986

– done with multigrid?

• Reynolds Number (Re)

– a measure of the ratio of inertial and viscous forces

– for an airplane, Re ~ 10^7

– Re large => turbulence, difficult simulation



CFD 2

• transonic flow

– flow is both below and above speed of sound (Mach no. <1 or >1)

– => PDE is both elliptic and hyperbolic

• high Reynolds number steady state flows

=> non-elliptic

• use boundary-fitted structured grids

• boundary layer tricky
– in viscous simulation, flow near surface (of e.g. wing) has high gradient,

since flow speed at surface is zero, but speed inches away could be high

– you often want the elements (grid quadrilaterals) to be highly stretched
(e.g. "aspect ratio" of 4000:1) in boundary layer to get accurate
simulations

– high aspect ratio slows convergence or complicates the relaxation method



Multigrid Applications 1

• computational fluid dynamics (CFD)
– application for which multigrid has been most used

– weather prediction (whole earth simulations)

• structured grid generation
– use elliptic PDE to define geometry of grid nodes, create grid using

multigrid!

• ill-posed (underdetermined) problems
– edge detection in noisy image

• can find all straight features (lines, edges) in NxN pixel image in O(N log N)
time

– image segmentation

– tomography (i.e. CAT scan)

– approximating noisy data with a piecewise smooth function with known or
unknown discontinuities



Multigrid Applications 2

• integral operators
– multiplication by a dense NxN matrix in O(N) time

– easy if matrix (or kernel) is smooth; slower if not

– n-body force computations
• gravity

• molecular interactions

• thermal radiation

– FMM is faster than O(N2) alg. only for n>1000, they say
• is Brandt's method faster? (unpublished)



Multigrid Applications 3

• global optimization
– works even if many local minima

– "each step can be interpreted as an optimization over a certain subspace"

– protein folding

• constrained optimization
– optimal control, e.g. robot motion planning

• solid mechanics
– set up using finite element methods (unstructured grid), not finite

difference



Multigrid Applications 4

• quantum chemistry
– compute eigenfunctions of Schroedinger's eqn. (the PDE governing

quantum mechanics) to find electron density functions

• macroscopic from microscopic
– statistical physics, particle physics (QCD)

• derive macroscopic properties (e.g. nonlinear elasticity) by using multigrid on
microscopic level (on atomic forces)

– unified wave/ray methods for simulating electromagnetic radiation
• combine wave model (to simulate diffraction, interference, when wavelength

comparable to scale of objects) and

• ray model (to simulate free flight of photons in air/vacuum)

• VLSI design
– highly nonlinear



Related Methods

• unstructured multigrid
– uses an unstructured grid (irregular topology), not structured one

– this complicates relaxation, restriction, & interpolation, but permits
solution on complex domains (e.g. around an aircraft wing with flaps)

• algebraic multigrid
– multigrid without the grid

– analyze and do clustering on graph implied by matrix A

– input is A only -- no high level problem knowledge

• domain decomposition
– divide domain into (possibly overlapping) pieces

– solve alternately on each piece, using solution of other pieces as boundary
conditions

– useful for complex domains, parallelizes easily
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