
International Test Conference
Charlotte, NC, Sep 30-Oct 2, 2003

Defect Tolerance at the
End of the Roadmap

Mahim Mishra and Seth C. Goldstein

Carnegie Mellon University

Purpose

• Future technologies: EUV Lithography and
Chemically Assembled Electronic Nanotechnology
– Single-digit nanometer feature sizes
– Extreme device densities

• Problem: much higher defect rates
– Defect tolerance becomes key issue

• We outline a defect tolerance strategy
– novel testing method

Talk Outline

• Introduction – need for defect tolerance

• Outline of defect tolerance strategy
– Testing requirements

• Description of proposed test strategy

• Evaluation using simulations

Towards the end of the (ITRS) Roadmap

• Feature sizes approach
single-digit nanometers

• Physical and economic limits
to scaling

Red Brick
Wall!

• New Technologies
– Chemically Assembled electronic Nanotech. (CAEN)
– Extreme Ultraviolet (EUV) Lithography

New technologies: caveats

• Extremely high defect densities
– As high as 10% of fabric logic and routing resources

• Cannot throw away defective fabrics
– Defect-free yield: close to 0%

• Must find a way to use defective fabrics

Part of the solution: reconfigurability

• Regular, periodic
computing fabric
– e.g., Field-Programmable

Gate Arrays (FPGAs)

• Helps achieve defect
tolerance

• User programs as circuits

New challenges for defect tolerance

• New testing techniques to locate all the defects
– generate a defect map

• New, quick, place-and-route algorithms
– utilize the defect map

• Must scale with fabric size and number of defects

Proposed tool flow

Fabric

Tester

“Soft”
Config.

Defect
Unaware

Place-and-
Route

Defect Map “Hard”
Config.

Defect
Aware

Place-and-
Route

(Async.)
Circuit
Netlist

Testing to locate defects
• Required: scalable testing method to locate defects

in large reconf fabrics
– Capable of dealing with large defect densities
– Quick

• Very different from previous FPGA testing methods
– Using defective chips: not a goal so far

– Similar approach: Teramac custom computer at HP

• Goal of this work
– Show that such a testing method is possible
– Develop some of the new, smart techniques required

Testing: previous methods
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Testing: previous methods
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Returns
success

Returns
failure

Testing: previous methods
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Returns
success

Returns
failure

Testing: previous methods
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Returns
success

Returns
failure

Testing: previous methods
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Returns
success

Returns
failure

Testing with high defect rates

• Previous method: works for low defect rates
– Uses “binary” circuits
– Requires significant number of defect-free test-circuits

• Will not work for high defect rates
– Each test circuit has multiple defects
– Very, very few circuits with 0 defects

Testing: high defect rates
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Testing: high defect rates
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Returns
success

Returns
failure

Testing: high defect rates
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Dealing with high defect rates: our
algorithm

Finds probabilities of being defective
Eliminates components w/ high prob.

Probability-
Assignment

Phase

Defect-
Location

Phase

2 key ideas:
More powerful test-circuits

More than binary info; e.g. approximate defect counts

More powerful analysis techniques

Eliminates remaining defects
Deterministic; no mistakes

“Probabilistic”
Defect Map

Defect
Map

Fabric

Probability assignment: example
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Probability assignment: example
Defect-free,

unknown

Defective,
unknown

Defect-free,
known

Defective,
known

Test circuits:
Counter
None-some-many

1 2 1 2 1 2 1 3 More than binary
information!

Probability assignment: example
1

2

1

3

2

1

1

2

Defect-free,
unknown

Defective,
unknown

Defect-free,
known

Defective,
known

1 2 1 2 1 2 1 3

Probability assignment: example
1

2

1

3

2

1

1

2

Component
Defect

Probabilities

Analysis
Method

1 2 1 2 1 2 1 3

Analysis methods:
Sorting
Bayesian

Probability assignment: example
Defect

Probabilities

higher

lower

Probability assignment: example

Removed:

&

Assumed
Defective

Probability assignment: example

Defect location: example

Returns
success

Returns
failure

Assumed
Defective

Binary
Information

Defect location: example

Returns
success

Returns
failure

Assumed
Defective

Defect location: example

Returns
success

Returns
failure

Assumed
Defective

Defect location: example

Returns
success

Returns
failure

Assumed
Defective

Final defect map

Test circuits for prob. assignment

• Idealized counter circuits
– Conceptual circuits
– Return defect counts, upto threshold t
– Higher threshold ⇒ more powerful circuit

• None-some-many circuits
– Tell if none, some or many defects
– Less powerful than counters, easier to realize
– e.g., our LFSR-based design

None-some-many circuits

(a)

(b) (c)

many
noat most 1 of

(b), (c) wrong?

some

no

yes

(a) right?

none

yes

Analysis methods

• Sorting analysis
– Example

• Bayesian analysis

Analysis methods: Sorting analysis
1

2

1

3

2

1

1

2

1 2 1 2 1 2 1 3

Analysis methods: Sorting analysis

1 2 1 2 1 2 1 3

1

2

1

3

2

1

1

2

5

Analysis methods: Sorting analysis
1

2

1

3

2

1

1

2

5

1 2 1 2 1 2 1 3

2

Analysis methods: Sorting analysis
1

2

1

3

2

1

1

2

5

Higher probability
of being defective

2

1 2 1 2 1 2 1 3

Analysis methods: comparison

• Ease of implementation
– Bayesian: harder to implement (restricted circuits)
– Sorting: no restrictions

• Complexity
– Bayesian: O(n2) best case
– Sorting: O(n logn)

• Quality of results: ~10% better for Bayesian

Algorithm: discussion

• Minimally-adaptive algorithm
– Minimal rerouting required at test time

• No false negatives
– After defect-location phase, all defects identified

• Algorithm complexity:
– circuit size k
– defect rate p
– k × k fabric
– requires O(kp) test-circuit orientations

Evaluation

• Quality metric: recovery
– percentage of defect-free components marked

not defective

• Each simulated test circuit: 100 components

• Simulated defect rates: 1 to 13%
– 1 to 13 defects on average per test circuit
– Results valid for circuits with this many defects

Evaluation results: comparison

Ctr

Nsm

sortingBayesian

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

5

4

3

2

0
10
20
30
40
50

60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)
5

4

3

2

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

Eval.: counter circuits, Bayesian anal.

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

Evaluation results: comparison

Ctr

Nsm

sortingBayesian

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

5

4

3

2

0
10
20
30
40
50

60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)
5

4

3

2

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

Eval.: n-s-m circuits, Bayesian anal.

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

5

4

3

2
Each line: represents a different number of
pieces into which the large LFSR is broken

Evaluation results: comparison

Ctr

Nsm

sortingBayesian

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

5

4

3

2

0
10
20
30
40
50

60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)
5

4

3

2

0
10
20
30
40
50
60
70
80
90

100

1 6 11
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13
Defect Rate (%)

R
ec

ov
er

y
(%

)

inf
10
6
3
1

Evaluation results: clustered defects

• So far: uniformly
distributed
defects

• In VLSI: defects
often clustered

0

10

20

30

40

50

60

70

80

90

100

R
ec

ov
er

y
(%

)

2 3

Normally Tightly
Distributed Clustered

• Clustered defects ⇒ higher recovery

Discussion

• Low threshold counter circuits give good results
– Implementation may be possible for particular defects

• Trade-off between Bayesian and sorting analysis

Conclusions

• New manufacturing paradigm
– Reduced manufacturing complexity and cost
– Increased post-fabrication testing and defect-tolerant

place-and-route effort

• Defect tolerance is a major challenge

• Locate defects and configure around them

• Scalable testing with high recovery is possible

Backup slides

• Fabric architecture

• Algorithm

• Probability calculation

• Wave testing

• Individual results graphs

Candidate fabric architecture

• Proposed algorithms adaptable to any fabric arch
– Should have fine-grained reconfigurability and plenty of

routing resources
– Rich interconnect resources: greatly eases testing and

reconfiguration

• For purpose of this talk: consider architecture
similar to island-style FPGAs
– e.g., the nanoFabric architecture for CAEN-based fabrics

nanoFabric architecture (ISCA’01)

C
on

tr
ol

, c
on

fig
ur

at
io

n
&

de
fe

ct
 m

ap
pi

ng
 se

ed

cluster

long-lines

nanoBlock

switch-block

Algorithm (Part 1: prob. assignment)

1 mark all fabric components not suspect
2 for iteration from 1 to N1 do
3 while termination condition not met do
4 for all fabric components marked not suspect do
5 configure components into type 1 test circuits using a

particular tiling
6 compute defect probability for each component using

circuit results from current iteration
7 done
8 done
9 mark components with high defect probability as suspect
10 done

Algorithm (Part 2: defect location)

11 for iteration from 1 to N2 do
12 while termination condition not met do
13 for all fabric components marked not suspect or not

defective do
14 configure components into type 2 test-circuits using

a particular tiling
15 for all circuits with correct output do
16 mark all circuit components not defective
17 done
18 done
19 done
20 mark some suspect components not suspect
21 done

Analysis methods: Sorting analysis

• Let component c1 have defect counts c11, c12, …,
c1n, and c2 have counts c21, c22, …, c2n, for n
circuits each

• Prob_defect(c1) > Prob_defect(c2) if Σc1i > Σc2i

• Complexity: O(n logn) for each probability
calculation step

Probability calculation

A is the event of the component being good, and B is the
event of obtaining the defect counts c1, c2, ….for it,

If k is the circuit size and p is the fabric defect rate,

Scaling with fabric size

• Testing proceeds in a wave
through fabric
• darker areas test and

configure their adjacent
lighter ones.

• Total time required: time
for this wave to traverse
the fabric
• square root of the fabric

size.

	International Test ConferenceCharlotte, NC, Sep 30-Oct 2, 2003Defect Tolerance at the End of the Roadmap
	Purpose
	Talk Outline
	Towards the end of the (ITRS) Roadmap
	New technologies: caveats
	Part of the solution: reconfigurability
	New challenges for defect tolerance
	Proposed tool flow
	Testing to locate defects
	Testing: previous methods
	Testing: previous methods
	Testing: previous methods
	Testing: previous methods
	Testing: previous methods
	Testing with high defect rates
	Testing: high defect rates
	Testing: high defect rates
	Testing: high defect rates
	Dealing with high defect rates: our algorithm
	Probability assignment: example
	Probability assignment: example
	Probability assignment: example
	Probability assignment: example
	Probability assignment: example
	Probability assignment: example
	Probability assignment: example
	Defect location: example
	Defect location: example
	Defect location: example
	Defect location: example
	Final defect map
	Test circuits for prob. assignment
	None-some-many circuits
	Analysis methods
	Analysis methods: Sorting analysis
	Analysis methods: Sorting analysis
	Analysis methods: Sorting analysis
	Analysis methods: Sorting analysis
	Analysis methods: comparison
	Algorithm: discussion
	Evaluation
	Evaluation results: comparison
	Eval.: counter circuits, Bayesian anal.
	Evaluation results: comparison
	Eval.: n-s-m circuits, Bayesian anal.
	Evaluation results: comparison
	Evaluation results: clustered defects
	Discussion
	Conclusions
	Backup slides
	Candidate fabric architecture
	nanoFabric architecture (ISCA’01)
	Algorithm (Part 1: prob. assignment)
	Algorithm (Part 2: defect location)
	Analysis methods: Sorting analysis
	Probability calculation
	Scaling with fabric size

