

The Atomic Scale

- Very small devices/wires
 - Increased variability
 - Increased single-event upsets
 - New behaviors/mechanisms
 - No predetermined arbitrary patterns
 - Increased defect densities
- Lots of devices/wires
 - Scalable .* required

CMOS Too

- Precision is expensive
- Current Abstractions have a major impact on cost
 - Requires process engineers to deliver robust devices
 - Requires perfect devices
- CMOS is becoming just another nanoscale component
- Process rules and mask costs are already eliminating arbitrary patterns

Defect/Fault Tolerance

- Vast body of knowledge, but nanocomputing is different:
 - Massive integration and diverse function
 - High density of defects and faults
 - Constrained fabrication
- Nanoscale engineering *requires* that we build systems that work from devices that don't this is fundamental due to atomic scale
- Fault and Defect tolerance is key to reducing cost and supporting novel devices

Use redundancy and computation to compensate for lack of robustness and precision

Direct Mapping: App's \rightarrow Gates

- Likely to be difficult because tool must
 - Build in error recovery
 - Synthesize, place, and route 1012 devices
 - Virtualize communication resources
 - Allow movement of computation away from failing components (redo p&r)
- Compiler doesn't see everything
 - separately compiled applications
 - Operating System interactions

Conclusions

- Investment in nanodevices and materials is bearing fruit
 A new manufacturing approach is necessary to fabricate large-scale circuits (>10¹² devices/cm²) from nano-scale components.
 - Derivatives of "self-assembly" have the best chance to succeed.
 All known approaches result in statistically imperfect macro-
- All known approaches result in statistically imperfect macroscale circuit structures.
 Dealing with imperfections, defects, and outright faults
- Dealing with impertections, aetects, and outright faults is a new requirement
 - Hardware and software approaches
 Redundancy and computation compensate for defects/faults
- Redundancy and computation compensate for Abstraction is the solution
 - Enables simultaneous progress at all levels
 - Dependent only on size and scale

Conclusions - 2

- Abstractions need to be: tool friendly not human friendly
- Focus moves from
 - ISA \rightarrow IR
 - Von Neumann \rightarrow Parallel fine-grained fabric
- Harness reconfigurable computing!

10/18/02

