Roger B. Dannenberg,* Nicolas E. Gold,

Dawen Liang,** and Guangyu Xia*

*School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, Pennsylvania, 15213 USA
fUniversity College London
Department of Computer Science
Gower Street, London WC1E 6BT, UK
**Department of Electrical Engineering
Columbia University

500 W. 120th Street, Mudd 1310

New York, New York 10027, USA
rbd@cs.cmu.edu, n.gold@ucl.ac.uk,
dliang@ee.columbia.edu, gxia@cs.cmu.edu

Active Scores:
Representation and
Synchronization in
Human-Computer
Performance of Popular
Music

Abstract: Computers have the potential to significantly extend the practice of popular music based on steady tempo
and mostly determined form. There are significant challenges to overcome, however, due to constraints including
accurate timing based on beats and adherence to a form or structure despite possible changes that may occur, possibly
even during performance. We describe an approach to synchronization across media that takes into account latency due
to communication delays and audio buffering. We also address the problem of mapping from a conventional score with
repeats and other structures to an actual performance, which can involve both “flattening” the score and rearranging
it, as is common in popular music. Finally, we illustrate the possibilities of the score as a bidirectional user interface in
a real-time system for music performance, allowing the user to direct the computer through a digitally displayed score,

and allowing the computer to indicate score position back to human performers.

Popular music “scores” come in many forms of
notation, from a full manuscript score to (more
commonly) chord lists or lead sheets. Musicians im-
provise from these during rehearsal and performance,
treating the score as a means of synchronising struc-
ture and harmony. Scores are typically sectional,
allowing the dynamic reordering of sections during
performance. When placed in the context of human-
computer music performance (HCMP) of popular
music, a computer-mediated approach to the man-
agement and representation of scores is required
to allow a virtual (computer-based) “performer” to
participate appropriately with the humans in the
band.

The management and use of notation is a key
aspect of HCMP, both for internal software rep-
resentations of music that support automated
performance systems and as a visible interface with
which human performers interact (one of a number
of usability and adoption aspects of HCMP recently
identified, see Gold 2012). This article presents

Computer Music Journal, 38:2, pp. 51-62, Summer 2014
doi:10.1162/COM]J_a_00239
© 2014 Massachusetts Institute of Technology.

a foundation for coordinating media in multiple
modalities, and then it explores two possible ap-
proaches to score management for HCMP. The first
is a basic score representation language for well-
formed HCMP scores (i.e., those that are “parsable”
according to normal rules of music notation). Such a
language could be used to encode HCMP scores from
one of many traditional human-readable formats,
e.g., lead-sheet, chord list, or full score. Second,
we explore the idea of “notation as interface,”
based on the architecture first described by Liang,
Xia, and Dannenberg (2011), which allows the per-
former to mark up a scanned score and use the
resulting digital version for cueing in rehearsal and
performance.

Although this work has many connections
to previous work, we introduce several novel
ideas. First, we present formulas for synchronizing
media in the presence of latency, which may vary
across different media and players. The approach
is immune to communication latency between a
central coordinating “conductor” and distributed
“players” by expressing synchronization in terms
of quasi-static mappings rather than time-sensitive
messages. The methods ensure smooth tempo

Dannenberg et al. 51

adjustments, as opposed to sudden jumps, when
timing adjustments are required.

Second, we take a detailed look at the relation-
ship between a conventional score and an actual
performance. A conventional score may have nested
repeated sections and other performance instruc-
tions, the interpretation of which can be unclear.
Scores may be re-arranged before or during a perfor-
mance. We describe a novel representation aimed at
expressing and formalizing the metrical meaning of
a score with respect to its performance.

Finally, we suggest that we can use these tech-
niques to coordinate media with score displays to
produce a new form of interactive music system
that is well suited to HCMP. In particular, we show
that a score can be used as a bidirectional inter-
face in live performance, facilitating bidirectional
communication between human and computer
musicians.

Foundations of Media Synchronization

A key issue in HCMP is to synchronize media in
multiple modalities. Because we assume popular
music forms, we also assume a common structure
of beats and measures across all media. Thus, time
is measured in beats. The basis for synchronization
is a shared notion of the current beat (called the
dbeat, for dynamic beat number) and the current
tempo (Dannenberg et al. 2014, this issue). A beat is
represented by a floating-point number; hence, beats
are continuous rather than integers or messages
such as in MIDI clock messages. In addition, rather
than update the beat number at frequent intervals,
we use a continuous linear mapping from time to
beat. This mapping is conveniently expressed using
three parameters (b, to, s):

b=bgy+ (t—tg) x s (1)

where tempo s is expressed in beats per second, at
some time in the past beat by occurred at time t,
the current time is t, and the current beat is b. One
could also solve for by when tg = 0 to eliminate
one parameter, but we find this formulation more
convenient.

52

It should be pointed out that whereas Equation 1
(and the equations that follow) express tempo as
a constant scale factor s, in practice, we expect
frequent tempo estimations, e.g., on every beat, that
malke slight changes to s. One could handle this by
numerical integration (current beat is the integral of
tempo), but this leads to the accumulation of error
and is not very efficient. One of our concerns will be
how to obtain a smooth progression of beat position
that synchronizes to external observations of tempo
and beat.

One advantage of our approach is that it is almost
independent of latency. One can send (tg, b, s) to
another computer or process and the mapping will
remain valid regardless of the transmission latency.
There is an underlying assumption of a shared global
clock (t), but accurate clock synchronization is
straightforward (Brandt and Dannenberg 1999) and
can be achieved independently of media synchro-
nization, thus making the system more modular.
When parameters change, there can be a momentary
disagreement in the current beat position among
various processes, but this should be small given
that tempo is normally steady. We will see sub-
sequently how these slight asynchronies can be
smoothed and do not lead to long-term drift.

Media players schedule computation to affect the
output at specific beat times. For example, an audio
player may begin a sample playback at beat 3, or a
MIDI player may send a note-on message at beat 5.
The current beat time b in Equation 1 refers to
the beat position of media that are currently being
output, e.g., the beat position corresponding to the
current output of a digital-to-analog converter. Time-
dependent computation of media must, of course,
occur earlier. For example, if the audio output
buffer contains 0.01 sec of audio, then computation
associated with beat b should be performed 0.01 sec
earlier than b. Thus, given a player-specific latency
1, we need to compute the real time t at which to
schedule a computation associated with beat b. The
following formula is easily derived:

t=to+(b-bo)/s-1 (2)

We simply map the beat position b according to
(bg, to, s), and then subtract the latency I to get the
computation time t.

Computer Music Journal

Estimating the Mapping

One approach to acquiring a mapping from time to
beat is the following: First, a simple foot pedal is
used to tap beats. A linear regression over recent
taps is then used to estimate the mapping from beat
to time (i.e., to estimate tg, bp, and s). At this stage,
successive beats are numbered with successive
integers, but these start at an arbitrary number.
Once the tempo and beat phase is established, there
must be some way to determine an offset from the
arbitrary beat number to the beat number in the
score. This might be determined by a cue that tells
when the system should begin to play. In other cases,
especially with a foot-pedal interface, the system
can be constructed to, say, start on the third foot tap
(thus the pedal simultaneously fulfills the dual roles
of beat acquisition and cueing system).

We believe that audio analysis could also be
used to automate beat identification to a large
extent (c.f. Robertson and Plumbley 2007), and we
are investigating combinations of automated and
manual techniques to achieve the high reliability
necessary for live performance. The important
point here is that some mechanism estimates a
local mapping between time and beat position,
and this mapping is updated as the performance
progresses.

Tempo and Scheduling

Schedulers in computer music systems accept re-
quests to perform specific computations at specific
times in the future. Sometimes the specified time
can be a “virtual” time in units, such as beats, that
are translated to real time according to a (time-
varying) tempo, as in Equation 2. Previous archi-
tectures for handling tempo control and scheduling
(e.g., Anderson and Kuivila 1990) have assumed

a fixed and uniform latency for all processing.
Under this assumption, there are some interest-
ing fast algorithms for scheduling (Dannenberg
1989). An important idea is that all pending events
can be sorted according to beat time and then one
need only worry about the earliest event. If the
tempo changes, only the time of this earliest event

needs to be recomputed. Unfortunately, when event
times are computed according to Equation 2, a dif-
ferent event may become the earliest when tempo
changes.

For example, consider an audio player with 0.3-sec
latency, a MIDI player with 0.1-sec latency, and
tempo s = 1 beat per second (BPS). An audio event
at beat 1 is scheduled to be computed 0.7 sec in the
future so that after 0.3 sec latency it will be heard at
exactly 1 sec. A MIDI event at beat 0.7 is scheduled
at 0.6 sec. Notice that we will compute the MIDI
event first. Now suppose the tempo changes to
s = 2 BPS. The audio event should now be computed
at 0.2 sec and the MIDI event should be performed
at 0.7/2 - 0.1 = 0.25 sec. So, now the audio event
must be computed first.

We need, therefore, to rethink scheduling struc-
tures of previous systems. The nonuniformity of
latency is a real problem in our experience, because
audio time-stretching can have a substantial latency
due to predetermined overlap-add window sizes,
page turning may need to begin seconds ahead of the
time of the first beat on the new page, etc.

A second problem is that when the time-to-
beat mapping is calculated from linear regression,
there can be discontinuities in the time-to-beat-
position function that cause the beat position to
jump forward or backward instantaneously. Most
media players will need to construct a smooth
and continuous curve that approximates the es-
timated time-to-beat mapping. Previous systems
have used elaborate rule-based or other models
of tempo adjustment, especially for conducting or
computer accompaniment where tempo changes
might be sudden (Dannenberg 1989). We use a
piecewise linear time-to-beat map, adjusting the
slope occasionally so that the map converges to
the most recent linear regression estimate of the
mapping, and our formulation takes latency into
consideration.

Figure 1 illustrates this process. The lower line
represents an initial mapping according to Equation
1. Imagine that, at time t;, a new beat has resulted
in a new linear regression and a new estimate of
the time-to-beat map shown in the upper line. This
line is specified by an origin at (t,, b,) and a slope
(tempo) of s, beats per second. The problem is that

Dannenberg et al. 53

“Old map,” a new
“Estimated map based on
regression” arrives at t;.
“New map” is computed
to take effect later

(due to latency 1) and

Figure 1. This graph shows
mappings from real

time to beat, which
specify both tempo and
synchronization. While
performing according to

v

h L t t

switching instantly to the new map could cause a
sudden forward jump in beat position. Instead of an
instant switch, we want to “bend” our map in the
direction of the new estimate. We cannot change
the current (lower) map immediately at #; because
output has already been computed until t; + I, where
1 is the latency. For example, if audio output has
a 0.1-sec latency, then samples computed for beat
position b at time t; will emerge at t; +0.1. Thus,
the earliest we can adjust the map will be at time
t; + I corresponding to beat b. Let us call the new
map parameters t,, b,, and s,. Because the current
map passes through (f + I, b), we will choose this
point as the origin for the new map (Equations 3, 4,
and 5), leaving only s, to be determined.

b = bo+ (t1 + 1 tg) x s0 (3)
ty =t +1 (4)
by=b (5]

We choose s, so that the new time map will
meet the estimated (upper) time map after d beats,
where larger values of d give greater smoothing,
and shorter values of d give more rapid convergence
to the estimated time map (we use four beats). In
practice, we expect a new linear regression every
beat or two, depending on how often there is input
from a beat detector or foot tap sensor. Thus, the new

54

make a smooth transition
from the old map to the
new estimated map.

See the text for

equations describing
“New map.”

time map will converge only part of the way to the
estimated map before this whole process is repeated
to again estimate a new map that “bends” toward
the most recent estimate for the time-to-beat map.
To solve for s,, notice that we want both the

upper regression line and the new time map to meet
at (t, by + d), so we can substitute into Equation 1 to
obtain an equation for each line. This gives the two
following equations in two unknowns (t and sy):

by+d=Dbet [t —tc) x s (6)
by+d=Dbyt+ [t —tn) x 85 (7)
Solving for s, gives us:

d
t.Sp — tySe — Dy + Dy + a>

Sn = (8)

Under this scheme, each media player sets (by, 1o,
So) to (by, ty, Su) after each new estimated time map is
received, ensuring that the media position converges
smoothly to the “ideal” common time map. Because
of Equation 3, these parameters depend on latency I,
which can differ according to different players. It
follows that different media will follow slightly
different mappings. This can be avoided, and things
can be simplified, by giving all media the same
latency. For example, MIDI messages can be delayed
to match a possibly higher audio latency. In any
case, time-map calculation is still needed to avoid
discontinuities that arise as new beat times suddenly
change the linear regression, so we prefer to do the
scheduling on a per-player basis, allowing each
player to specify a media-dependent latency I. Note
that (by, ty, su) describes the output time for media.
Given latency I, computation must be scheduled
early according to Equation 2. Equivalently, we can
shift the time map to the left by 1.

Score Representation

Score representation is important for HCMP because
scores can contain repetitions, alternate endings,
optional repeats, and cuts. Media may exist only for
certain sections of the score. Performers often alter
the score, e.g., by improvising an introduction or
skipping a verse. Finally, when things go wrong in
performance, we would like both the human and

Computer Music Journal

shows the nominal
interpretation of the
score but could be
altered to specify a
different sequence of
sections. The dynamic
score (right) gives

an expanded

Figure 2. Four score
representations are
shown. Common-practice
notation (top) is
translated directly to a
machine-readable

static score (left).

The arrangement (bottom)

machine performers to recover gracefully. The score
can provide a basis for this recovery.

The first approach to score management for
HCMP that we present deals with abstract encoding
of a score for use in performance. Such encodings
need to be simple enough for non-expert users to
create and use, but need to allow flexibility for
rearrangement during performance. To achieve
this, we adopt the notions of a static score, an
arrangement, and a dynamic score.

A static score representation must be easy to
encode from a printed score or lead-sheet, while also
being amenable to arrangement and re-arrangement
during performance. In our experience, popular
music arrangement typically works by cutting,
copying, and inserting whole measures (or sections).
Therefore, the representations presented here oper-
ate on measures and groups of measures. We believe
exceptions, such as pick-up notes, can be handled
within this framework by considering partial mea-
sures to be part of the following measure. Although
the language is, in essence, a formal programming
language, it is intended to be representational (an
artificial domain embedded language, see Gold 2011)
with a clear correspondence to common-practice
music notation.

Static Score

Figure 2 shows a short score fragment that will
be used to illustrate the encodings proposed. The
rehearsal letters designate sections of the piece.
The fragment contains a number of structural com-
plexities including a vamp repeat (section C) to be
repeated as desired by the performers, a traditional
repeat, and a dal segno (D.S.) repeat with coda. The
corresponding static score representation consists
of block declarations (Decl (a)) and terminations
(End (a)), numbered measures (Mx), repeat declara-
tions (numbered, unnumbered, dal segno), repeat
terminations, and alternative ending declarations
and terminations. This representation language al-
lows the abstract structure of a score to be encoded
without being concerned with the note-level specifi-
cation of the musical material. The language for the
static score thus encodes the score as written at the

history preceding each
measure is encoded (in
reverse order) to provide
context information
required to perform
instructions such as “play
second time only on the
D.S.”

measure-by-measure
performance sequence.
Notice that the
number of times
section C is repeated is
determined by cues
during the performance.
Also, the performance

[A] d D [E mafF

nl ‘gg jvamp 4 3 i 7 5 .S al Coda ™

o i L 1 i & = i |
Static Score Dynamic Score

Decl (A) M1 [Al]

M1 M2 [B1,Al]

End (A) M3[Cl-1,Bl,Al]

Begin Repeat (DS) M4[Cl-1,B1l,Al]

Decl (B) M3[Cl1-2,Cl-1,Bl1,Al]

M2 M4[C1-2,C1-1,B1,Al]

End (B) M3[Cc1-3,Cl-2,C1-1,B1,Al1]

Decl (C) M4[Cl-3,C1-2,C1-1,B1,Al]

Begin Repeat (n) (CUE)

M3 M5[D1,Cl1-3,C1-2,C1-1,Bl1,Al]

M4 Me[El-1,D1,C1-3,C1-2,C1-1,...]
End Repeat M7[El-1,D1,C1-3,£01-2,C1-1,...]
End (C) M6[El-2,E1-1,D1,C1-3,C1-2,...]
Decl (D} M7[El-2,E1-1,D1,C1-3,Cl-2,...]

M5 M8[Fl,E1-2,E1-1,D1,C1-3,C1...]

End (D) M2[B2,F1,E1-2,E1-1,D1,C1-3...]
Decl (E) M3[C2-1,B2,Fl,E1-2,E1-1,D1...]
Begin Repeat (2) M4[C2-1,B2,F1,E1-2,E1-1,D1...]
M6 M3[C2-2,C2-1,B2,Fl,E1-2,El...]
M7 M4 [C2-2,C2-1,B2,F1,E1-2,El...]
End Repeat ({CUE)

End (E) MSs[D2,C2-2,C2-1,B2,Fl1,E1-2...]
Decl Ending (DS,1) M6 ([E2-1,D2,C2-2,C2-1,B2,F1...]
Decl (F) M7 [E2-1,D2,C2-2,C2-1,B2,F1...]

M8 M6 [E2-2,E2-1,D2,C2-2,C2-1,...]
End (F) M7[E2-2,E2-1,D2,C2-2,C2=1;...]
Decl Ending (DS,2) M2 [Gl,E2-2,E2-1,D2,C2-2,C2...]
Decl (G)

M9

End(G)

Arrangement
A, B, C, D, E, F, B, C, D, E, G

measure level and attaches sectional labels to groups
of measures. Note that musicians need not learn
or even be aware of this representation language,
because it can be presented to the user in terms of
music notation or other graphical representations.

Arrangement

The arrangement representation uses the sectional
labels declared by the static score to specify the order
of the sections to be performed. This is equivalent
to the musicians noting the sectional structure of
a song (e.g., intro, verse, chorus). It allows for easy
rearrangement during rehearsal and performance,

Dannenberg et al. 55

simply by changing the section ordering and
regenerating the dynamic score. An example
arrangement based on the normal reading of the
score (not a “re-arrangement”) is shown in Figure 2.

Dynamic Score

The dynamic score provides a measure-level un-
folding of the static score in accordance with the
arrangement. It encodes a performance history using
section names and the number of times they have
been played (e.g., section C the first time through
would be encoded C1). Where sections contain re-
peats these are indicated by hyphenated occurrence
numbers (e.g., the second repeat of the first time
through section C would be encoded C1-2. This
allows a system to restart unambiguously from any
point in the performance history and cue appropriate
metadata.

Once an arrangement has been created, the
measures to be played can be specified (as Mx
where x is the measure number) in readiness for the
rendering systems to schedule their data. Because it
is important to be able to navigate through a piece
during rehearsal (e.g., to respond to directions such
as “let’s go from the second time through section E”),
each measure is attached to a state vector (in square
brackets) describing the sectional progress (in reverse
order) of the piece to that point.

This captures the notion of the dynamic score
being both a prescription of what is to be played
and subsequently a history of what has been played.
Figure 2 shows a possible dynamic score for the
example fragment and arrangement shown in the
figure. This is a post-performance dynamic score,
because pre-performance, the number of iterations
of section C (the vamp section) cannot be known
and it is only the receipt of a cue (as marked in the
dynamic score) that causes the remainder of the
score to be written as far as possible (until the next
vamp is encountered). Unbounded repeats like this
are counted during performance to support rehearsal
direction (e.g., “twice through the vamp and then
on”). In works without non-deterministic repeats,
the entire dynamic score could be produced before
the performance begins.

56

multiple instances of the
Player class (center). The
messages between
Conductor and Player are
shown in typical order
from the top down.

Figure 3. Interfaces for
Conductor and Player
objects include commands
from sensors and user
interfaces (left) and
messages used by the
Conductor to coordinate

(Player

start()

Conductor and Players: An Instance
of HCMP Architecture

Our second approach to score management involves
the use of the score as an interface. We first describe
an instance of HCMP architecture that supports the
system.

We have implemented an HCMP system orga-
nized as a set of “Player” objects that interact with
a “Conductor” object that controls the players.
The Conductor provides a central point for system
control. The Players also use a real-time sched-
uler object to schedule computation according to
Equation 2. The interface and interaction between
the Conductor and Players is illustrated in Figure 3.

The Player Class

A Player is any object such as an audio or MIDI
sequencer that generates output according to the
current tempo and beat position (a rendering system
in terms of the architecture in Dannenberg et al.
[2014]). A Player can also generate visual output,
including page turning for music notation or an
animated display of the beat.

Every Player object implements four methods
used for external control: set_position (pos),
start (), stop(), and set_timemap (b, t, s).
The set_position (pos) method is a command to
prepare to output media beginning at beat position
pos. This may require the Player to preload data
or to send certain data, such as MIDI controller

Computer Music Journal

messages or a page of music notation, as output.
The start () method is a command to begin
output according to the current tempo and the
mapping from time to beat position. The playback
can be stopped with the stop () command. Note
that stopping (sound will cease, displays indicate
performance has finished) is different from setting
the tempo to zero (sound continues, displays are still
active), so we need explicit start and stop signaling.
The set_timemap (b, t, s) method updates the
mapping from real time to beat position, by changing
it to the linear function that passes through beat b
at time t with slope s (in beats per second).

Note that the external interface to Player objects
concerns time, beats, and control, but says nothing
about media details. In this way, new players can be
added in a modular fashion, and the details of player
operation can be abstracted from the overall system
control. We will see in the subsequent section,
Coordination of Media, how the beat position is
mapped to media content.

The Conductor Class

The role of a Conductor is to provide a sin-

gle point of control and synchronization for all
players. The Conductor methods include the
same set_position(pos), start(), stop(),
and set_timemap (b, t, s) methods as do
Player objects. These methods are to be used

by higher-level control objects. For example, a
graphical user interface may have a conventional
play/stop/pause/rewind interface implemented by
Conductor methods. Alternatively, a more intelli-
gent system might use automatic music listening,
gestures, or other ways to determine when and where
to start and stop. In addition, an add player (p)
method allows new Player objects to add themselves
to the list of Players managed by a single Conductor.

Scheduling
We assume the existence of a real-time scheduler

object (Dannenberg 1989) to be used by Players.
A typical Player has computation to perform at

specific beat times. Usually, a computation will
perform some action needed at the present time,
followed by the scheduling of the next action. The
scheduler’s role is to keep track of all pending
actions and to invoke them at the proper time, thus
eliminating the need for Players to busy-wait, poll,
or otherwise waste computer cycles to ensure that
their next computation is performed on time. Players
use Equation 2 to determine the real time t at which
to perform an action scheduled for beat position b.

Coordination of Media

An important feature of the framework is that it
coordinates media of different forms (MIDI, audio,
score, etc.) in real-time performance. As introduced
earlier, the framework is based on a shared notion of
beat position, i.e., all the players controlled by the
Conductor share the same beat position. The beat
information for most MIDI is easy to extract because
it is normally encoded in a Standard MIDI File.

For audio, we must have auxiliary information
that encodes a mapping from beat position to audio
time. This mapping may be constructed by manual
tapping or automatic alignment (Dannenberg and
Raphael 2006) to audio or MIDI for which beat times
are known.

For music notation, structured score documents
such as MusicXML (Castan, Good, and Roland 2001)
have all the information needed to map from beats
to page numbers and positions, but for simplicity,
we use scanned images and let users label the start
position of each measure manually. Optical music
recognition, combined with symbolic-music-to-
audio alignment, is another promising approach to
label scanned music notation (Kurth et al. 2007).

Distributed Computation

The framework supports distributed computation
or computation in separate threads on multi-core
computers. Coordination and synchronization is
often difficult in distributed systems because of
unknown communication latency. In our approach,
communication latency is not critical. Communi-
cation latency certainly affects the responsiveness

Dannenberg et al. 57

scheduler (“Sched”)
objects enable

Players to deliver
accurately timed output.
A clock synchronization
protocol ensures that

Figure 4. In a distributed
message-based
implementation, the
Conductor communicates
with Player instances
over a network. Local

Process 1 Process 2

start

stop

of the system, but unless tempo changes drasti-
cally, beat positions are predictable in the near
future. Instead of transmitting beat times, we trans-
mit mappings from global time to beat position.
These mappings are expressed with respect to a
shared global clock, and they do not change even
if their delivery is delayed. Any two processes that
agree in terms of their real clock time and their
mapping (f, by, s) will agree on the current beat
position.

In a distributed implementation, the Conductor
communicates via (reliable) messages with Players,
and Players rely on local schedulers to activate
timed computations (see Figure 4). If the schedulers
are on separate computers, the computer real-time
clocks must use a clock synchronization protocol to
ensure that every scheduler agrees on the real clock
time.

We have found it easy to synchronize clocks at
the application level. For example, designated slave
machines send a request to a master for the time,
and the master time is returned. This round trip
time is usually less than a few milliseconds, and the
slave can set its clock assuming a communication
latency of half the round trip time. This can easily
produce synchronization to within 1 msec. If the
round trip time is longer than normal, the slave
simply assumes that an unexpected network delay
has made the result unreliable, ignores the result,
and tries again. Techniques that are more elaborate,
based on averaging and estimating clock drift, can
even synchronize clocks to microseconds if needed
(Brandt and Dannenberg 1999).

58

local clocks are
synchronized. These
design features
substantially mask any
effects of network
latency.

Notation as Interface

The electronic display of music is not a new idea
(Connick 2002; Kurth et al. 2007; Bainbridge and
Bell 2009; MakeMusic 2013), but here we describe
our use of active music notation as a bidirec-
tional human-computer interface. Olmos and co-
workers (2012) aptly describe this as “Score-Centric
Control” in the context of their Open Orchestra
system.

Location Feedback and Page Turning

In an interactive music system where synchro-
nization is key, it is important for performers to
communicate their coordination with the group.
For example, when it is time for a guitar solo, the
vocalist and guitarist might look at each other to
acknowledge that both musicians expect the solo.
If the vocalist’s gestures instead indicate he or she
will sing another chorus, the guitarist might hold off
until later. In a similar way, it is important for the
computer to signal its current position to human
players so that they can either adapt to the computer
or provide some override to steer the computer back
into synchronization.

Music notation provides an attractive basis for
communication, because it provides an intuitive
and human-readable representation of musical time,
it is visual (so that it does not interfere with music
audio), and it provides both history and look-ahead
that facilitate planning and synchronization. The
computer can communicate its location to human
performers by displaying a moving marker over
a digital display of the score. We have already
discussed how score display can be coordinated with
MIDI and audio performance. Human musicians can
then notice when the measure they are reading does
not correspond to the measure that is highlighted
and take corrective action.

Another possibility is automatic page turning,
which was introduced in early computer accompa-
niment systems. For example, SmartMusic (Make-
Music 2013) uses the Finale notation engine to show
scores and score position in real time as it follows a
soloist in the score. In our framework, page turning

Computer Music Journal

incremental updates so
that the performer can
always see the current
location and at least 1/3
page ahead.

Figure 5. Score display
showing editing toolbar
(top) and a vertical
division into thirds. The
divisions allow

Score Windo

===

=

5 i||| =l
[

| ~
n
n
n
n

e

T Mhet G chua/of Gt

e e e e e e

) /ot Aot Bst/pf oo
Busi/pd

(0.5, Coow,

is easily controlled by the Conductor. Just like
scheduling an event from the MIDI player, the score
player can also schedule a “scrolling-up” event.
Various schemes have been implemented for
“page turning” on a display screen of limited size.
It is well known that musicians read ahead, so
it is essential to display the current music as
well as several measures in the future. The most
common approach is to split the screen into top
and bottom halves. While the musician reads one
half, the computer updates the other half to the
next system (or systems) of music. Other solutions
include scrolling up at a constant speed, scrolling
up by one system when it is finished, scrolling at

A4

a variable speed that is proportional to the tempo,
and horizontal scrolling of an “infinitely wide”
score. Our implementation presented here displays
multiple “slices” of the score on the screen (see
Figure 5).

Selecting Locations from Notation

In addition to affording computer-to-human feed-
back, music notation can be used as an “input
device,” for example to indicate where to begin in a
rehearsal. Our system has start positions for every
measure stored as coordinates (page, x, y). When we

Dannenberg et al. 59

point to the position where we would like to start
(either with a finger or an input device), the system
can map the position to a beat number and use the
Conductor’s set_position () method to prepare
all Players to start from that location. This action
will also display a visual indicator of the position in
the score, giving a confirmation to the user that the
correct location was detected.

Implementation

We have prototyped components of the HCMP
architecture in Serpent (Dannenberg 2002), a real-
time programming language inspired by Python.
Our system follows the approach described earlier,
with classes Conductor, Player, and Time_map.
Subclasses are derived from the Player class to form
Midi_player, Score_player (a music notation display
program), and Posn_player (which displays the cur-
rent position). Each subclass of Player implements
methods for set_position(), start (), stop(),
and each inherits a method for set_timemap () that
adjusts the local Player’s time map to converge to
that of the Conductor.

The score player class is the most complex
(about 2,400 lines of Serpent code). It displays
music notation, automatically turning “pages”
according to score position given by the conductor.
The music notation comes from image files (e.g.,
JPEG or PNG), which are manually annotated. The
score player includes graphical annotation tools to:
(1) indicate the staff height; (2) subdivide the score
into systems; (3) mark bar lines; (4) mark repeat
signs, endings, D.S., coda, and fine; (5) mark a
starting measure; and (6) add arbitrary free hand and
text annotations (see Figure 5).

After annotating the score, the score player sorts
measures, repeats, and other symbols to form its
internal representation of the static score. It can
then compute a dynamic score by “unfolding” the
repeats and computing a list of dynamic measures.
Formalizing this process is the subject of a recent
paper (Jin and Dannenberg 2013). The score player
also scales the music notation images to fit the
width of the display and divides the images into
slices that are stacked vertically on the display.

60

There are many possibilities for music scrolling
and page-turning. In the current implementation, we
divide the screen into thirds and always display the
previous, current, and next sub-pages. For example,
the initial display shows the first three sub-pages,
in the order 1-2-3. When the player object advances
to the third sub-page, the display is updated to show
4-2-3. The player object continues reading sub-page 4
at the top of the display, at which time the display
updates to 4-5-3, etc.

Evaluation

To our knowledge, there are no comparable systems
that would enable a quantitative evaluation, but
we can make a qualitative comparison between our
work and many other related systems. Computer
accompaniment (Dannenberg and Raphael 2006;
MakeMusic 2013) cannot synchronize to perfor-
mances with significant amounts of improvisation.
Fixed media approaches such as Open Orchestra
(Olmos et al. 2012) do not adjust tempo to syn-
chronize to live musicians. Conducting systems
(Katayose and Okudaira 2004) require the full
attention of a human conductor to manage syn-
chronization with live musicians. Interactive music
systems to date are mostly designed to generate
music in response to live inputs rather than play
predetermined parts. Thus, they are not capable of
performing conventionally notated compositions.
Perhaps the work most closely related to ours is
B-Keeper (Robertson and Plumbley 2007, 2013).
Because B-Keeper relies on audio analysis for beat
tracking, it is restricted to drumming, for which
beat tracking is successful. This rules out much of
the jazz idiom in which we have been working, at
least until beat-tracking methods improve. Further
evaluation, including current HCMP approaches,
is discussed by Dannenberg and colleagues (2013).
Overall, our work satisfies a set of interesting and
practical musical requirements that have not been
previously addressed.

Evaluation of software techniques is difficult
because there are few data points and many extra-
neous factors. In our experience, scheduling based
on time maps, as described here, offers a highly

Computer Music Journal

effective approach to reasoning about timing. The
main advantage is that problems can be addressed
independently, in a modular fashion: What is the
estimated actual tempo? How should performed
tempo be adjusted to obtain synchrony? How can
we compensate for real-time clock drift on sepa-
rate systems? Given an event sequence specified
according to beats, what is the real time of the next
event? Each of these problems is handled in isolated
software modules, making the software much easier
to construct.

Working performance systems can be viewed
through online video at www.youtube.com/
watch?v=]_Z1GSItMPw and www.youtube.com/
watch?v=R11u0S6uENA. The first example, de-
scribed in a companion article (Dannenberg et al.
2014), is a large-scale performance with a live jazz
band and a virtual string orchestra. The second
shows a smaller ensemble (a quartet) where the
trumpet player uses HCMP to add harmony and
counterpoint to a melody.

Conclusions

Human-computer music performance has usually
been explored in the context of experimental
computer music, but we are only beginning to
consider the possibilities of computers as “live”
musicians performing popular music. Popular music
poses interesting challenges for synchronization and
music representation. We have described a modular
implementation that synchronizes multiple media
in the face of tempo changes and different amounts
of latency.

Common-practice music notation with repeats
and other structures (which we call static scores)
must be reconciled with the “unfolded” linear
representation (dynamic scores) seen in audio files,
standard MIDI files, and the live performance itself.
HCMP systems must also allow for changes at or
near performance time. Musicians should be free to
make new “arrangements” that alter the structure
implied by the static score. We have suggested a
representation to handle these requirements.

Musicians also need intuitive interfaces to
communicate with HCMP systems. We described

one interface based on music notation. The most
interesting aspect of the interface is its bidirectional
nature. The display can indicate the computer’s
position and future intentions (what music is
next). At the same time, musicians can reset the
computer’s position or interactively give cues using
a pointing device or touch-sensitive display.

We have built and used prototypes of the systems
described here. In the future we aim for greater
flexibility, synchronization to live players that is
more accurate, improved sound, and tools to make
HCMP “content” easier to develop and use.

Acknowledgments

Support for this work by the UK Engineering and
Physical Sciences Research Council (grant no.
EP/F059442/2) and the National Science Foundation
(grant no. 0855958) is gratefully acknowledged. Our
first performance system and the music display work
were also supported by Microsoft Research. Thanks
to Ryan Calorus, who implemented a precursor to
the music display system described here. Portions
of this article are based on earlier publications
(Dannenberg 2011a, 2011b; Gold and Dannenberg
2011; Liang, Xia, and Dannenberg 2011).

References

Anderson, D., and R. Kuivila. 1990. “A System for
Computer Music Performance.” ACM Transactions on
Computer Systems 8(1):56-82.

Bainbridge, D., and T. Bell. 2009. “An Ajax-Based Digital
Music Stand for Greenstone.” In Proceedings of the
ACM/IEEE-CS Joint Conference on Digital Libraries,
pp. 463-464.

Brandt, E., and R. Dannenberg. 1999. “Time in Dis-
tributed Real-Time Systems.” In Proceedings of
the International Computer Music Conference,
pp. 523-526.

Castan, G., M. Good, and P. Roland. 2001. “Extensible
Markup Language (XML) for Music Applications:

An Introduction.” In The Virtual Score. Vol. 12 of
Computing in Musicology. Cambridge, Massachusetts:
MIT Press, pp. 95-102.

Dannenberg et al. 61

Connick, H., Jr. 2002. System and Method for Coordinating
Music Display among Players in an Orchestra. US
Patent 6,348,648, filed 23 November 1999, and issued
19 February 2002.

Dannenberg, R. 1989. “Real-Time Scheduling and Com-
puter Accompaniment.” In M. V. Mathews and J. R.
Pierce, eds. Current Directions in Computer Music
Research. Cambridge, Massachusetts: MIT Press, pp.
225-261.

Dannenberg, R. 2002. “A Language for Interactive Audio
Applications.” In Proceedings of the International
Computer Music Conference, pp. 509-515.

Dannenberg, R. 2011a. “A Vision of Creative Computation
in Music Performance.” In Proceedings of the Interna-
tional Conference on Computational Creativity, pp.
84-89.

Dannenberg, R. 2011b. “A Virtual Orchestra for Human-—
Computer Music Performance.” In Proceedings of
the International Computer Music Conference, pp.
185-188.

Dannenberg, R., et al. 2013. “Human-Computer Music
Performance: From Synchronized Performances to
Musical Partner.” In Proceedings of the Sound and
Music Conference, pp. 277-283.

Dannenberg, R., et al. 2014. “Methods and Prospects for
Human-Computer Performance of Popular Music.”
Computer Music Journal 38(2):36-50.

Dannenberg, R., and C. Raphael. 2006. “Music Score
Alignment and Computer Accompaniment.” Commu-
nications of the ACM 49(8):38-43.

Gold, N. 2011. “Knitting Music and Programming.” In
Proceedings of the IEEE International Working Con-
ference on Source Code Analysis and Manipulation,
pp. 10-14.

Gold, N. 2012. “A Framework to Evaluate the Adoption
Potential of Interactive Performance Systems for Pop-
ular Music.” In Proceedings of Sound and Music

62

Computing Conference, pp. 284-289. Available
at smcnetwork.org/system/files/smc2012-155.pdf.
Accessed December 2013.

Gold, N., and R. Dannenberg. 2011. “A Reference Archi-
tecture and Score Representation for Popular Music
Human-Computer Music Performance Systems.” In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 36-39.

Jin, Z., and R. Dannenberg. 2013. “Formal Semantics for
Music Notation Control Flow.” In Proceedings of the
2013 International Computer Music Conference, pp.
85-92.

Katayose, H., and K. Okudaira. 2004. “Using an Expres-
sive Performance Template in a Music Conducting
Interface.” In Proceedings of the Conference on New
Interfaces for Musical Expression, pp. 124-129.

Kurth, F, et al. 2007. “Automated Synchronization of
Scanned Sheet Music with Audio Recordings.” In
Proceedings of the International Symposium on Music
Information Retrieval, pp. 261-266.

Liang, D., G. Xia, and R. Dannenberg. 2011. “A Framework
for Coordination and Synchronization of Media.” In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 167-172.

MakeMusic, Inc. 2013. “SmartMusic: Music Educa-
tion Software.” Available at www.smartmusic.com.
Accessed 22 October 2013.

Olmos, A., et al. 2012. “A High-Fidelity Orchestra Sim-
ulator for Individual Musicians’ Practice.” Computer
Music Journal 36(2):55-73.

Robertson, A., and M. Plumbley. 2007. “B-Keeper: A
Beat-Tracker for Live Performance.” In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pp. 234-237.

Robertson, A., and M. Plumbley. 2013. “Synchronizing
Sequencing Software to a Live Drummer.” Computer
Music Journal 37(2):46-60.

Computer Music Journal

