Defect Tolerance

Shawn Blanton
ECE Department
Carnegie Mellon University

NSF Workshop on NanoComputing
October 17, 2002

Definitions

n A defect is a physical deformation.
n A defect does not necessarily have to
affect the behavior of a nano device.
— A defect has to be activated to cause an
internal system error.
— The internal error must lead to an external
error to cause a system failure.

= A defect tolerant system is one that
operates (sufficiently) in the presence of
defects.

Traditional Approaches cont'd

= Hardware redundancy via structural
design
= Self checking circuits
= Arithmetic codes

= Hardware redundancy via duplication
— NMR (space shuttle uses N=5)

Background

Defect tolerance — why is it needed?

— Nano-systems composed of self-
assembled devices are expected to have
significant defect densities.

— Thus, the likelihood of producing defect-
free nano-systems is extremely low.

— It will therefore be necessary to create
methodologies that will allow nano-
systems to operate in the presence of a
multitude of defects.

Traditional Approaches

|

= Hardware redundancy
= Software redundancy
= Time redundancy

= Information redundancy

Traditional Approaches cont'd

= Software Redundancy

— use different programs/algorithms to
compute the same task and compare results

= Time Redundancy

— re-compute task and compare results
(possibly using different hardware/software)

= Information Redundancy
— backup information
— use of ECC




_;_Existing Approaches Fall Short

Hardware Redundancy

= Self-checking circuits, arithmetic
codes, etc. typically assume a single
error.

= Duplication assumes the duplicated
sub-systems are initially defect free.

+Existing Approaches Fall Short

Time Redundancy

= Completely useless given the
presence of permanent defects.

Nano-Systems

= The fabricated nano-system will be
highly defective.

= Nano-system defects are permanent.
— Techniques based on “known-good” or

“mostly-good” components won't help.

= Thus, the only possibility for success
is to devise new defect-avoidance or
defect-masking methodologies.

_;_Existing Approaches Fall Short

Software Redundancy

m Using different programs or
algorithms on the same highly-
defective hardware simply won't
help.

n Effective only if the defects are all
transient or intermittent in nature.

+Existing Approaches Fall Short

Information Redundancy

= Similar to hardware redundancy, in
that the nature of the likely errors is
highly constrained.

= However, it is worth exploring if

assumptions concerning errors can
be relaxed.

Defect Avoidance

» The strategy here is to identify and
utilize the “"good” devices.

— Implies that the nano-system can be
configured to utilize the good devices.

= Identification = Diagnosis
— Testing the system is not sufficient.

— The system devices must be diagnosed
to identify which ones are (partially)
good and which are bad.




Good Device Identification

= Like the assembly process, a self-

diagnosis process will be necessary.

— Tester cost and speed will make it
impossible for the identification
process to be directed off-chip.

= The expected device density
requires that the self-diagnosis
process be scalable.

+Leveraging Past Work

m The fact that nano-systems are
expected to be regular enables
scalable self-diagnosis.

» Test and diagnosis algorithms for
regular electronic arrays dates back to
the early 1960s.

- e.g. iterative logic arrays, programmable
arrays, etc.

= These approaches are indeed scalable,
some have constant complexity.




