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ABSTRACT
INEX, the evaluation initiative for content-oriented XML re-
trieval, has since its establishment defined the relevance of
an element according to two graded dimensions, exhaustiv-
ity and specificity. The former measures how exhaustively
an XML element discusses the topic of request, whereas
specificity measures how focused the element is on the topic
of request. However, obtaining relevance assessments is a
costly task. In XML retrieval this problem is exacerbated
as the elements of the document must also be assessed with
respect to the exhaustivity and specificity dimensions. A
continuous discussion in INEX has been whether such a
sophisticated definition of relevance, and in particular the
exhaustivity dimension, was needed. This paper attempts
to answer this question through extensive statistical tests
to compare the conclusions about system performance that
could be made under different assessment scenarios.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Measurement, Standardisation

Keywords
XML evaluation, relevance, statistical tests, INEX

1. INTRODUCTION
In recent years there has been an explosion in the amount

of research and development for the retrieval of structured
documents. This has been in large part an investigation of
XML retrieval systems aimed at supporting content-oriented
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retrieval. Instead of retrieving whole documents, many XML
retrieval systems aim at retrieving document components,
i.e. XML elements, of varying granularity that fulfill the
user’s query. As the number of XML retrieval systems in-
creases, so does the need to evaluate their effectiveness. The
INitiative for the Evaluation of XML retrieval (INEX)1, es-
tablished in 2002, is providing an infrastructure and method-
ology to evaluate these XML retrieval systems.

The typical approach to evaluate a system’s retrieval ef-
fectiveness is with the use of test collections constructed
specifically for that purpose. A test collection usually con-
sists of a set of documents, topics, and relevance assess-
ments. As many related elements within a document may
be relevant (and may be retrieved by the XML retrieval sys-
tem), the relevance assessments must reflect which elements
are better to retrieve than others. To help solve this diffi-
culty, INEX defines relevance according to two dimensions,
exhaustivity and specificity [6]. Exhaustivity (e) measures
how exhaustively an element discusses the topic. Specificity
(s) measures how focused the element is on the topic. That
is, it discusses no other, irrelevant topics.

Although there have been arguments against this sepa-
ration at the INEX workshops, this solution is believed to
provide a more stable measure of relevance than if assessors
were asked to rate elements on a single scale. One reason is
that assessors are likely to place varying emphasis on these
two dimensions when assigning a single relevance value. For
example, one assessor might tend to rate highly specific el-
ements as more relevant, while another might to be more
tolerant of lower specificity and prefer high exhaustivity.

In addition to the dimensions of exhaustivity and speci-
ficity, assessments at INEX have historically been done using
multiple grades on each dimension. The use of a graded scale
was deemed necessary to reflect the relative relevance of an
element with respect to its sub-elements. For example, an el-
ement may be more exhaustive than any of its sub-elements
alone given that it covers all of the aspects discussed in each
of the sub-elements. Similarly, sub-elements may be more
specific than their parent elements, given that the parent el-
ements may cover multiple topics, including irrelevant ones.

However, obtaining relevance assessments is a very tedious
and costly task [9]. A continuous discussion in INEX has
been whether such a sophisticated definition of relevance,
and in particular the exhaustivity dimension, was needed.
The ultimate aim of an evaluation is to be able to state

1http://inex.is.informatik.uni-duisburg.de/



that system A performs consistently better than system B.
A simpler definition, e.g. using one dimension, reducing the
scale, etc., would be less costly to obtain, and an analysis of
the results may arrive at the same conclusion. In particular,
it was always felt that having to assess the exhaustivity of an
element could be avoided. More precisely, assessors have felt
that gauging exhaustivity was a cognitively difficult task to
perform, and that the extra burden has led to less consistent
assessments [14] compared to those obtained at TREC.

In 2005, as described in Section 2.4, a new assessment
procedure was adopted, including a reduced scale for the
exhaustivity dimension. The latter was adopted after a thor-
ough investigation carried out on the INEX 2004 data, which
is reported in detail in Section 4.1. A separate investigation
by Piwowarski et al. [10] shows that these changes led to
better assessments with respect to the specificity dimension.
It is also shown that higher rates of agreement were obtained
with the specificity dimension than with the exhaustivity di-
mension, even with its reduced scale, thus still questioning
the benefit of the exhaustivity dimension.

This paper attempts to provide an answer to the question
of whether there is value added by the multi-graded scale
for exhaustivity. The analysis in this paper examines this
question through the use of quantisation functions to sim-
ulate different assessment procedures. These quantization
functions map the exhaustivity and specificity dimensions
to a single dimension which is used as input to evaluation
measures. There is naturally some risk that changing the
assessment procedure will change assessor’s behavior with
respect to the specificity dimension. However, we feel that
these simulations enable a more informed decision. This
paper presents a thorough statistical analysis of the results
when using the different quantisations. From this analysis,
we make recommendations about the use of the exhaustivity
dimension in XML element retrieval.

We first introduce the evaluation measures and data sets
used at INEX (Section 2). Section 3 discusses the statistical
significance tests, which we apply to the INEX content ori-
ented retrieval tasks of 2004 and 2005 in Section 4. Section 5
summarizes the implications and concludes the paper.

2. INEX DATA SETS AND METRICS
Our investigation of the exhaustivity dimension is based

on the INEX 2004 [6] and 2005 [7] data sets and metrics.

2.1 Documents
In 2004, the document collection consisted of the full-text

of 12,107 articles, marked up in XML, from 12 magazines
and 6 transactions of the IEEE Computer Society publica-
tions, covering the period of 1995-2002, and totaling 494 MB
in size, and 8 millions in number of elements. The collection
contains scientific articles of varying length. On average, an
article contains 1,532 XML nodes, where the average depth
of the node is 6.9. The overall structure of a typical arti-
cle consists of a frontmatter (containing e.g. title, author,
publication information and abstract), a body (consisting
of e.g. sections, sub-sections, sub-sub-sections, paragraphs,
tables, figures, lists, citations) and a backmatter (including
bibliography and author information). In 2005, the collec-
tion was extended with total of 4,712 new articles from the
IEEE Computer Society, giving a total of 16,819 articles, in
size to a total of 764Mb, and around 11 millions elements.

2.2 Topics
The evaluation in this paper focuses on Content-only (CO)

topics, which are traditional IR topics written in natural lan-
guage and constrain the content of the desired results, e.g.
only specify what an element should be about without spec-
ifying what that element is. As in TREC, an INEX CO
topic consists of the standard title, description and narra-
tive fields. Only the title was used as input to XML systems
in both 2004 and 2005. INEX 2004 and 2005 have 29 and
34 topics with relevance assessments, respectively.

2.3 Retrieval task
In any IR evaluation campaign, participants are asked to

submit runs that would satisfy specified retrieval tasks. The
retrieval task investigated in this paper is the ad hoc re-
trieval for CO topics, which can be described as a simula-
tion of how a library might be used. This task involves the
searching of a static set of XML documents using a new set
of CO topics. It is left to the retrieval system to identify the
most appropriate XML elements to return.

In 2005, two CO sub-tasks were investigated, built on as-
sumed user behaviors taking into account how the results
may be presented. In the focused sub-task the aim was for
systems to find the most exhaustive and specific element
on a path within a given document and return to the user
only this most appropriate unit of retrieval. In the thorough
sub-task, the aim was for systems to estimate the relevance
of potentially retrievable elements in the collection. This is
task that most systems performed up to 2004 in INEX. Due
to space constraints, our investigation is based on the thor-
ough sub-task (although all conclusions drawn from analysis
on this sub-task hold for the focused sub-task).

During INEX 2004 and 2005, participating organizations
evaluated each topic set on the document collections in 2004
and 2005, respectively, and produced a list of XML elements
as their retrieval results for each topic. The top 1,500 ele-
ments returned for each topic’s retrieval results were then
submitted to INEX. 70 and 55 runs were submitted in 2004
and 2005, respectively, which are used in our investigation.

2.4 Assessments
In INEX 2004, exhaustivity and specificity were both mea-

sured on a four-point scale with degrees of highly (3), fairly
(2), marginally (1), and not (0) exhaustive/specific. For ex-
ample, (2, 3) denotes a fairly exhaustive and highly specific
element, which means that it discusses many aspects of the
topic of request and the topic of request is the only theme
of the component.

Assessors were asked to provide an exhaustivity value and
a specificity value for all elements forming the pool to as-
sess2. To ensure complete assessments, for any element as-
sessed as relevant (e, s > 0), its parent, its children and its
sibling also had to be assessed. This assessment procedure
led to a very laborious assessment task, with questions re-
garding the quality of the assessments; e.g. lower agreement
between assessments was found at INEX compared to those
reported for TREC [14].

While the definition of the relevance dimensions was the
same in INEX 2005, their scales were revised. The scale for
exhaustivity was changed to 3 + 1 levels: highly exhaustive

2As in TREC, INEX uses a pooling method, to elicitate
which elements to assess [9].



(2), somewhat exhaustive (1), not exhaustive (0) and ‘too
small’ (?). The latter category of ‘too small’ was introduced
to allow assessors to label elements, which although contain-
ing relevant information were too small to sensibly reason
about their level of exhaustivity. This change in the exhaus-
tivity scale resulted in part from the investigation detailed
in Section 4.1. Specificity was measured on a continuous
scale with values in [0, 1], where 1 represents a fully specific
component (i.e. contains only relevant information). For ex-
ample, (2, 0.72) denotes a highly exhaustive element, 72%
of which is relevant content.

The assessment procedure used in INEX 2005 was a two-
phase process. In the first phase, assessors highlighted text
fragments containing only relevant information. The speci-
ficity value of an element was calculated as follows: a com-
pletely highlighted element had a s value of 1, whereas a
non-highlighted element had a s value of 0. For all other
elements, s was defined as the ratio (in characters) of the
highlighted text (i.e. relevant information) to the element
size. In the second phase, assessors assigned one of the 3
+ 1 levels of the exhaustivity scale to those elements that
intersected with any of the highlighted text fragments.

Although this new assessment procedure reduced the time
needed to assess, and higher levels of agreement were ob-
tained [8]3, it was still felt that similar results in terms
of comparing systems effectiveness could be obtained with-
out the exhaustivity dimension. This would mean that the
assessment procedure would only include the highlighting
phase, which is believed would greatly simplify the assess-
ment task, both in terms of time and quality.

2.5 Quantisations
Given that INEX employs two graded relevance dimen-

sions, the evaluation metrics used in INEX (see Section 2.6)
require for these two to be combined. The quantization func-
tions aim to do just that, by providing a relative ordering of
the various combinations of (e, s) values and a mapping of
these to a single relevance scale in [0, 1]. Tables 1 and 2 list
the quantisation functions used on the INEX 2004 and 2005
data sets, respectively. Some were used officially in INEX
as a means to model assumptions regarding the worth of re-
trieved elements to users. Others have been defined for this
work as a means to test various assessment scenarios.

Strict4 is used to evaluate retrieval methods with respect
to their capability of retrieving highly exhaustive and highly
specific elements in INEX 2004. The generalized (Gen4) and
the specificity-oriented generalized (SOG) functions credit
elements according to their degree of relevance, hence al-
lowing modeling varying levels of user satisfaction gained
from not fully specific and highly exhaustive elements, such
as less relevant elements or near-misses. The difference be-
tween Gen4 and SOG is that the former shows slight pref-
erence toward the exhaustivity dimension, while the latter
assumes that more specific elements are of greater value to
the user. The Any Rel quantisation is used to evaluate re-
trieval methods that return any relevant element, regardless
of their exhaustivity and specificity value (as long as e > 0
and s > 0). This quantisation allows the investigation of an
assessment procedure where an assessor is only required to
mark which elements contain relevant text.

3The agreement level was calculated on very few topics, so
any results should be taken as indications.

Name Function

Strict4 f(e, s) :=


1 if e = 3 and s = 3,
0 otherwise.

Gen4 f(e, s) :=

8>>><>>>:
1 if (e, s) = (3, 3),
0.75 if (e, s) ∈ {(2, 3), (3, 2), (3, 1)},
0.5 if (e, s) ∈ {(1, 3), (2, 2), (2, 1)},
0.25 if (e, s) ∈ {(1, 2), (1, 1)},
0 if (e, s) = (0, 0).

SOG f(e, s) :=

8>>>>>>><>>>>>>>:

1 if (e, s) = (3, 3),
0.9 if (e, s) = (2, 3),
0.75 if (e, s) ∈ {(1, 3), (3, 2)},
0.5 if (e, s) = (2, 2),
0.25 if (e, s) ∈ {(1, 2), (3, 1)},
0.1 if (e, s) ∈ {(2, 1), (1, 1)},
0 if (e, s) = (0, 0).

Any Rel f(e, s) :=


0 if e = 0 and s = 0,
1 otherwise.

Table 1: Quantisations used for INEX 2004 analysis.

Name Function

Strict5 f(e, s) :=


1 if e = 2 and s = 1,
0 otherwise.

Fully Spec f(e, s) :=


1 if s = 1,
0 otherwise.

Gen5 f(e, s) :=


e ∗ s if e ∈ {1, 2},
0 otherwise.

Gen Lifted f(e, s) :=

8<: (e + 1) ∗ s if e ∈ {1, 2},
s if e =?,
0 otherwise.

Bin Exh f(e, s) :=


s if e ∈ {?, 1, 2},
0 otherwise.

Table 2: Quantisations used for INEX 2005 analysis.

Both Strict5 and Gen5 have the same intent as Strict4
and Gen4, but redefined for the INEX 2005 exhaustivity and
specificity scale. Both functions ignore elements assessed as
‘too small’. The Gen Lifted quantization function was in-
troduced to score too small elements as near-misses. Fully
Spec and Bin Exh are quantisation functions that reward
elements independently of exhaustivity. They simulate an
assessment procedure where all that is required is the high-
lighting of relevant text (Section 2.4). Additional judgments
on the exhaustivity of the XML elements would not be re-
quired to compute these two quantisations, so they are help-
ful in the simulation of what conclusions could be made in
the absence of the exhaustivity dimension.

2.6 Evaluation Metrics
INEX 2004 and 2005 employ, respectively, inex eval and

XCG to measure effectiveness. These measures are used in
lieu of the common measures of precision and recall, as they
are better suited to handling graded assessments.

2.6.1 The inexeval metric
This metric [6] applies the measure of precall [11] to ele-

ments and computes the probability P (rel|retr)(x) that an
element is relevant for a given recall level x:

P (rel|retr)(x) =
x · n

x · n + NNRx·n
(1)

where n is sum of the quantisation scores for all relevant ele-
ments and NNRx·n is the expected number of non relevant



elements retrieved until the recall point x is reached. pre-
call is designed to handle multiple elements with the same
retrieval status value (RSV). We denote the set of elements
c at rank i having the same RSV as rank (i). The rank at
which recall level x is achieved at is:

r = min

8<:j :

jX
i=1

X
c∈rank(i)

f(assess(c)) ≥ x · n

9=; (2)

where assess(c) = (e, s) is the assessment of the element c
and f is one of the quantisation functions in Table 1. That
is, r is the minimum rank where the sum of all elements’
quantisation scores up to and including that rank is at least
x · n. We define nonrel(i) as the number of non-relevant
elements at rank i:

nonrel(i) =
X

c∈rank(i)

I (f(assess(c)) = 0) (3)

where I is an indicator function which returns 1 when its ar-
gument is true and 0 otherwise. We next define the amount
of relevance left to be obtained from rank r:

left(r) = x · n−
r−1X
i=1

X
c∈rank(i)

f(assess(c)) (4)

NNRx·n is estimated as: 
r−1X
i=1

nonrel(i)

!
+

left(r) · nonrel(r)

r
(5)

One can than estimate P (rel|retr)(x) for various recall levels
and average across queries, as is done for the common eval-
uation measure of mean average precision. A main problem
with the inex eval metric is that it does not handle overlap-
ping elements in the context of XML retrieval evaluation [4],
thus a different measure was adopted in 20054.

2.6.2 The XCG metrics
The XCG measures [5] are extensions of Cumulated Gain

[3], which were specifically designed for multi-graded rele-
vance. The measures include the user-oriented measures of
extended cumulated gain (nxCG[i]) and the system-oriented
effort-precision/gain-recall measures (MAep).

Given a ranked list of elements5, the cumulated gain at
rank i, denoted as xCG[i], is computed as the sum of the
relevance scores up to that rank:

xCG[i] :=

iX
j=1

f(assess(ej)) (6)

For each query, an ideal gain vector, xCI, is derived by
filling the rank positions with f(assess(c′j)) in decreasing
order for all assessed elements c′j . A retrieval run’s xCG
vector is compared to this ideal ranking by plotting both
the actual and ideal cumulated gain functions against the
rank position. Normalised xCG (nxCG) is:

nxCG[i] :=
xCG[i]

xCI[i]
(7)

4The thorough task investigated in this paper does not lever-
age ability to penalize overlapping elements of the XCG
measures. As such, we present a simplified version of the
measure in this paper.
5Unlike the inex eval measure, the XCG measures assume a
fully ordered list and does not allow ties at a rank.

For a given rank i, nxCG[i] reflects the relative gain the
user accumulated up to that rank, compared to the gain
he/she could have attained if the system would have pro-
duced the optimum best ranking, where 1 represents ideal
performance. In INEX 2005 the officially reported cut-offs
for nxCG were i =10, 25, and 50.

The effort-precision ep at a given gain-recall value gr is
defined as the number of visited ranks required to reach a
given level of gain relative to the total gain that can be
obtained. The measure of effort-precision ep is defined as:

ep[r] :=
iideal

irun
(8)

where iideal is the rank position at which the cumulated gain
of r is reached by the ideal curve and irun is the rank position
at which the cumulated gain of r is reached by the system
run. A score of 1 reflects ideal performance, i.e. when the
user needs to spend the minimum necessary effort to reach
a given level of gain. The gain-recall gr is calculated as:

gr[i] :=
xCG[i]

xCI[n]
=

Pi
j=1 xG[j]Pn
j=1 xI[j]

(9)

where n is the number of elements c where f(assess(c)) > 0.
This method follows the same viewpoint as standard pre-

cision/recall, where recall (here gain-recall) is the control
variable and precision (here effort-precision) is the depen-
dent variable. As with standard precision/recall, a non-
interpolated mean average effort-precision, denoted MAep,
is calculated by averaging the effort-precision values mea-
sured at natural recall-point, i.e. whenever a relevant XML
element is found in the ranking.

3. STATISTICAL SIGNIFICANCE TESTS
This section reviews related work in statistical significance

testing for IR evaluation and presents the approach used in
this work. Section 3.1 briefly reviews the two types of er-
rors in statistical significance testing. Section 3.2 presents
an approach to control the rate of incorrectly identifying
statistically significant differences when one makes many
comparisons. The bootstrap statistical significance test is
presented in Section 3.3. That subsection also presents ex-
periments choosing which statistical significance test is most
appropriate for the INEX data. Section 3.4 presents and mo-
tivates the methodology we use for comparing the effects of
using different quantisation functions.

The use of statistical significance testing in IR (Hull [2])
helps researchers make informed decisions about the average
performance of two or more systems. For example, we may
wish to know whether system A, whose score is 0.34 , is sig-
nificantly greater than system B, whose score is 0.28 on the
same topic set and corpus. These data are paired; we have
scored results for each system on the same topics. As such,
an equivalent question is whether the difference between the
score of system A and system B is greater than zero.

In this work, we focus on answering this single tailed ques-
tion. That is, we consider the hypotheses

H0 : θAB ≤ 0 versus H1 : θAB > 0 (10)

where θAB is the true difference of the mean score between
systems A and B. This testing procedure assumes that top-
ics are drawn from some probability distribution. The true



mean difference is given by this unknown probability dis-
tribution. As we do not know θAB , statistical significance
tests can help us decide whether or not it is appropriate to
reject the null hypothesis H0 and declare (with some level
of confidence) that the mean score of system A is greater
than the mean score of system B.

One important issue is how one should choose a particular
significance test among the myriad of possibilities. Hull [2]
outlined a few statistical testing methods for comparing two
systems: the paired-t test, the Wilcoxon signed rank test,
and the sign test. The paired-t test has the strongest as-
sumptions for the test to be valid: the observed differences
should be normally distributed. Wilcoxon’s signed rank test
has the less strong assumption that the differences are sym-
metric at the true mean. The sign test makes the weakest
assumptions of the tests: on average half of the system dif-
ferences should be greater than the true mean.

Generally, with weaker assumptions generally comes lesser
power. Power is the probability that the null hypothesis will
be rejected. Tests that make stronger assumptions reject the
null hypothesis more often. When choosing a significance
test, it is desirable to choose the most powerful statistical
significance test where the data do not violate the assump-
tions of the test. Care must be taken so that assumptions
of the test chosen closely match those of the data, otherwise
many errors in the statistical analysis may occur.

3.1 Errors in Statistical Testing
Statistical significance tests make two kinds of errors. A

type I error is a rejection of the null hypothesis when it is in
fact true. A type II error results when the null hypothesis
is retained when it should be rejected.

When a statistical test is applied then an acceptable type
I error rate is chosen (α) and the test is applied at that level.
In other words, the probability of a type I error is less than
or equal to α. The p-value of a statistical significance test
is defined to be the lowest α that the test would reject.

Controlling type I error is generally considered more im-
portant than type II error, as we do not want to assert that
two systems perform differently when in fact they do not.
We are generally willing to miss significant differences with
the hope that a rejection of the null hypothesis truly iden-
tifies a statistically significant difference.

In related work, Sanderson and Zobel [12] observed that
there were more type I errors than desirable when comparing
many systems and testing at level α. They further proposed
reducing the type I error rate by dismissing the smaller dif-
ferences between systems as not significant when the statis-
tical test asserts that the differences are significantly differ-
ent. While this will reduce the type I error rate, statistics
has provided more principled methods of controlling type I
error during statistical significance testing, which we intro-
duce in the following subsection.

3.2 Controlling Type I Error Rates
When comparing only two systems at level α, one can be

fairly confident that the rejection/retention of the null hy-
pothesis was reasonable. However, it also common to com-
pare several or many systems in a pairwise manner. When
this is done, the probability of observing type I errors is
larger. As we wish to control type I error to a reasonable
level, we must correct for the fact that we are performing
multiple simultaneous hypothesis tests.

A classic way to control this is to control the family wise
error rate, which would ensure that the probability of reject-
ing any of the null hypothesis falsely is less than or equal to
α. Hull [2] presented some techniques for testing multiple
systems using correction of the family wise error rate. Con-
trolling the family wise error rate provides strong assurances
about type I error rates. When one compares more than a
few systems, controlling the family wise error rate typically
results in very few rejections of the null hypothesis; few sys-
tem differences are declared significantly different.

To address this problem, one may instead control the false
discovery rate, which is the number of type I errors divided
by the number of times that the null hypothesis was rejected.
Controlling the false discovery rate at level α′ gives us the
assurance that no more than α′ times the number of sig-
nificant differences identified by the test are type I errors.
To gain power over controlling the family wise error rate,
we allow that when there are rejections of the null hypoth-
esis, we are willing to accept that α′ · 100% of the rejections
may be type I errors. For example, in a retrieval experiment
where we compare 10 systems and identify 20 statistically
significant pair-wise differences at level α = 0.05, we expect
that 20 · 0.05 = 1 difference will be identified in error.

Benjamini and Yekutieli [1] describes a method to control
the false discovery rate. This method operates on the p-
values of any statistical significance test. This generality is
greatly desirable as we may couple this procedure with the
most powerful test that does not violate our assumptions
about the data.

Let p(1), p(2), . . . , p(m) be the p-values resulting from the
statistical significance tests in increasing order (p(i) ≤ p(j)

if i ≤ j). We define

k = max


i : p(i) ≤

i

cmm
α′
ff

(11)

where

cm =


1 if the test statistics are independentPm

i=1
1
i

otherwise
(12)

We then take p(k) as the rejection threshold; we reject all null
hypotheses where p(i) ≤ p(k). This method for controlling
the false discovery rate is powerful when there are many
comparisons, as long as the researcher is willing to accept
that up to α′ of the differences detected may not be true
differences. This is a reasonable trade-off for the greatly
increased power over the control for family wise error rate.
As the tests statistics when comparing system pairs may be
dependent (a particular system may compared many times
to other systems), the experiments in this paper use this
method under the assumption that the test statistics are
not independent.

3.3 Selection of the Significance Test
In this paper we focus our analysis on the outcome of

statistical significance tests when comparing all pairs of sys-
tems over a variety of quantisation functions. We investigate
in this work absolute differences between system scores. In
the following sections, we will compare the results of sta-
tistical significance tests resulting from the use of different
quantisation functions on the INEX retrieval task (Section
2.3). For this work to be as accurate as possible, we wish
to choose the statistical significance test that produces the



lowest amount of errors. In addition to the tests described
by Hull [2], we also consider the bootstrap.

3.3.1 The Bootstrap Statistical Significance Test
While there are parametric versions of the bootstrap, we

will consider the non-parametric bootstrap, as it makes no
assumptions about the distribution or continuity of the un-
derlying distributions. The bootstrap simulates b repeated
observations of the test statistic by sampling with replace-
ment from the original data (we sample topics in this work).
It is often used to estimate confidence intervals, mean values,
and variance [13], but it can also be adapted to perform a
statistical significance test. To test the null hypothesis these
simulated test statistics θ̂i

AB are sorted in increasing order.
Each θ̂i

AB is viewed as an estimate of the test statistic. If

θ̂
(αb)
AB > 0, then H0 is rejected and the two systems are de-

clared to have different performance. The p-value of the
bootstrap test is computed as

max
1≤i≤b


i

b
: θ̂

(i)
AB ≤ 0

ff
(13)

Another way to think of the p-value for the bootstrap test
is that it is the fraction of bootstrap samples where the
difference between systems A and B is less than or equal
to zero. Generally a large number of simulations should be
performed to get reasonable estimates (we take b = 10, 000).

3.3.2 Estimating the Error Rate
To choose the statistical significance test with the low-

est error rate, we examined the error rate of the paired-
t, Wilcoxon signed rank, sign, and bootstrap tests on the
thorough task of INEX 2005. To estimate the error rates,
we perform an experiment similar to that of Sanderson and
Zobel [12] and Voorhees and Buckley [15].

As in previous work, we estimated the error rate using
50 repeated splits of the topic set. On each topic set split,
we applied each of the statistical significance tests to the
system pairs using the first half of the topics. We took
and set aside the set of systems where the null hypothesis
was rejected (a difference was found). The error rate was
defined to be the percentage of systems in this set where the
difference between systems’ mean scores on the other half of
topics specified by the split was not positive.

When performing this experiment we observed that the
bootstrap test made the fewest estimated errors. The error
rate for the bootstrap test using the Gen5 quantisation and
the MAep evaluation measure was 8.3% to 14% of error rate
observed when using the other significance tests (paired-t,
Wilcoxon signed rank, sign). For the Strict5 quantisation,
the error rate of the bootstrap test was 23% to 27% of the
other tests. We also observed that the bootstrap test re-
jected the null hypothesis on both halves of the topic splits
more frequently than the other tests. That is, the bootstrap
agrees with itself more than the other tests examined.

What is even more remarkable is that the bootstrap test
tended to reject the null hypothesis more often than any
of the other tests. For the generalized quantisation and the
MAep measure, the bootstrap identified on average 2.1 times
more significant differences than the other tests. For the
strict quantisation, the bootstrap identified on average 64
times more significant differences. For the generalized quan-
tisation applied to the nxCG at 10, 25, and 50 results, the
bootstrap test identified on average 20, 8.8, and 3.7 times

as many statistically significant differences (respectively) as
the other statistical significance tests.

On these measurements of error, it appears that not only
does the bootstrap test have a lower type I error rate, it
seems to be a more powerful test. As the test seems to
reject more of the null hypotheses than the other tests while
still maintaining a lower type I error rate we believe that the
bootstrap test is retaining the null hypothesis for fewer of
the cases when it should truly be rejected. This leads us to
believe that the bootstrap test has a lower type II error rate
for the INEX data and evaluation measures. Given these
observations, we limit the analysis in the rest of this paper
to applications of the bootstrap statistical significance test.

3.4 Comparing Quantisations
Common approaches to compare rankings use measures

such as Spearman’s and Kendall’s rank correlation statis-
tics. We avoid using these measures as they can be mis-
leading. For example, consider the case where we have two
groups of systems of equal size, G1 and G2. For two eval-
uation measures produced using quantisation functions Q1

and Q2, all systems perform about the same within either
group. However, for both measures all systems in group G1

perform better than all systems in group G2. Suppose that
performing statistical significance tests correctly reject the
null hypothesis when comparing systems in G1 to those in
G2 while also correctly retaining the null hypothesis when
comparing systems within a group.

If quantisations Q1 and Q2 order the systems within each
group in reverse order, then any Spearman’s rho and Kendall’s
tau will both be less than 1. For example, if n = 20, then
Spearman’s rho is 0.5 and Kendall’s tau is 0.026. In this
case, Spearman’s rho does identify a statistically significant
correlation between the rankings, while Kendall’s tau does
not. Similarly, Pearson’s correlation would also be less than
1. However, even though Spearman’s and the Pearson’s tests
would probably correctly identify correlation, both tests ig-
nore whether two systems can be distinguished from each
other or not. A better analysis would conclude that the two
measures are equivalent, because the statistical tests made
on the pairwise comparisons for either measure would cor-
rectly distinguish the groups.

If we directly compare the outcome of statistical signifi-
cance tests, we would conclude that the two quantisations
are equivalent. It is for this reason we choose to compare the
quantisations by examining the results of the statistical tests
made when performing pairwise comparisons. Furthermore,
comparing the results of the statistical tests will allow us to
use easily interpretable statistics, while correlation measures
are not generally easy to interpret.

When we compare the statistical decisions made by two
different quantisations, we can use the results of the tests
performed using one quantisation Q1 to predict the results
of the other quantisation Q2. In this case, we treat Q2 as the
‘ground truth’. We thus can use the standard measures of
retrieval performance, where reject(Q) is the set of system
pairs rejected when applying statistical significance tests to
the results when using quantisation Q:

recall(Q1, Q2) =
|reject(Q1) ∪ reject(Q2)|

|reject(Q2)|



inex eval
Strict4 Gen4 SOG Any Rel

Recall
Strict4 - 51% 1 0.61 0.60 0.60
Gen4 - 79% 0.96 1 0.96 0.96
SOG - 77% 0.92 0.94 1 0.92

Any Rel - 81% 0.96 0.99 0.97 1
F1

Strict4 - 51% 1 0.75 0.73 0.74
Gen4 - 79% 0.75 1 0.95 0.97
SOG - 77% 0.73 0.95 1 0.94

Any Rel - 81% 0.74 0.97 0.94 1

Table 3: Quantisation agreement for the INEX 2004 CO Task.

Cells correspond to Recall/F1 values given by using the significant

differences identified by the quantisation in the row to predict

those of the quantisation in the column. Precision may be read

from the table by using the quantisation in the column to predict

the row. The percentages in the first column are the percent of

possible significant differences that were actually identified.

precision(Q1, Q2) =
|reject(Q1) ∪ reject(Q2)|

|reject(Q1)|

F1(Q1, Q2) =
2 · recall(Q1, Q2) · precision(Q1, Q2)

recall(Q1, Q2) + precision(Q1, Q2)
(14)

These measures give us interpretable measures of correla-
tion between the two rankings. When the results of all of
the statistical significance tests on both quantisations agree,
recall, precision, and F1 will all be one.

4. ANALYSIS
This section examines the various quantisation functions

used at INEX for the CO retrieval tasks of 2004 and 2005.
Section 4.1 reviews previously unpublished analysis of the
INEX 2004 data that was used by the organizers of INEX
to motivate the reduction of the grades in the exhaustivity
dimension in 2005. Section 4.2 presents new results from
analyzing the INEX 2005 data.

4.1 Analysis of INEX 2004
At the INEX 2004 workshop, assessors commented that

multi-graded assessments were time-consuming to perform.
There were also concerns that the graded scales may also
lead to low inter-assessor agreement. It was generally be-
lieved that reducing or eliminating the graded scales would
lead to a more consistent and less time consuming assess-
ment procedure. In addition, there was also confusion about
whether the quantization functions measured different as-
pects of the retrieval systems.

In this section we briefly review our motivation for rec-
ommending reducing the scale of exhaustivity from 0,1,2,3
used in 2004 to a scale of 0,1,2. We first examine the offi-
cial quantisation functions, investigating whether we would
draw the same conclusions about systems when using these
different quantisation functions (Section 4.1.1). We then in-
vestigate whether the 0,1,2,3 exhaustivity/specificity scales
were necessary or whether the conclusions could be drawn
from 0,1 or 0,1,2 scales (Section 4.1.2).

4.1.1 Comparison of official quantisations
We first review whether the official quantisations used in

INEX 2004 identified the same statistically significant differ-
ences. From Table 3 we observe that Gen4 and SOG provide
very similar rankings (F1=0.95). There is very high agree-
ment about which systems perform statistically significantly
differently from each other between these two quantisation
functions. Although these two quantisation functions ex-
press different user preferences (Section 2.5), they behave
very similarly when ranking systems.

However, the Strict4 quantisation function identifies a quite
different set of statistically significantly different system pairs.
From Table 3, we see that F1 of the identified system differ-
ences of Strict4 and the Gen4 and SOG quantisations is 0.75
and 0.73, respectively. This is rather low. Looking at the
top part of the table, we see that the Gen4 and SOG quan-
tisations have high recall of Strict4 system differences (0.96
and 0.92), but that their precision is quite low (0.61 and
0.60). That is, the differences between systems identified
when using the Strict4 quantisation function are roughly a
subset of those identified when using either of the Gen4 and
SOG quantisation functions.

This is also reflected in the fact that the Strict4 quantisa-
tion function tends to identify fewer statistically significant
differences (51% of all possible) than the Gen4 (79%) and
SOG (77%). From this, we observe that the Gen4 and SOG
quantisation functions are better at distinguishing systems
than the Strict4 quantisation function.

In summary, the Gen4 and SOG quantisation functions
behave similarly despite the fact that they emphasize dif-
ferent preferences for the exhaustivity and specificity of ele-
ments. The Strict4 quantisation function identifies fewer dif-
ferences between systems than the other quantisation func-
tions, suggesting that it measures different system behavior.
However, the system differences identified using the Strict4
quantisation function tend to be also identified by the Gen4

and SOG quantisation functions.

4.1.2 Value of graded exhaustivity and specificity
We next investigated whether multiple grades were neces-

sary. The Gen4 and SOG quantisations both rely heavily on
the graded scales of exhaustivity and specificity. The Strict4
quantisation requires knowledge of which components are
highly exhaustive and highly specific. Here we wanted to
know whether we can predict any of the quantisations used
in INEX 2004 without leveraging the exhaustivity and speci-
ficity scales.

The Any Rel quantisation function was designed to in-
vestigate this question. It gives equal merit to any relevant
element, regardless of how exhaustive or how specific each
element is. Perhaps surprisingly, we see that the Any Rel
quantisation tends to predict the same differences as the
Gen4 and SOG quantisation functions (F1 is 0.97 and 0.94).
This suggests that for examining the behavior of systems on
the INEX 2004 data, graded exhaustivity and specificity is
not necessary to identify the system differences that would
be identified by the Gen4 and SOG quantisation functions.

4.1.3 Summary
The analysis on INEX 2004 data resulted in the obser-

vation that the Any Rel, Gen4, and SOG quantisations all
identified a similar set of statistically significantly different
system pairs. However, the Strict4 quantisation identified a



smaller set of differences that were typically identified when
using the other quantisation functions.

The fact that the Any Rel quantisation function does not
need graded assessments has positive implications on the
assessment procedure that could be used if the ability to
identify the differences found when using the Strict4 is not
important. In such a case, the assessor would only have
to mark which elements contain relevant text; no further
assessment would be required.

Even with the requirement that the Strict4 quantisation
remain a part of the evaluation, one can reduce the exhaus-
tivity and specificity scales. A reduced scale of 0, 1, 2 where
0 corresponds to not exhaustive/specific, 1 to somewhat ex-
haustive/specific, and 2 to highly exhaustive/specific would
be good enough to identify most of the statistically signif-
icant system differences for the Strict4, Gen4, and SOG,
quantisation functions. Given this analysis, INEX chose to
reduce the number of grades in the scale for exhaustivity.
No recommendation was made for the specificity scale, as
the assessment procedure was changed in INEX 2005 (Sec-
tion 2.4). The new highlighting process allowed for a con-
tinuous scale of specificity to be calculated automatically.

4.2 Analysis of INEX 2005
This section aims to analyze: (1) whether considering el-

ements marked as ‘too small’ as relevant has a large impact
on which systems are identified as statistically significantly
different (Section 4.2.1); and (2) what effect further reduc-
ing the exhaustiveness scale to a binary scale would have on
the conclusions that could be made (Section 4.2.2).

4.2.1 Too small elements
When assessors were judging an article, they could mark

all of the remaining un-assessed elements in an article as
‘too small’ and continue to the next article. The assessors
were trusted to use this feature with care, but this was not
always the cases. There were situations where large elements
(hundreds of words) were marked as ‘too small’. During and
after the INEX 2005 workshop, INEX participants expressed
concerns that abuse of the ‘too small’ may have resulted in
poor system rankings.

The reason was that the generalized quantisation (Gen5)
assigns a score of zero to these elements marked as ‘too
small’. To investigate whether this had a large impact on
the rankings of systems, the organizers introduced the gen-
eralized lifted (Gen Lifted) quantisation, which allowed ‘too
small’ elements to be considered relevant, but less relevant
than those that had an exhaustivity of one or more.

Table 4 shows that there is reasonably high agreement
between the Gen5 and Gen Lifted quantisations as F1 is 0.9
for both nxCG at rank 25 and MAep. In the interests of
saving space, we omit results on nxCG at ranks 10 and 50.
The results are similar to those of nxCG at a cut-off of 25
elements, although, nxCG at 10 tends to be more variable
and less able to distinguish systems whereas nxCG at 50
tends to identify more statistically significant differences.
Despite these differences, levels of agreement are similar to
those observed for nxCG at 25 and MAep.

It is also illustrative to examine where the disagreements
between the quantisation functions occur. Figures 1a and
1b shows this using the MAep evaluation measure. Figure
1a is a scatter plot of the differences identified as signifi-
cant using either the Gen5 or Gen Lifted quantisation. We

see that there is high correlation among the differences in
MAep, and that when the two quantizations disagree about
whether the systems behave differently or not, the differ-
ences in MAep tend to be the smaller differences observed
on the plot. Figure 1b presents those differences in MAep
using a density plot. In the figure the x-axis corresponds to
the difference between system pairs using the Gen5 quan-
tisation. The figure clearly demonstrates that most of the
errors occur with lower absolute differences. The larger the
differences in MAep, the more like each other the two quan-
tisations behave. This is encouraging, as the prediction of
the Gen Lifted quantisation could be improved with a simple
threshold applied to the differences in scores.

In summary, we see that there is reasonably high agree-
ment between which system pairs are identified as signifi-
cantly different when using the Gen5 and Gen Lifted quan-
tisations. When they do disagree, the differences in scores
tend to be smaller than the differences in scores where the
quantisations do agree. From this, we conclude that it does
not make a large difference in the rankings whether or not
the ‘too small’ elements are considered relevant.

4.2.2 Value of graded exhaustivity
We next consider whether we can simulate the behavior of

either generalized quantisation and the Strict5 quantisations
using only the specificity dimension of relevance. If this were
the case, it would eliminate the need for assessors to judge
elements with respect to the exhaustivity dimension.

We first ask whether we can simulate the behavior of ei-
ther the Gen Lifted or Gen5 quantisation without the use of
the exhaustivity dimension. The quantisation we examine
for this is binary exhaustivity (Bin Exh), which simulates an
assessment procedure where the user highlights all relevant
text (Section 2.5). Table 4 shows that Bin Exh agrees highly
with Gen Lifted. F1 is again quite high for both the nxCG
at rank 25 and MAep with values of 0.87 and 0.93, respec-
tively. Scatter plots and density plots for these comparisons
look similar to those in Figures 1a-b, but have been omit-
ted to save space. We can conclude that Bin Exh function
simulates the behavior of Gen Lifted.

However, Bin Exh is not an ideal predictor of the Gen5

quantisation function. This could be in part a side effect of
treating the ‘too small’ elements as relevant. We considered
a variant of Bin Exh which did not treat ‘too small’ elements
as relevant (f(?, s) = 0). With this variant resulted in an
F1 of 0.88 and 0.93 for the nxCG at rank 25 and MAep
evaluation measures. This is encouraging, and we hypoth-
esize that a simple thresholding based on the element size
to automatically filter out most ‘too small’ elements would
gain similar levels of agreement with the Gen5 quantisation.
We leave this to future work.

The ability to reasonably simulate Gen Lifted without the
use of the exhaustivity dimension is similar to our findings
with the Any Rel quantisation function on the INEX 2004
data (Section 4.1.2). Again we see that a graded scale for
exhaustivity is not necessary for simulating rankings that
treat somewhat exhaustive elements as relevant.

We now look whether Strict5 can be simulated. In Sec-
tion 4.1.3 we outlined our previous recommendation to pre-
serve a graded scale for exhaustivity. Doing so allowed the
continued use of a strict quantisation function, which only
considers highly exhaustive and highly specific text as rel-
evant. We investigate whether the Fully Spec quantisation



nxCG25
Fully Gen Bin

Strict5 Spec Gen5 Lifted Exh
Recall

Strict5 - 15% 1 0.27 0.31 0.31 0.25
Fully Spec - 53% 0.98 1 0.69 0.74 0.78

Gen5 - 42% 0.88 0.54 1 0.86 0.78
Gen Lifted - 47% 0.98 0.66 0.96 1 0.87

Bin Exh - 46% 0.82 0.68 0.86 0.87 1
F1

Strict5 - 15% 1 0.42 0.45 0.47 0.39
Fully Spec - 53% 0.42 1 0.61 0.70 0.72

Gen5 - 42% 0.45 0.61 1 0.90 0.81
Gen Lifted - 47% 0.47 0.70 0.90 1 0.87

Bin Exh - 46% 0.39 0.72 0.81 0.87 1

MAep
Fully Gen Bin

Strict5 Spec Gen5 Lifted Exh
Recall

Strict5 - 35% 1 0.52 0.55 0.55 0.51
Fully Spec - 63% 0.93 1 0.76 0.84 0.81

Gen5 - 59% 0.92 0.71 1 0.89 0.83
Gen Lifted - 61% 0.95 0.81 0.92 1 0.95

Bin Exh - 60% 0.86 0.77 0.85 0.92 1
F1

Strict5 - 35% 1 0.67 0.69 0.70 0.64
Fully Spec - 63% 0.67 1 0.73 0.82 0.79

Gen5 - 59% 0.69 0.73 1 0.90 0.84
Gen Lifted - 61% 0.70 0.82 0.90 1 0.93

Bin Exh - 60% 0.64 0.79 0.84 0.93 1

Table 4: Quantisation agreement for the INEX 2005 thorough sub-task. Format of the table is the same as Table 3.

(Section 2.5), which considers only the highly specific el-
ements (s = 1) as relevant, can be used to simulate the
Strict5 quantisation function. Unfortunately, the Fully Spec
is not a good predictor of Strict5 (Table 4).

The Fully Spec quantisation is able to recall a large por-
tion of the differences identified when using the strict quan-
tisation, but it also predicts many more differences. Fig-
ures 1c-d illustrate where the erroneously predicted differ-
ences occur with respect to system differences. In these
plots, the Fully Spec quantisation is used to predict the
Strict5 quantisation applied to MAep. We see from these
plots that there is a large degree of overlap between the
region corresponding to correctly identified differences and
those that Fully Spec identified in error. Applying a thresh-
old on the differences in score will not improve the predic-
tions made. We conclude from this analysis that it is difficult
to simulate the behavior of the Strict5 quantisation without
the use of the exhaustivity dimension.

4.2.3 Summary and Discussion
We investigated two questions on the INEX 2005 data.

We first studied whether considering items assessed as ‘too
small’ as relevant would greatly change rankings. We found
that ‘too small’ elements did not have a large impact.

We also investigated the value of the graded exhaustiv-
ity scale. We first found that a graded exhaustivity scale
is not necessary to simulate the results of the Gen Lifted
quantisation. We also found that knowledge of which el-
ements are ‘too small’ is necessary for good simulation of
the Gen5 quantisation, but we hypothesize this could be ap-
proximated with a simple threshold based on the element’s
length in characters.

As with the Strict4 quantisation of INEX 2004, we were
unable to simulate the Strict5 quantisation without the use
of a graded exhaustivity scale. However, we argue that the
Strict5 quantisation function is not a very useful measure of
system performance on the INEX 2005 data. Table 4 shows
that the nxCG at rank 25 only identified 15% of all pos-
sible system differences as significant, while using MAep,
it identified 35% of all possible differences as statistically
significant. Both numbers are very low, and very few sys-
tems are distinguishable when using the Strict5 quantisation
function. This makes results analysis very difficult, as few
conclusions can be drawn with any certainty.

Given that the Strict5 quantisation proved to be unable to
distinguish retrieval systems, we recommend that it be omit-

ted from future INEX evaluations. Doing this would open
the door to further simplification of the assessment process
used at INEX. With only requiring assessors to highlight
the most specific text, INEX could make use of the binary
exhaustivity (Bin Exh) quantisation function, which only
leverages specificity. Since this quantisation function reason-
ably simulates the behavior of the Gen Lifted quantisation
function currently used at INEX, there would be consistency
in the task from INEX 2005 to the coming years.

5. CONCLUSIONS
INEX defines relevance according to a specificity and an

exhaustivity dimensions, themselves defined on a graded
scale. Obtaining relevance assessments is very costly, in par-
ticular in the context of XML retrieval, where elements in
addition to documents have to be assessed. For the purpose
of comparing retrieval effectiveness, it has been argued in
INEX that such a complex definition of relevance was not
needed. This paper provides an answer to this argument,
through extensive statistical tests.

This paper introduced several statistical tools useful for
the evaluation of retrieval systems. In particular, we intro-
duced the approach in [1] to control the false discovery rate
for multiple test correction. This method is well suited for
comparisons of very many retrieval systems.

This paper also introduced a framework for investigat-
ing the potential impact of changing an evaluation measure
(such as using a different quantisation function) on the sta-
tistical conclusions that can be made about system effective-
ness. Specifically, we demonstrated the application of this
approach to investigating the impact of reducing the grades
in a scale and the omission of the exhaustivity scale for XML
component retrieval.

Using these tools, we performed analysis of the exhaustiv-
ity and specificity dimensions used in INEX 2004 and 2005.
In this analysis, we found that the strict quantisations do
not distinguish systems as well as the generalized quanti-
sations. As such, it is a more difficult evaluation standard.
Coupled with our findings that many of the generalized class
of quantisations can be simulated without the use of assess-
ments of exhaustivity, we feel that it is prudent to drop the
strict quantisations from evaluation at INEX.

Another positive side effect of dropping assessment of ex-
haustivity would be more topics with assessments. Indeed,
INEX has only 34 and 29 topics assessed for the 2004 and
2005 CO tasks, respectively, whereas a typical evaluation at
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Figure 1: Scatters plot (left) of pairwise system differences identified as significant by the quantisation functions labeled on the axes

for the thorough sub-task of INEX 2005. On the right are stacked kernel density estimates of the same data, using the differences of the

quantization labeled on the x-axis. A ‘miss’ is a rejection of the null hypothesis identified by the quantisation presented on the y-axis

but a retention of the null hypothesis by the quantisation used on the x-axis. A ‘false alarm’ is a retention of the null hypothesis by the

quantisation of the y-axis when the null hypothesis was rejected when using the quantisation of the x-axis.

TREC has 50 topics assessed. Voorhees and Buckley [15]
and Sanderson and Zobel [12] have observed that more sys-
tems are distinguishable when using more topics. Having
more topics assessed at INEX would have a similar effect,
enabling researchers to draw more reliable conclusions about
their research from the evaluation at INEX.
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