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ABSTRACT
This paper examines the use of XML for modern extraction-
based question answering (QA). We feel that the XML com-
munity has taken too narrow a view of structured retrieval,
and that examining specific applications such as QA can
give the XML retrieval community a broader view of the
problems and challenges that structured retrieval faces. In
our examination of QA, we argue that the next steps for
retrieval supporting QA should be the use of a structured
database for retrieval of passages. We believe retrieving pas-
sages could provide higher precision result lists without sac-
rificing the recall. This could greatly reduce the process-
ing time for question extraction or allow the examination of
more passages. The application of XML search technologies
to QA is a realistic scenario and presents several interesting
challenges to XML database systems. These challenges come
in many forms: representation of structured documents in
XML, indexing documents for efficient querying, and rep-
resentation of queries. This paper explores these issues by
considering techniques for question answering and also con-
siders future directions for QA. Specific queries are provided
as motivating examples.

1. INTRODUCTION
Much of the existing research on XML retrieval systems

has focused on designing expressive query languages and
developing efficient structures for the support of retrieval.
Many of the examples in literature are motivated through
use cases. Use cases are a good way to examine the re-
quirements for some specific problems, and through their
examination useful generalizations may be found. Work in
this area has produced powerful query languages for XML
such as XPath [1], XQuery [2], and NEXI [18]. However,
this research has provided little guidance on knowing which
tasks are more important to the users of an XML retrieval
system. Other works have adapted existing database query
languages such as SQL to XML [3][5]. There are no guaran-
tees that the questions asked of traditional database systems
will be the same as those of XML retrieval systems. These
issues imply the query languages may not be able to express
typical user needs and the structures may not be optimized
for the most common search tasks.

The work in the INEX community has helped to provide
some guidance by establishing a forum for the creation of
real information needs [7]. The topics created for evaluation
use either flat text queries or structured queries. All of the
information needs evaluated in INEX require some notion of
looking for text relevant to the information need. Systems
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are evaluated based on how well they produce rankings of
document components that satisfy the user’s information
need.

One important recognition of INEX is the need to express
the notion of what text is about in queries. Recognizing the
role of approximate matching in XML search presents the
need for ranking results by degree of match or relevance to
the user’s information need. Another important recognition
of the INEX community is that the user may not know what
types of document components may contain information rel-
evant to their need.

However, INEX has its limitations. Many researchers
have found it difficult to create realistic information needs
that require structured queries. This may be a limitation
of the nature of the corpus: a collection of journal arti-
cles about computer science with some document structure
markup. The narrow domain may limit the kinds of infor-
mation needs. Alternatively, the simple structural markup
of the document may be the limiting factor. Regardless, we
feel that it is useful to look beyond INEX to find additional
realistic scenarios for XML retrieval.

Asking the “how” question of how XML can be useful for
a broader range of users and problems raises interesting re-
search questions that will advance the state of the art within
XML. These users need not be human users - they may be
systems that process XML data. Not only will this activity
advance the start of the art for XML, but it will make XML
research applicable to a wider audience.

With that in mind, this paper explores the use of struc-
tured retrieval for question answering (QA) systems. There
are two general approaches to QA: knowledge-based and
extraction-based. Knowledge-based QA uses a database of
typically domain specific knowledge. Natural language ques-
tions are analyzed and converted into database queries that
return the answers. More recent QA has been extraction-
based. Questions are asked on a open-domain text cor-
pus and answers are extracted from the text. This process
roughly consists of three steps: question analysis, passage
retrieval, and answer extraction. This paper will focus on
extraction-based QA approaches, but with the goal of mov-
ing some of the processing usually done by the extraction
component into the retrieval component. We view this as
taking a small step from open domain extraction-based QA
toward open domain knowledge-based QA (which many sys-
tems are currently working toward).

The process of examining what XML can and cannot do
for QA will in turn point out challenges and issues for XML
retrieval. These issues come in three forms: representation
of queries, representation of structured text, and indexing of
structured text for efficient retrieval. We argue that ranking
is important, that query term weighting and proximity oper-
ations are needed, and that the structures of real documents
may be overlapping. Overlapping structure will require new



mechanisms for indexing and retrieval.
The next section reviews QA and the role of search in QA.

Section 3 provides specific motivating examples of how XML
search could be used by QA systems. Section 4 draws on the
examples to elaborate some of the challenges and limitations
for XML. Section 5 describes some potential solutions to
these problems, and Section 6 concludes the paper.

2. OVERVIEW OF
QUESTION ANSWERING

In this section we describe approaches to QA. Techniques
generally fall into two classes: knowledge-based QA and
extraction-based QA. However, the distinction between the
two is sometimes unclear, as some extraction-based QA ap-
proaches use knowledge bases and some knowledge-based
QA systems use extraction technologies.

2.1 Knowledge-Based QA
Knowledge-based QA has a longer history than extraction-

based QA. We will only briefly discuss the use of knowl-
edge bases here as our focus is extraction-based methods.
In this setting, knowledge or facts are represented within
a database. The knowledge represented by these systems is
typically domain specific, as construction of these knowledge
bases is typically manual labor intensive. Natural language
questions are analyzed and converted into database queries
that will return the answer.

One early example of a knowledge-based QA system is
Lunar [20]. Lunar parsed natural language questions into a
formal query language using syntactic and semantic rules.
The knowledge base contained chemical data about moon
that was gathered on Apollo missions.

A more modern example of a QA system that uses knowl-
edge bases is Start [9]. Start used natural language anno-
tations to represent knowledge. Queries were compared to
the annotations and matching annotations were returned.
These annotations took the form of triples representing a
relationship between a subject and an object. The annota-
tions were extracted automatically from text. The knowl-
edge represented by the simple annotations was limited, but
could answer a surprising variety of questions.

2.2 Extraction-Based QA
Much of modern research in QA is extraction-based. An-

swers are sought in a large, open-domain text corpus and
extracted from the text. The typical phases of an extraction
question answering system are question analysis, document
retrieval, passage extraction, and answer extraction.

The question analysis phase examines the question and
often classifies it into a set of categories based on the ex-
pected answer type for the question. For example, “Where
is the Taj Mahal” would be classified as a location question.
Techniques for question analysis range from simple pattern
matching of hand-written rules [19] to classification using
parse trees [17].

There are a few basic approaches to document retrieval
for QA and passage extraction. Some systems perform both
steps at once by doing passage retrieval. Passages are typ-
ically taken as overlapping windows of terms or bytes or a
sequence of sentences. Ranking algorithms for documents or
passages are either based on traditional information retrieval
scores or measures of term proximity [4]. It is also common
to index text identifiers of text matching answer types so
that they can be included as important components of the
query [16]. Queries to the retrieval engine tend to be simple
text queries [4] or Boolean queries [14]. Passage extraction is
usually based around the tightest cluster of query terms [4].

Answer extraction takes passages and the output of the
question analysis as input and produces a ranking of an-
swers (or one single best answer). Answer extraction tends
to be the most knowledge intensive component of QA sys-
tems. The level of knowledge encoded may vary from system
to system; some systems use extract answers using simple
templates, while others attempt to prove the answer is cor-
rect using a knowledge base and linguistic analysis of the
passage [14].

2.3 Modern Hybrid QA
Among the more knowledge intensive extraction-based tech-

niques the works of LCC, Keselj, and van Durme. LCC [14]
uses a theorem prover that leverages linguistic knowledge
to verify extracted answers. Keselj demonstrated the use
of unification of head-driven phrase structure grammars of
processed text and queries [10]. Van Durme [19] proposed
the use of light semantic processing, fuzzy unification, and
the computation similarity score for the quality of the uni-
fication.

State-of-the art QA systems use a hybrid of extraction-
based and knowledge-based methods. Multiple techniques
are used with varying levels of knowledge and then the ex-
tracted answers from the different approaches are combined
to give a single ranking. These approaches may use existing
knowledge bases or build them using information extraction
techniques. For example, Jijkoun et al. [8] combine a knowl-
edge base with extracted factual information with template
based approaches, n-gram matches, and a full question an-
swering system. The knowledge base consists of tables of
factual information extracted from the corpus targeted to
answering specific question types. Lin and Katz [11] pro-
vide access to knowledge bases on the web by providing
wrappers so that object-property-value database queries can
be issued. Echihabi et al. [6] combine knowledge-based ap-
proaches with pattern-based and statistical methods.

Of particular note is the work of Litkowski [13][12]. Lit-
kowski has been developing an XML-based QA system. The
markup employed is both syntactic and semantic in na-
ture. Litkowski first parses passages to produce parse trees
which are then processed to annotate them with seman-
tic role and relationship information. Question answering
is performed by creating an appropriate XPath query to
search the passages. The XPath queries are created using
a rule-based mechanism, which can be manually intensive.
In Litkowski’s evaluations, it is observed that while many
answers are found for questions, they are not always ranked
highly. This stresses the need for structured retrieval sys-
tems to rank results and gracefully back off when all desired
structural constraints are not satisfied. We argue that this
is a marked contrast to the query-relaxation approach which
provide sets of unranked (or poorly ranked) results, which
is typical for the retrieval component of many QA systems.

While this paper’s focus is on extraction-based question
answering tasks, it is important to note that modern QA
research is moving beyond this task. Current research in
QA also includes work on definition questions which require
selection of valuable snippets. This work is more complex
as it may require novelty detection and summarization ap-
proaches to produce good answers. This work is beyond the
scope of this paper, and would have further additional re-
quirements of a structured retrieval system. This paper’s
purpose is to start the process of examining additional re-
quirements of structured retrieval systems, and is by no
means exhaustive.



3. RICHER QUERIES FOR
RICHER DOCUMENTS

In most current extraction-based QA, there is little inter-
action between answer extraction components and retrieval
components. With a richer index that stores the output of
some system preprocessing, a greater degree of interaction
between extraction and retrieval would be enabled. We view
this as trying to treat the text retrieval system more like a
knowledge base, even though it may be a small step in that
direction. However, the goal is still extraction-based QA.

In order to enable a greater interaction between answer
extraction and retrieval, we may need to index syntactic and
semantic structure contained within the documents. Typ-
ically, knowledge bases are assumed perfect, but the auto-
matic document markup used in a QA system cannot be
assumed perfect. Knowledge encoded in text may not be
accurate, and the natural language processing methods used
will not provide perfect results. This has two primary im-
plications to this approach:

• It is appropriate to provide rankings of results, rather
than a set. The order of the ranking should reflect
confidence of the passage matching the query. Effec-
tive retrieval should rank the most exactly matching
results highest, but gracefully back off to approximate
matches.

• Additional processing or reasoning over text or using
external knowledge bases will still be appropriate. A
system may use an external resource containing knowl-
edge about the world or language to verify answers. It
may also be too computationally expensive to do all
desired forms of annotation of the text prior to index-
ing and retrieval.

The main idea is that by increasing interaction between
the extraction and retrieval components, more specific result
lists can be passed to the extraction component. Returning
passages that are more likely to satisfy the answer extraction
component can enable some benefits:

• The extraction component then has fewer results to
process, therefore decreasing processing time during
the extraction phase.

• The extraction component can process more results,
possibly resulting in higher recall.

In order to gain these benefits, the retrieval system must
index documents with structure. Some of the options for
structural markup include:

• document structure markup - paragraphs, sections, etc.
These forms of structure are common in XML docu-
ments and can be added at low cost to flat text docu-
ments using machine learning algorithms.

• named entities. Named entities such as people names,
companies, locations, and dates are extensively used in
QA and there are established approaches for extracting
them.

• part-of-speech. Part-of-speech taggers are somewhat
expensive to run but are also commonly used by an-
swer extraction components.

• parse trees. Parse trees are very expensive, but provide
rich information about the relationships of words in a
sentence. Parse trees are used by some QA systems.

• semantic role labels. Semantic roles are arguably more
useful than parse trees, as they can concisely represent
the relationship between objects in sentences. This
means semantic roles can apply to more general situ-
ations than parse trees.

• extracted knowledge. This knowledge is similar to se-
mantic role labels in that it represents knowledge about
the semantics of the sentence. However, it is much
more specific to specific kinds of knowledge and may
be tailored to answering specific question types.

The structure indexed in the retrieval system can have
large effects on the types of queries that may be appropriate,
as we will see in the example below.

3.1 Example Query
In this section we examine the different types of queries

that could be asked of an XML search system for the ques-
tion:

Who killed Abraham Lincoln?

In this example we will start with simple queries typical
for retrieval components of QA systems and build up to more
complex queries that could be issued to more structured
retrieval systems. The example queries presented here do
not conform to any specific query language in order to keep
the notation simple. Later in the paper we will examine how
these queries may be represented in an XML retrieval system
and how corresponding text in documents that match the
queries could be represented. Note that we never assume the
system must match the structural requirements in the query
exactly, but should instead rank highly those that match the
query best.

Most basic information retrieval systems for QA would
search for a simple query such as:

Q1:

kill Abraham Lincoln

In the above query, “killed” has had its suffix removed,
a common practice in Information Retrieval. Question an-
swering systems may or may not remove suffixes; this dis-
tinction is not important here. A simple marked-up docu-
ment may have sentence boundaries:

Q2:

sentence(kill Abraham Lincoln)

With the annotation of named entities in the corpus, a
search may look like:

Q3:

sentence(kill person=‘Abraham Lincoln’ person=?)

This search would look for the word kill in sentences that
have a component of the person type that matched ‘Abra-
ham Lincoln’ and contained another person component. The
second person component in the query is there to indicate
that another person should be present in the results, but
we do not know who the person is. It is likely that the ex-
traction component would extract that component matching
“person=?” as the answer.

Adding part of speech information allows a simple con-
straint on the verb:

Q4:

sentence(kill[POS=VBD] person=‘abraham lincoln’

person=?)



The notation “kill[POS=VBD]” may confuse some read-
ers familiar with XPath, as this would match an XML com-
ponent “<kill POS=‘VBD’/>”. We do not wish to im-
ply the XML document is marked up in this manner, we
just borrowed the XPath notation here and applied it to at-
tributes of terms. We will discuss in the next section queries
and document structures that more closely match XPath
and XML notations.

Using a semantic tagger on the corpus would allow even
richer queries:

Q5:

sentence(event(kill[POS=VBD])

patient(person=‘Abraham Lincoln’)

agent(person=?))

The usefulness of semantic role labeling should be very
apparent with this query. Enforcing that Abraham Lincoln
be the person that is killed in the sentence and ensuring
that there also be a person that did the killing would give us
high confidence that the sentence contains a good candidate
answer. Even without the named entity tagging and part-
of-speech tagging, semantic role labeling would be powerful.
Consider:

Q6:

sentence(event(kill) patient(Abraham Lincoln)

agent=?)

Document components satisfying this query would still
provide good candidate answers.

Despite all of the nice aspects of query Q5, it still requires
that the verb be ‘kill’ and that the named entity match
“Abraham Lincoln”. It would be nice to represent a set of
words or a concept within a query. For example, the kill
concept could be represented as a multinomial probability
distribution:

Q7:

sentence(

event(#model(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)[POS=VBD])

patient(person=‘Abraham Lincoln’)

agent(person=?))

We use ] here to denote a query operator rather than an
element type. Note that it is not uncommon for information
retrieval systems to provide some form of query term weight-
ing. Query weighting is very useful for automatic term ex-
pansion. The probability distribution for ‘kill’ in query Q7
could be constructed from outside resources such as Word-
Net or a thesaurus. We may additionally wish to expand on
variants of ‘Abraham Lincoln’ using some outside resource.

Q8:

sentence(

event(#model(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)[POS=VBD])

patient(person=#model(0.4 ‘Abraham Lincoln’

0.4 ‘President Lincoln’

0.1 ‘honest Abe’

0.1 ‘Lincoln’))

agent(person=?))

Representation of queries as in Q8 has several strengths.
Flexibility on terms matching is allowed through the use
of weighted query components. The term weighting allows
the use of outside resources to incorporate world or domain
knowledge to improve recall. The semantic role labels en-
sure that the sentence will have a good candidate answer,
which the answer extraction component may verify using

external resources. The use of part-of-speech and named-
entities provides redundancy over the semantic role labels
and may allow the system to still find a good candidate an-
swer where the semantic role labeler failed to process the
sentence properly.

On the other hand query Q8 is not likely a realistic query
with today’s technologies. Performing all of this processing
prior to indexing would be very costly and probably imprac-
tical. Queries Q1 - Q3 all are realistic examples as many QA
systems already index features of this kind. The use of term
weighting in queries Q7 and Q8 is also practical, as this does
not require additional processing for indexing. This process-
ing would be done at query analysis time. Perhaps the most
sophisticated realistic query would look like:

Q9:

sentence(#model(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)

person=#model(0.4 ‘Abraham Lincoln’

0.4 ‘President Lincoln’

0.1 ‘honest Abe’

0.1 ‘Lincoln’)

person=?)

This query has many of the benefits of Q8, but additional
text processing would still be required to ensure that the
other person in the sentence did the action of killing Abra-
ham Lincoln.

The addition of extracted knowledge in the index may
take several forms. Consider the extraction of (object, prop-
erty, value) triples were extracted as in [9][11]. The role of
the retrieval engine would then be to match the “assassi-
nated” property and the “Abraham Lincoln” value and re-
turning the object:

Q10:

opv-triple(object=?

property=#model(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)

value=#model(0.4 ‘Abraham Lincoln’

0.4 ‘President Lincoln’

0.1 ‘honest Abe’

0.1 ‘Lincoln’))

Many QA systems use template based methods. One tem-
plate that may be generated for the query would be:

killed Abraham Lincoln.

where the blank indicates the answer to be extracted. To
effectively support these queries, the queries issued to the re-
trieval component would need to support sequences of terms.
Some queries for the above template might look like:

Q11:

sentence(#sequence(kill Abraham Lincoln))

Q12:

sentence(‘kill Abraham Lincoln’)

Q13:

sentence(#sequence(person=? kill

person=‘Abraham Lincoln’))

Query Q11 and Q12 represent a queries for a system that
has only sentence boundaries marked, while Q13 represents
a query for a system with both sentence boundaries and
named entities. For QA systems that use templates for can-
didate answer extraction, the inclusion of sequences in query
representations would be quite useful. Queries could be cre-
ated and issued for specific templates, and the highly ranked
components in the returned component lists should match
the templates well.



4. CHALLENGES FOR REPRESENTING
RICHER DOCUMENTS

The rich variety of queries presented in the previous sec-
tion should make the usefulness of structured documents and
structured queries for QA clear. However, we left out many
details in the previous section and did not discuss how these
structures could be represented in XML documents. In this
section, we reanalyze the queries with respect to document
components. We provide example document components in
XML that would match the queries where possible, and dis-
cuss problems arising from alternative query and document
representations.

Query Q1 is a standard flat text query, so any document
component containing all three query terms would be ranked
highly. Some examples of text that would match query Q2
are:

S1:

<sentence>

John Wilkes Booth killed Abraham Lincoln.

</sentence>

S2:

<sentence>

During the Black Hawk War, Captain Abraham

Lincoln was forced to kill Native Americans.

</sentence>

Sentence S1 contains the desired answer, while S2, which
also matches the query well, does not. The use of named
entities in Q3 would eliminate this problem, as S2 only con-
tains one person. Some text matching Q3 is:

S3:

<sentence>

<person> John Wilkes Booth </person>

killed

<person> Abraham Lincoln </person> .

</sentence>

While the part-of-speech attribute in Q4 may be simple
to represent in a manner similar constraints in XPath, this
complicates how the text must be represented in the docu-
ment. As individual terms cannot have attributes, kill must
be represented as a document component. For instance:

S4:

<sentence>

<person> John Wilkes Booth </person>

<term POS=‘VBD’> killed </term>

<person> Abraham Lincoln </person> .

</sentence>

In turn, a more accurate query would be:

Q14:

sentence(term[POS=‘VBD’]=‘kill’

person=‘abraham lincoln’

person=?)

However, it is likely that part-of-speech tagging would be
performed on every term, yielding a structure more like:

S5:

<sentence>

<person>

<term POS=‘NNP’> John </term>

<term POS=‘NNP’> Wilkes </term>

<term POS=‘NNP’> Booth </term>

</person>

<term POS=‘VBD’> killed </term>

<person>

<term POS=‘NNP’> Abraham </term>

<term POS=‘NNP’> Lincoln </term>

</person> .

</sentence>

Which then raises questions about how to represent per-
son=‘abraham lincoln’ in the query:

Q15:

sentence(term[POS=‘VBD’]=‘kill’

person(term=‘abraham’ term=‘lincoln’)

person=?)

Already with just three types of simple markup we see
complications arising in the document and query represen-
tations. However, the following structure appears at the
first examination to be adequate for text matching queries
Q6-Q13:

S6:

<sentence>

<agent>

<person>

<term POS=‘NNP’> John </term>

<term POS=‘NNP’> Wilkes </term>

<term POS=‘NNP’> Booth </term>

</person>

</agent>

<event>

<term POS=‘VBD’> killed </term>

</event>

<patient>

<person>

<term POS=‘NNP’> Abraham </term>

<term POS=‘NNP’> Lincoln </term>

</person>

</patient> .

</sentence>

Unfortunately, this structure is not adequate. The named-
entity tagging and the semantic role labeling may be done
by separate components and may give incompatible results.
Consider the case where there may be errors in the semantic
role labeler:

S7:

<sentence>

<agent> John Wilkes </agent> Booth

<event> killed </event>

<patient> Abraham Lincoln </patient>

</sentence>

S8:

<sentence>

<person> John Wilkes Booth </person>

killed

<person> Abraham Lincoln </person>

</sentence>

When merging the results of the role labeler in S7 and the
results of the named-entity tagger in S8, we are faced with a
problem. We may decide that the agent is contained within
the person, yielding:

S9:

<sentence>

<person>

<agent> John Wilkes </agent>

Booth

</person>



<event> killed </event>

<person> Abraham Lincoln </person>

</sentence>

This will no longer match the query Q6 as well, due to the
reversed order of the structure. The could also lead to an
inconsistency of ordering component types in the hierarchy,
and possibly violate a DTD. These are not the only problems
that could arise in this situation. Suppose the named-entity
tagger also produces errors:

S10:

<sentence>

John <person> Wilkes Booth </person>

killed

<person> Abraham Lincoln </person>

</sentence>

Any attempts to merge S7 and S10 will have the prob-
lem that this can no longer be represented in XML using
the simple hierarchical structure we have been using. One
approach to deal with this problem would be to try to en-
force a DTD when merging the output of different processing
components. This would be effectively second-guessing the
output of natural-language processors that have been opti-
mized for their task, and any attempt to do this is likely to
be heuristic at best.

Another approach would be to index the output of the pro-
cessors separately at some level where there is likely to be
no conflicts of this type, such as at the sentence level. This
has the problem that we no longer can ask questions about
the relationships between the different natural-language pro-
cesses. A query on these documents might be:

Q16:

sentence(patient(Abraham Lincoln)

person=‘Abraham Lincoln’

event(kill)

kill[POS=‘VBD’]

person=?

agent=?)

Due to the loss of being able to identify that the per-
son ‘Abraham Lincoln’ is the same as the patient ‘Abraham
Lincoln’ is very limiting and we have no guarantees that the
relationships we desire are preserved. This also would have
the text duplicated by every processing component, increas-
ing the collection size dramatically.

The problem of representing different hierarchies of mark-
up can also be highlighted by considering different parses of
a sentence. Ambiguous sentences may have multiple correct
parses, and it is desirable to have the capability to index
them. These parse trees will have overlapping components,
and a single hierarchy no longer makes sense for a document.
A parser may output multiple parses of sentences with a con-
fidence value associated with each. Ideally, a system would
be capable of indexing these alternatives and weighting them
accordingly during retrieval.

4.1 Summary of Challenges
Before we present an alternative XML representation, we

first summarize the previous discussion of using XML for
QA. This section and the previous section has highlighted
several challenges for XML systems:

1. Queries represent information needs and results should
be ranked according to relevance.

2. There is a need to represent term weighting in XML
queries.

3. Order and proximity are important for QA and this
should be reflected in queries and indexing.

4. There are multiple overlapping hierarchies of structure
for text that we would like to index.

5. It is important to be able to express relationships be-
tween components in these hierarchies.

6. The relationships between hierarchies may not be ex-
act due to errors in language processing so approxi-
mate matching on structure and terms is important
and should be reflected in the result rankings.

5. POTENTIAL SOLUTIONS
The challenges presented by trying to apply XML to QA

are not insurmountable. However, they do require a differ-
ent view of how to represent structure in XML documents.
The single hierarchy solution is not appropriate for all tasks.
Additionally, it is important to recognize the role of proxim-
ity, order, weighted query terms, and approximate matching
of structure.

The first challenge of approximate matching and ranking
according to relevance is a very important challenge. This
has already been recognized by many XML researchers, and
INEX is providing an evaluation forum for the understand-
ing of this problem. They have also developed a query lan-
guage called NEXI based on XPath for XML retrieval.

Challenges 2 and 3 are perhaps the easiest to accommo-
date within XML databases. Existing query languages can
be expanded to include term weighting. Some query lan-
guages support only strict matches, and the incorporation of
query term weighting is one way to provide feedback to the
system about relative importance in rankings. Order and
proximity can also be added to existing query languages. It
is important to note here that XPath does have the ability to
place some constraints on order. Order does have an impact
on the indexing of XML documents. Term and document
component locations are not indexed by all XML systems,
but they are important for some retrieval tasks. Queries
with phrases, sequential constraints, and proximity weights
in the ranking all require term locations to be indexed.

The last three challenges are all related and there is at
least one solution that addresses these concerns in a uni-
fied manner. Offset annotation can be used to represent
the alternative and perhaps overlapping structures for text.
In offset annotation, an index of structure separate from
the original text of the document is created that contains
cross-references to the original text. The cross-references
are called offsets, and may be in terms of byte locations or
token positions. To keep our example simple, we will use
token positions and assume the original text has been tok-
enized in a uniform manner for all processing components.
In this case, we will place each token on a separate line, with
the term location in parentheses:

(1) John

(2) Wilkes

(3) Booth

(4) killed

(5) Abraham

(6) Lincoln

In practice it is much more likely to use byte offset an-
notation for a QA system and preserve the original text, as
many pattern based techniques leverage punctuation. An
example of an annotation for this text is:



<named-entities>

<person begin=‘1’ length=‘3’/>

<person begin=‘5’ length=‘2’/>

</named-entities>

<parse-trees>

<sentence begin=‘1’ length=‘6’>

<noun-phrase begin=‘1’ length=‘3’/>

<verb-phrase begin=‘4’ length=‘6’>

<noun-phrase begin=‘5’ length=‘2’/>

</verb-phrase>

</sentence>

</parse-trees>

<semantic-roles>

<predicate begin=‘1’ end=‘6’>

<event begin=‘4’ length=‘1’/>

<agent begin=‘1’ length=‘3’/>

<patient begin=‘5’ length=‘2’/>

</predicate>

</semantic-roles>

<pos-labels>

<NNP begin=‘1’ length=‘1’/>

<NNP begin=‘2’ length=‘1’/>

<NNP begin=‘3’ length=‘1’/>

<VBD begin=‘4’ length=‘1’/>

<NNP begin=‘5’ length=‘1’/>

<NNP begin=‘6’ length=‘1’/>

</pos-labels>

<opv-triples>

<opv-triple>

<object begin=‘1’ length=‘3’/>

<property begin=‘4’ length=‘1’/>

<value begin=‘5’ length=‘6’/>

</opv-triple>

</opv-triples>

The example above is somewhat more verbose than it
would need to be in practice. This annotation structure
allows for natural representation of the different hierarchies
of the sentence. It also allows for overlapping structures and
alternative structures. For example, a sentence with multi-
ple parse trees could simply have two sentence entries in the
parse-trees component.

The importance of multiple annotations cannot be stressed
enough. In order for a structured retrieval system to be flex-
ible for a number of tasks, it must be capable of supporting
arbitrary structures. In limited natural language tasks, it
may be possible to impose a single strict hierarchy on the
structure and embed it into the text. Even in these simple
cases, this modifies the original text which may be undesir-
able. We saw in the examples above some complications of
this in a very simple sentence. Language is ambiguous and
multiple correct parses are not uncommon. Even if a sen-
tence is not ambiguous, natural language processing tools
are not perfect. It is not desirable to lose the structures rep-
resented in an alternative parse, as the alternative may be
the correct parse. In other cases, one may wish to work with
the output of multiple parsers and index these structures.

Offset annotation is a viable way to represent these struc-
tures. It can cleanly accommodate multiple parses of a sen-
tence. It can also cleanly represent and separate different
kinds of structure, such as extracted knowledge, syntactic
structures, semantic role labels, and named entities.

Representing structure using offset annotation would have
implications on the query language. XPath and NEXI would
not satisfy the needs for querying this document and its
structure in a simple manner. In particular, a useful query
language would still look similar those in the example queries
given above. The query language should have the power to
suggest relationships between document components across

types. That is, it should be able to simply express that a
person named-entity should be contained within an agent.
It should also be easy to refer to the text of the original
document in a simple manner. We don’t want to have to
look up the begin and length of a component, then cross-
reference that with the text of the document. This should
be a simple and intuitive mechanism, as it will be performed
often.

While query languages that resemble XPath and NEXI
do not allow the desired simple expression discussed above,
query languages that resemble these languages are not out
of the question. The semantics of some of the underlying
notations may be changed to refer to their natural analogs
in this setting. Hierarchical relationships expressed between
components in the query should be treated as suggestions.
Explicit nestings found in the structural annotations should
be preferred, and other hierarchical relationships should be
given a score based on how much of the ‘child’ is contained
by the ‘parent’.

The ‘contains’ and ‘about’ operators used in XPath and
NEXI should automatically look up the contents of the origi-
nal text. Additionally, a ‘weight’ operator could be included
as a term weighting strategy. For example, a realistic rewrite
of Q8 might be:

Q15:

//sentence[

.//event//VBD[weight(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)]

AND

.//patient//person[weight(0.4 ‘Abraham Lincoln’

0.4 ‘President Lincoln’

0.1 ‘honest Abe’

0.1 Lincoln)]

AND

.//agent//person]

Loose interpretation of the structural requirements and
the ‘AND’ clauses would allow for reasonable rankings of
document components in such an XML retrieval system sup-
porting QA. In this case, we could even have the system
extract the desired answer by moving the ‘agent//person’
component out of the conjunction:

Q16:

//sentence[

.//event//VBD[weight(0.4 kill 0.3 assassinate

0.2 murder 0.1 shoot)]

AND

.//patient//person[weight(0.4 ‘Abraham Lincoln’

0.4 ‘President Lincoln’

0.1 ‘honest Abe’

0.1 Lincoln)]

]//agent//person

The above example illustrates how queries and documents
could be represented within XML for the assistance of extrac-
tion-based QA. These representations will impact the index
structures used within databases to optimize for retrieval,
but we will not go into details here, as optimizing indexing
structures is an area of ongoing research.

Returning to the first challenge, ranking components ac-
cording to how well they match the queries could be done
in many ways. For example, language modeling and gener-
ative probability distributions [15] could be easily adapted
to this context. Matching the ‘weight’ and ‘about’ clauses
could be done with a simple language model comparison,
and the loose structural requirements for the containment
relationships could be ranked by estimating probabilities us-
ing observation of the document structure.



6. CONCLUSIONS
This paper examined the use of XML databases for as-

sisting extraction-based QA systems. We argued that XML
retrieval could allow for a tighter integration of the answer
extraction and passage retrieval components of typical QA
systems. We also looked forward beyond what is currently
done most QA systems and presented a vision of QA that
is closer to treating an open-domain corpus as a knowledge
base. While everything we proposed is not practical now,
there are clear steps that could be taken toward that goal.

The process of examining XML databases and QA to-
gether presented some challenges for XML systems. Rank-
ing is important for XML retrieval, as information needs
may be approximate and vague. It is important to have
mechanisms for term weighting and proximity operations in
queries. Finally, the structures of real documents may be
overlapping and messy, so mechanisms for indexing and re-
trieval should be adapted to work with these idiosyncrasies.
We feel that this process was informative, and should be
carried out with other applications in mind.

We also proposed alternative representations for the doc-
uments and queries in order to neatly support and repre-
sent them for QA related tasks. These different represen-
tations will require adaptations to the indexing techniques
and query processing techniques. We believe that the use of
generative probability distributions is one effective way to
rank document components for structured queries.

We feel the it is important to examine a wide variety of
problems that can be addressed by structured retrieval sys-
tems. In order to best understand the needs of structured
retrieval, it is necessary to look beyond simple ad-hoc re-
trieval tasks. This paper examined the application of struc-
tured databases to QA, and it resulted in some challenges
for XML retrieval. This process should be carried out for
additional retrieval tasks, as they will highlight additional
challenges.
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