
CH 1’86 Proceedings April 1986 

THE COMPUTER AS ACCOMPANIST 

PANELISTS: 

William Buxton (Moderator) 
Computer Systems Research Institute 
University of Toronto 
Toronto,Ontario 
Canada MfS lA4 

Roger Dannenberg 
Computer Science Department 
4212 Wean Hall 
Carnegie Mellon University 
Pittsburgh Pennsylvania 
USA 15213 

Barry Vercoe. Director 
Experimental MusicStudio 
E 15-483 
MIT 
Cambridge MA 
USA 02139 

INTRODUCTION (William Buxton) 

One of the most interesting developments in computer music in 
the past year has been the introduction of a new class of program, 
the computer accompanist. These programs do just what their 
name suggests: they play the accompanyment to a solo played by 
a live performer. On the surface, such programs appear to be no 
more than yet another version of “music-minus-one” records. 
What is different, and of intense interest from the perspective of 
human-computer interaction, is that this class of programs not 
only listens to the soloist, but exercises some degree of musical 
intelligence in making decisions about their performance. The 
programs behave like a human accompanist in that they are 
governed by the tempo and dynamics of the soloist. And, like a 
good accompanist, they do their best to adapt in a musical fashion 
when the soloist makes mistakes, plays extra notes, or leaves notes 
out. 

This panel presents the work of the two people who pioneered 
this field, Barry Vercoe and Roger Dannenberg. Vercoe’s 
presentation will takes the form of a video-taped demonstration, 
a brief talk, and some musical examples. Dannenberg will 
supplement his verbal presentation with a live 
performance/demonstration. 

Outside of novelty value, why is this work of interest to the CHI 
community? I believe that it forces us to reconsider our 
preconceptions of what constitutes a user interface. These systems 
use no keyboard or CRT in their primary mode of operation. The 
computer “listens”, “understands”, and responds sonically. The 
systems introduce uncommon technologies in the signal 
processing modules employed. These perform real-time event 
detection (with pitch and amplitude analysis) on the acoustic 
signal generated by the soloist. And, in their handling of mistakes 
by the soloist, the systems also provide a dramatic demonstration 
of adaptive knowledge-based programming. 

For more information about the implementation of computer 
accompanists, see Dann’enberg (1984). Vercoe (1984). Bloch 
(1985). Lifton (1985), and Vercoe (1985). For more information on 
computer music in general, see Roads and Strawn (1985) and 
Abbott (1985). The latter is a special issue of ACM Computing 
Surveys devoted to computer music. In that issue, the article by 
Pennycook (1985) specifically addresses user interface issues. 
Finally, there are two main sources for current information on 
computer music. One is the Computer Music Journal, editted by 
Curtis Roads and published quarterly by the MIT Press. The other 
is the proceedings of the annual International Computer Music 
Conference (ICMC). These proceedings (and a quarterly 
newsletter) are available from the Computer Music Association, 
P.O. Box 1634, San Francisco,CA, 94101-1634, USA. 

CONTRIBUTION: Barry Veicoe 

THE SYNTHETIC PERFORMER IN REHEARSAL: 
Teaching a Computer to Play by Ear 

The most effective way to teach young musicians is to have them 
learn by doing. Although the underlying framework of music can 
be clarified by lessons in music theory, a real sense of what music is 
about is built up only through the experience of live performance. 
Exactly what is communirated, and how humans learn from this 
experience, is not much understood, but when it works it is clear 
that an important transfer of information and procedural 
knowledge has taken place. 

Teaching a computer to play requires a similar transfer of 
knowledge. While the fundamental rules governing pitch, 

41 

_ r 

cc8k
Typewritten Text
Buxton, Dannenberg, and Vercoe, “The Computer as Accompanist,” in Human Factors in Computing Systems: CHI '86 Conference Proceedings, Boston, MA, April 13-17, 1986. Eds. M. Mantei, P Orbeton. New York: Association for Computing Machinery, 1986. pp. 41-43.



CH 1’86 Proceedings April 1986 

rhythm, tempo and loudness are easily communicated, the subtle 
variances that characterize a good performance can only be 
hinted at from without. Low-level details of nuance are normally 
the consequence of high level controls suggested by a conductor, 

a teacher, or a concerto soloist. A computer entering into such 
skilled collaborative activity must be able to deal with the 
semantics of real-time performance, both as input and output. 

During the last two years, in work done at MIT (Boston) and 
IRCAM (Paris), I have developed a convincing real-time model of 
music understanding and response. The system has three major 
parts: 

1. Perception and cognition of musical audio stimuli. 

2. Organizing a performance response. 

3. Learning from the experience. 

Perception involves two main activities: pitch/envelope detection, 
and score matching. Pitch detection methods have varied with 
circumstance. In tracking live flute we used a combination of 
audio signal and fingering information (from optical sensors on 
the keys), obtaining accurate pitch in about 35 milliseconds. In 
violin tracking we used acoustic information only, but the richer 
results took longer to settle. In both cases the event sequence was 
matched onto a score of expected events. Differences between 
expectation and perception are of two kinds: those due to tempo 
changes (slow changing but strongly indicative of the future), and 
those of stylistic affectation (rubato, and other time shifts that 
have only local yet highly significant expressive import). 

Performance response (e.g. a piano accompaniment) is difficult to 
do right. It cannot be event driven, or it will always lag and never 
be able to match or lead. Acceptable response appears to require 
a close model of the physiological processes involved in actual 
human performance, including score look-ahead, gradual focus 
on a forthcoming event, then an anticipatory action decision. The 
action decision window (to mobilize the motor actions for the 
event) is roughly one-tenth of a second before real sound -- much 
earlier than this and the response to change issluggish, much later 
and the event may not happen on time. This appears to be the 
tolerance permitted skilled, collaborative chamber music 
ensembles when they create an aurally interesting performance. 
The same tolerance allowed of a computer performer provides an 
important amount of control computation time. In my model, the 
neural and physiological processes that are invoked to produce a 
single, sensitively performed note are modelled by suddenly 
spawning lo-20 active object modules, each responsible for some 
facet of the event, and all competing cooperatively during this 
100 ms window for limited CPU resources. This has enabled a 
combined Listen/Perform model to present adequate public 
performances of such literature as a Handel flute and harpsichord 
sonata and a Brahms sonata for violin and piano. In these 
performances the soloist is live, and the accompanist entirely 
synthetic. 

Despite the success of the Listen/Perform model, it becomes 
evident that the micro-structure of expressive time-shifts is not 
easily parsed and responded to on a single hearing. That is the 
stuff of which rehearsals are made, and without knowledge of 
past performances our model is essentially that of sight reading 

on the concert stage. An important advance has been made in 
modeling the /earning process of music rehearsal. The technique 
involves keeping a record of everything that is heard, and making 
inferences over time about what to expect and how to deal with 
it. Expressive time-shifts tend to vary from one performance to 
the next, some shifts being more consistent than others. As hinted 

above, ensemble togetherness requires that slow moving tempo 
changes and faster moving expressivity be separable. With 
hindsight they are, and the purpose of rehearsal is to bring this 
benefit into the present. The computational strategy is to use 
rehearsals to develop a record of each time-shift, its average size, 
and variance. This creates a modified score of what to expect, and 
a sense of how much one should infer from departures. During 
subsequent performance runs, all interpretive decisions are based 
on this extracted knowledge. This technique has led to 
quantitative improvements in the performance and 
synchronization of musical expressiveness. 

The Synthetic Performer in Rehearsal provides an important 
model for human interactive systems. First, it shows that the 
relation between a skilled practitioner and a computer assistant 
involves an important layer of procedural knowledge that can be 
acquired only from practice. Any composer would find it 
impossible tQ imbue his data base (musical score) with that kind of 
detail. Secondly, it is very apparent that the best channel for 
communicating data is that in which in naturally occurs. In 
musical applications, traditional graphic and gestural interfaces 
are of limited usefulness. The true medium is sound. 

The lesson here is a simple one. As we instinctively know with a 
young child: if you want your computer to be musical, just keep 
singing to it. 

This work was supported by an award from the Guggenheim 
Foundation. 

CONTRIBUTION: Roger Dannenberg 

Introduction 

Music provides a rich domain for the study of user interfaces, 
real-time control, and multi-media interactive computer systems. 
Just as pointing devices and graphics displays have led to new 
interface paradigms, so have real-time computer music systems. 
These systems deal with sound as the most important mode of 
output, and piano-like keyboards or musical instrument interfaces 
are common input devices. Both input and output are therefore 
unorthodox by computing standards, and input and output are 
inherently real-time. 

Music is also interesting from a computer interface standpoint 
because it contains a variety of abstract concepts like tempo and 
melody, and interesting tasks including editing and 
accompaniment. These concepts and tasks are “real” in the sense 
that there is a wealth of tradition and knowledge against which 
to relate our work. 

Computer Accompaniment 

ComputerAccompaniment is a good example of taking the user 
interface beyond the desktop paradigm. The task is similar tQ that 
of a human accompanist, who listens to another performer, reads 
music, and performs another part of the music in a synchronized 
fashion. The score contains a description of the music tQ be played 
by each performer. In my model, the soloist considers only his, her 
or its part of the score and determines the tempo Qf the 
performance. The accompanist dynamically adjusts its timing to 
match that of the soloist. 

The accompanist can be described (and implemented) as a 
collection of concurrent tasks. The first task, called the listener is a 
preprocessor of input from the soloist. Listing in this context 
means converting sound into a symbolic form to be used by the 
next task. A single melodic line from, say, a trumpet or flute is 

42 



CH 1’86 Proceedings April 1986 

processed in real time to obtain time-varying pitch information, 
which is then quantized to obtain the discrete pitches of a musical 
scale. Alternatively, a music keyboard whose output is inherently 
symbolic can be used. In either case, the listener task sends a 
schematic representation of the soloist’s performance to the next 
task. 

This second task, called the matcher, compares the actual 
performance to the expected performance as indicated in the 
score. The objective of the comparison is to find a correspondence 
between the performance and the score, thereby relating real 
time to the timing indications in the score. Since the soloist or the 
listener task can make mistakes, the matcher must be tolerant of 
missing notes, extra notes, or notes whose pitch is wrong. 
Furthermore, the timing of notes will vary from one performance 
to the next. To deal with this kind of “fuzzy” match, a real-time 
adaptation of dynamic programming is used. The output of the 
matcher is a sequence of reports that occur whenever the matcher 
is fairly certain that a note performed by the soloist corresponds 
to a particular note in the score. 

The third task, called the accompanist controls the timing of the 
accompaniment. Note that the content of the accompaniment is 
determined by the score, so timing is the only dimension that 
varies from one performance to the next. Typically the 
accompanist will output commands that mean something like 
“the violin should now begin playing C-sharp”, and a synthesizer 
handles the actual sound generation. The main problem in this 
task is to adjust the timing of the accompanist in a n?usical 
fashion. 

In our implementations, a “virtual clock” is used to schedule 
accompaniment events. The clock speed and offset relative to real 
time is adjusted according to information from the matcher task. 
Adjustments must be made carefully if they are to sound musical, 
and we have taken a rule-based approach to programming this 
task. For example, one rule says that if the virtual clock is behind 
the soloist by a moderate amount, it is better to catch up by 
playing very fast than by skipping part of the accompaniment. 

lmplicatidns 

This work has several implications for research in user interfaces. 
The first is that interfaces can move beyond the 
command/response model to one in which computers and humans 
actively participate in a cooperative task. The real-time nature of 
accompaniment demands this level of participation by the 
computer, but one can imagine other areas where interfaces 
could be improved by making them more active. Help systems, 
computer-assisted instruction, and computer-aided design 
applications come to mind. 

The second implication is that in a very high-level interface, it is 
possible for the user to become less direct in his or her interaction 
with the computer. The human input side of the interface is 
maintained (or even enhanced) by having the computer monitor 
human activity and perform actions with no explicit request. In 
this way, the computer becomes less a slave and more an assistant. 

Finally, this work illustrates that sound and music can be 
important elements in a user interface. Even in non-musical 
applications, sound provides a high-bandwidth communication 
channel that is seldom utilized. Modern music synthesizers are 
inexpensive, easy to interface to computers, and open many 
avenues of research. 

Computer accompaniment is protected by U. 5. patent pending. 

Acknowledgements 

I would like to thank Bill Buxton for encouraging me to look at 
accompaniment from a user-interface perspective and also for 
working with me, Josh Bloch, and Cherry Lane Technologies to 
produce the first accompaniment system I am proud to 
demonstrate. I would also like to thank the Computer Science 
Department and the Cen‘ter for Art and Technology at 
Carnegie-Mellon University for supporting this work. 

REFERENCES 

Abbott, C. (Ed.) (1985). ACM Computing Surveys, 17(2), Special 
Issue on Computer Music. 

Bloch, 1. & Dannenberg, R. (1985). Real-Time Computer 
Accompanyment of Keyboard Performances, Proceedings of the 
International Computer Music Conference, Vancouver, August 
1985,279 - 289. 

Dannenberg, R. (1984). An On-Line Algorithm for Real-Time 
Accompanymnet, Proceedings of the International Computer 
Music Conference, Paris, October 1984,193 - 198. 

Lifton, J. (1985), Some Technical and Aesthetic Considerations in 
Software for Live Interactive Performance, Proceedings of fhe 
International Computer Music Conference, Vancouver, August 
1985,303 - 306. 

Pennycook, 6. (1985). Computer-Music Interfaces: A Survey, in 
Abbott, C. (Ed.) (1985) ACM Computing Surveys, 17(2), 267 - 289. 

Roads, C. & Strawn. J. (Eds.)(1985). Foundations of Computer 
Music. Cambridge: MIT Press. 

Vercoe, B. (1984). The Synthetic Performer in the Context of Live 
Performance, Proceedings of the International Computer Music 
Conference, Paris, October 1984,199 - 200. 

Vercoe, B. & Puckette, M. (1985). Synthetic Rehearsal: Training 
the Synthetic Performer, Proceedings of the International 
Computer Music Conference, Vancouver, August 1985,275 - 278. 

43 




