

Why Moletronics? Why Moletronics? Whedefine and Name Electronics Group Proverful computing & electronics is always needed Because of foresteen and unforesteen applications Problems Scatting down: feature sizes ~ 0.2 nm Addressing ~ 10 million connected transistors (Pentium 4) Solutions: Make cells (holes) with minimum size and few terminals Use molecules of ~1-2 nm and let chemistry assemble them Program them through the few terminals (like in FPGA)

Moledevices ~1-100 atoms (Today's transistors ~10⁶

Molectronics, Why theory?

 At nano-dimensions molecules cannot be individually tested,
 thus theory guided experiments are needed

 Smaller devices -> Organic Molecules (Best enoice)

 Smaller devices -> More difficult (almost impossible) experimente

 Smaller devices -> More precise calculations

 Precise laws of nature can be used instead of simple models

 Theory guided experiments

Objectives of theory

Theoretical predictions, experiment interpretations

Most likely tolerances ~1-10 % in current-voltage characteristics needed for proper design of electronic circuits

Find minimum units that can be safely treated by classical methods

Develop Molecular Electronics Design Automation (MEDA) tools

	Methods & Theory
Methods	Molecular device theory:
•Accurate ab initio procedures for molecules	
•A related ab initio procedure for extended systems	
•A combined DFT/Green function approach for electron transport	
•Molecular dynamics simulations	

Coding Information

Information:

Representation ←→Processing

(i) Electrons ←→ Electron Currents
 (ii) Electrostatic Potentials ←→Perturbations

(i) is the logical approach of standard electronics (crispy, high power, slow)
(ii) is the logical approach of standard biological systems (fuzzy, low power, fast)

Moletronics: Information C

Information:

Representation ←→Processing

(i) Electrons ←→ Electron Gurrents
 (ii) Electrostatic Potentials ←→Perturbations

(i) is being fully developed.

ii) is slightly developed, except for its proposition in 1998 (JACS) and an unrelated work in 2002 (JACS), no other substantial work have been reported

Molecular Computers

3 Nanocell (Organic/clusters)

Molecular Switching Molecular Switching To be useful as electronic devices, molecules have to be able to switch back and forth • MO's crossing/reshapes (e.g., nitroamine

- Charge states (e.g., dinitro oligomers)
- Torsional effects (e.g., unsubstituted
- oligomers)
- Breaking bonds (e.g. Au-Au S-Au bonds)

