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ABSTRACT 
Computer music systems that coordinate or interact with 
human musicians exist in many forms. Often, coordination is 
at the level of gestures and phrases without synchronization at 
the beat level (or perhaps the notion of “beat” does not even 
exist). In music with beats, fine-grain synchronization can be 
achieved by having humans adapt to the computer (e.g. 
following a click track), or by computer accompaniment in 
which the computer follows a predetermined score. We 
consider an alternative scenario in which improvisation 
prevents traditional score following, but where 
synchronization is achieved at the level of beats, measures, and 
cues. To explore this new type of human-computer interaction, 
we have created new software abstractions for synchronization 
and coordination of music and interfaces in different 
modalities. We describe these new software structures, present 
examples, and introduce the idea of music notation as an 
interactive musical interface rather than a static document. 
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1. INTRODUCTION 
Computer music systems have been used extensively in 
interactive performances of cutting-edge electro-acoustic 
music, and also in some advanced systems that model the 
traditional role of the accompanist in Western art (or 
“classical”) music [13]. In the realm of popular music, 
computers have had their largest impact through new 
instruments (almost every electronic instrument now has some 
sort of embedded computer). The concept of “instrument” has 
been extended to include the laptop computer, especially in 
loop-based music related to the DJ phenomenon. We believe 
that there are untapped possibilities in more traditional popular 
music forms such as rock, jazz, and folk music. There are 
opportunities here for innovative applications of highly 
intelligent and coordinated computer music systems [11]. In 
both rehearsal and live performance, computers could 
contribute to make new sounds possible, fill in for missing 
musicians, and ultimately to inspire new musical directions 

based on new capabilities and concepts from new 
technologies. 
 To bring computers into the realm of popular music 
performance, certain problems must be addressed. The main 
problem is that popular music timing is organized around a 
tight synchronization to beats. When live musicians are 
involved, the tempo is not perfectly steady, and humans have a 
difficult time synchronizing to an unyielding computer time-
keeper. At the same time, computers cannot reliably adapt to 
human tempo variations. Another significant problem is the 
improvisation and decision-making that goes on in many live 
performances. It would be simple to prepare computers with 
fixed sequences, but what happens when the vocalist comes in 
a measure late or the bandleader signals to play another 
chorus? These problems are even more difficult given the 
amount of structure in popular music. Musicians and their 
audience know when performers are tightly synchronized in 
terms of rhythm and harmony. We cannot expect computers to 
improvise freely or “play by ear.” Instead, they must 
understand, communicate, and synchronize at the level of 
beats, measures, and pre-determined musical structure such as 
sections and chord progressions. 
 Imagine a popular music performance system that could play 
different representations of music including MIDI, audio, 
guitar tabs, etc. as accompaniment and quickly adjust its tempo 
to follow the performer. Furthermore, the performance system 
could display an image of the score and automatically turn 
pages. In rehearsals, the computer could cover missing parts, 
especially for individual practice, and in live performance the 
computer could play additional parts not covered by human 
performers. The computer could be directed in part by pointing 
to locations in the score image, and the computer could 
confirm its location or intention to play by highlighting 
locations in the score. 
 To create such a system, we must coordinate time among 
different media. We would like to do this systematically and 
modularly so that new media can be added to the system 
without rewriting all the low-level, time-critical software. For 
example, one might want to synchronize video or lyrics to live 
music. How would this fit into an audio framework? This 
paper presents a flexible, beat-based “virtual time” framework 
to meet this challenge. One of the interesting aspects of this 
work is the two-way coordination of a visual score with a live 
computer performance, creating an interesting human-
computer interface. Using a music notation display, the human 
can direct the performance to a location in the score, and the 
computer can give feedback to the human as to the current 
score location.  
  The next section presents related work. Section 3 describes 
how synchronization is achieved by scheduling computation 
according to piece-wise linear maps between time and beat 
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position. Techniques to keep these maps smooth in the face of 
latency and changing tempo estimates are presented. Section 4 
describes a modular software framework for controlling 
multiple synchronized media player objects. Section 5 
discusses the use of music notation as a bi-directional 
graphical interface for controlling music performance and 
monitoring the status of a computer performer. Our current 
implementation is discussed in Section 6. Finally, conclusions 
are presented in Section 7. 

2. RELATED WORK 
 Much work has been done in the area of music performance 
systems. For example, automatic accompaniment systems for 
classical music performance [8], [9], [17], [18] and real-time 
music composition and performance systems [20] have been 
used and studied for many years. Related work exists in the 
area of music conducting. The work by Lee, Karrer, and 
Borchers [16] is especially relevant to our work in its 
discussion of synchronization of beats and smooth time map 
adjustment, and recent work [3], [14] discusses both tempo 
adjustment and synchronized score display, using an 
architecture similar to ours. However, the particular problems 
of popular music seem largely to be ignored. Of course, one 
simple way to incorporate computers in live popular music 
performance is to change the problem: humans can adapt to 
the steady time of the computer by listening to drums or a 
click track, and a fixed structure enables computers to play 
fixed sequences. Ableton Live [1] is an example of software 
that uses a beat, measure, and section framework to 
synchronize music in live performance, but the program is not 
well-suited to adapting to the tempo of live musicians. 
Robertson and Plumbley used a real-time beat tracker in 
conjunction with Ableton Live software to synchronize pre-
recorded music to a live drummer [19]. Our goal is to create a 
more autonomous “artificial performer” that does not require a 
human operator sitting at a computer console, but rather uses 
more natural interfaces for direct control and more 
sophisticated listening and sensing for indirect control. 

3. MEDIA SYNCHRONIZATION 
The main role of our architecture is to synchronize media in 
multiple modalities. Because we assume popular music forms, 
we also assume a common structure of beats and measures 
across all media. Thus time is measured in beats. The basis for 
synchronization is a shared notion of the current beat and the 
current tempo. Beats are represented by a floating point 
number, hence they are continuous rather than integers or 
messages such as in MIDI clock messages. Also, rather than 
update the beat number at frequent intervals, we use a 
continuous linear mapping from time to beat. This mapping is 
conveniently expressed using three parameters (b0, t0, s): 

 b = b0 + (t – t0) × s  (1) 

where tempo s is expressed in beats per second, at some time 
in the past beat b0 occurred at time t0, the current time is t, and 
the current beat is b. (One could also solve for b0 when t0 = 0 
to eliminate one parameter, but we find this formulation more 
convenient. 
 One advantage of this approach is that it is almost 
independent of latency. One can send (t0, b0, s) to another 
computer or process and the mapping will remain valid 
regardless of the transmission latency. There is an underlying 
assumption of a shared global clock (t), but accurate clock 
synchronization is straightforward [5] and can be achieved 
independently of media synchronization, thus making the 
system more modular. When parameters change, there can be a 
momentary disagreement in the current time among various 

processes, but this should be small given that tempo is 
normally steady. We will see below how these slight 
asynchronies can be smoothed and do not lead to long-term 
drift. 
 In our system, media players schedule computation to affect 
the output at specific beat times. For example, an audio player 
may begin a sample playback at beat 3, or a MIDI player may 
send a note-on message at beat 5. The current beat time b in 
Eq. 1 refers to the beat position of media which are being 
output currently, e.g. the beat position corresponding to the 
current output of a digital-to-analog converter (DAC). Time-
dependent computation of media must of course occur earlier. 
For example, if the audio output buffer contains 0.01s of 
audio, then computation associated with beat b should be 
performed 0.01s earlier than b. Thus, given a player-specific 
latency l, we need to compute the real time t at which to 
schedule a computation associated with beat b. The following 
formula is easily derived: 

 t = t0 + (b – b0) / s – l (2) 

We simply map the beat position b according to (b0, t0, s), and 
then subtract the latency l to get the computation time t. 

3.1 Estimating the Mapping 
 Our current system relies on a simple foot pedal to tap beats. 
A linear regression over recent taps is used to estimate the 
mapping from beat to time (i.e. to estimate t0, b0, and s). At 
this stage, successive beats are numbered with successive 
integers, but these start at an arbitrary number. Once the tempo 
and beat phase is established, there must be some way to 
determine an offset from the arbitrary beat number to the beat 
number in the score. This might be determined by a cue that 
tells when the system should begin to play. In other cases, 
especially with a foot-pedal interface, the system can be 
constructed to, say, start on the third foot tap. 
 We believe that audio analysis could be used to automate 
beat identification to a large extent, and we are investigating 
combinations of automated and manual techniques to achieve 
the high reliability necessary for live performance. The 
important point here is that some mechanism estimates a local 
mapping between time and beat position, and this mapping is 
updated as the performance progresses. 

3.2 Tempo and Scheduling 
Schedulers in computer music systems accept requests to 
perform specific computations at specific times in the future. 
Sometimes, the specified time can be a “virtual” time in units 
such as beats that are translated to real time according to a 
(possibly varying) tempo, as in Eq. 2. Previous architectures 
for handling tempo control and scheduling [2] have assumed a 
fixed and uniform latency for all processing. Under this 
assumption, there are some interesting fast algorithms for 
scheduling [9]. An important idea is that all pending events 
(callbacks) can be sorted according to beat time and then one 
need only worry about the earliest event. If the tempo changes, 
only the time of this earliest event needs to be recomputed. 
Unfortunately, when event times are computed according to 
Eq. 2, the earliest pending event can change when tempo 
changes. Therefore, we need to rethink scheduling structures 
of previous systems. The non-uniformity of latency is a real 
issue in our experience because audio time-stretching can have 
a substantial latency due to pre-determined overlap-add 
window sizes, page turning might need to begin seconds ahead 
of the time of the first beat on the new page, etc. 
 A second problem is that when the time-to-beat mapping is 
calculated from linear regression, there can be discontinuities 
in the time-to-beat-position function that cause the beat 
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position to jump forward or backward instantaneously. Most 
media players will need to construct a smooth and continuous 
curve that approximates the estimated time-to-beat mapping. 
We do this using a piece-wise linear time-to-beat map, 
adjusting the slope occasionally so that the map converges to 
the most recent linear regression estimate of the mapping. 
 Figure 1 illustrates this process. The lower line represents an 
initial mapping according to Eq. 1. Imagine that at time t1, a 
new beat has resulted in a new linear regression and a new 
estimate of the time-to-beat map shown in the upper line. This 
line is specified by an origin at (te, be) and a slope (tempo) of se 
beats per second. The problem is that switching instantly to the 
new map could cause a sudden jump in beat position. Instead 
of an instant switch, we want to “bend” our map in the 
direction of the new estimate. We cannot change the current 
(lower) map immediately at t1 because output has already been 
computed until t1+l, where l is the latency. For example, if 
audio output has a 0.1s latency, then samples computed for 
beat position b at time t1 will emerge at t1+0.1. Thus, the 
earliest we can adjust the map will be at time t1+l 
corresponding to beat b. Let us call the new map parameters tn, 
bn, and sn. Since the current map passes through (t1+l, b), we 
will choose this point as the origin for the new map (Eqs. 3, 4, 
5) leaving only sn to be determined. 

 
Figure 1. Modifying the local time-to-beat mapping upon 

receipt of a new regression-based mapping estimate. 

 b = b0 + (t1 + l − t0) × s0 (3) 
 tn = t1 + l (4) 
 bn = b (5) 

 We choose sn so that the new time map will meet the 
estimated (upper) time map after d beats, where larger values 
of d give greater smoothing, and shorter values of d give more 
rapid convergence to the estimated time map. (We use 4 beats.) 
In practice, we expect a new linear regression every 2 beats 
(cut time), thus the new time map will only converge about 
half way to the estimated map before this whole process is 
repeated to again estimate a new map that “bends” toward the 
most recent time-to-beat map estimate. 
 To solve for sn, notice that we want both the upper 
regression line and the new time map to meet at (t, bn+d), so 
we can substitute into Eq. 1 to obtain an equation for each line. 
This gives two equations (Eqs. 6, 7) in two unknowns (t and 
sn):  

 bn + d = be + (t − te) × se (6) 
 bn + d = bn + (t − tn) × sn (7) 

Solving for sn gives us Eq. 8: 

 sn =
�

�����������������
	
 (8)�

 Under this scheme, we set (b0, t0, s0) to (bn, tn, sn) after each 
new estimated time map is received. Because of Eq. 3, these 
parameters depend on latency l, which can differ according to 
different players. It follows that different media will follow 
slightly different mappings. This can be avoided, and things 
can be simplified by giving all media the same latency. For 
example, MIDI messages can be delayed to match a possibly 
higher audio latency. In any case, time map calculation is still 
needed to avoid discontinuities that arise as new beat times 
suddenly change the linear regression, so we prefer to do the 
scheduling on a per-player basis, allowing each player to 
specify a media-dependent latency l. Note that (bn, tn, sn) 
describes the output time for media. Given latency l, 
computation must be scheduled early according to Eq. 2. 
Equivalently, we can shift the time map left by l. 

4. MODULAR STRUCTURE 
Our system is organized as a set of “Player” objects that 
interact with a “Conductor” object that controls the players. 
The Conductor provides a central point for system control. The 
Players also use a real-time scheduler object to schedule 
computation according to Eq. 2. The interface and interaction 
between the Conductor and Players is illustrated in Figure 2. 

4.1 The Player Class 
A Player is any object such as an audio or MIDI sequencer that 
generates output according to the current tempo and beat 
position. A Player can also generate visual output, including 
page turning for music notation or an animated display of the 
beat. 

 
Figure 2. Interfaces for Conductor and Player objects. 

Every “player” implements four methods used for external 
control: set_position(pos), start(), stop(), and set_timemap(b, t, 
s). The set_position(pos) method is a command to prepare to 
output media beginning at beat position pos. This may require 
the player to pre-load data or to output certain data such as 
MIDI controller messages or a page of music notation. The 
start() method is a command to begin output according to the 
current tempo and the mapping from time to beat position. The 
playback can be stopped with the stop() command. Note that 
stopping (sound will cease, displays indicate performance has 
finished) is different from setting the tempo to zero (sound 
sustains, displays are still active), so we need explicit start and 
stop signaling. The set_timemap(b, t, s) method updates the 
mapping from real time to beat position to the linear function 
that passes through beat b at time t with slope s (in beats per 
second). This is how the new linear regression data (te, be,  se) 
described in the previous section is transmitted to each Player. 
 Note that the external interface to Players concerns time, 
beats, and control, but says nothing about media details. In this 
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way, new players can be added in a modular fashion, and the 
details of player operation can be abstracted from the overall 
system control. 

4.2 The Conductor Class 
 The role of a Conductor is to provide a single point of 
control and synchronization for all players. The Conductor 
methods include the same set_position(pos), start(), stop(), and 
set_timemap(b, t, s) methods as do Player objects. These 
methods are to be used by higher level control objects. For 
example, a graphical user interface may have a conventional 
play/stop/pause/rewind interface that is implemented by 
Conductor methods. Alternatively, a more intelligent system 
might use automatic music listening, gestures, or other ways to 
determine when and where to start and stop. In addition, an 
add_player(p) method allows new Player objects to add 
themselves to the list of Players managed by a single 
Conductor. 

4.3 Scheduling 
We assume the existence of a real-time scheduler object [9] to 
be used by Players. A typical player has computation to 
perform at specific beat times. Usually, a computation will 
perform some action needed at the present time, followed by 
the scheduling of the next action. The scheduler’s role is to 
keep track of all pending actions and to invoke them at the 
proper time, thus eliminating the need for Players to busy wait, 
poll, or otherwise waste computer cycles to ensure that their 
next computation is performed on time. Players use Eq. 2 to 
determine the real time t at which to perform an action 
scheduled for beat position b. 

4.4 Coordination of Media 
An important feature of the framework is that it coordinates 
media of different forms – midi, audio, score, etc. – in real-
time performance. In this section, we will discuss the details of 
time synchronization.    

4.4.1 Shared Time System 
As introduced in Section 2, the framework is based on a shared 
notion of beat position, i.e. all the players controlled by the 
Conductor share the same beat position. The beat information 
for most MIDI is easy to extract because it is normally 
encoded in a Standard MIDI File. Audio and score images are 
more problematic. 
 For audio, we must have auxiliary information that encodes 
a mapping from beat position to audio time. An audio Player 
can then use time-stretching algorithms to adjust the audio 
speed to synchronize to a live performance. The audio can be 
recorded at constant tempo, e.g. using a click track, so that 
beat positions can be calculated directly from the known 
tempo. Alternatively, audio can also be labeled by manual 
tapping, by automatic beat tracking (for music where this is 
possible), or by automatic alignment [13] to audio or MIDI for 
which beat times are known. 
 For music notation, we can use structured documents such as 
MusicXML [6] or unstructured scanned images. In principle, 
structured score documents have all the information needed to 
map from beats to page numbers and positions, but in practice, 
rendering music notation is difficult and there is no readily 
available software that can be adapted to our purpose. Instead, 
we let users indicate the time signature (or by default 4/4) and 
manually label the start position of each measure to construct a 
mapping from beats to image position. Using this information, 
the score Player can convert beat positions to approximate 
page locations. In the future, we hope to adapt some optical 
music recognition (OMR) software to detect systems and bar 
lines to speed up the process of annotating score images. OMR 

combined with symbolic music to audio alignment is another 
promising approach to label scanned music notation [15]. 

4.4.2 Distributed Computation 
The framework supports distributed computation or 
computation in separate threads on multi-core computers. 
Coordination and synchronization is often difficult in 
distributed systems because of unknown communication 
latency. In our approach, communication latency is not critical. 
Communication latency certainly affects the responsiveness of 
the system, but unless tempo changes drastically, beat 
positions are predictable in the near future. Instead of 
transmitting beat times, we transmit mappings from global 
time to beat position. These mappings are expressed with 
respect to a shared global clock, and they do not change even 
if their delivery is delayed. Any two processes that agree in 
terms of their real clock time and their mapping (t0, b0, s) will 
agree on the current beat position. 
 In a distributed implementation, the Conductor 
communicates via (reliable) messages with Players, and 
Players rely on local schedulers to activate timed computations 
(see Figure 3). If the schedulers are on separate computers, the 
computer real-time clocks must use a clock synchronization 
protocol to ensure that every scheduler agrees on the real clock 
time.  
 We have found it easy to synchronize clocks at the 
application level. For example, designated slave machines 
send a request to a master for the time, and the master time is 
returned. This round trip time is usually less than a few 
milliseconds, and the slave can set its clock assuming a 
communication latency of half the round trip time. This can 
easily produce synchronization to within 1ms. If the round trip 
time is longer than normal, the slave simply assumes that an 
unexpected network delay has made the result unreliable, 
ignores the result, and tries again. More elaborate techniques 
based on averaging and estimating clock drift can even 
synchronize clocks to microseconds if needed [5]. 

 
Figure 3. Distributed message-based implementation. 

4.4.3 Static vs. Dynamic Scores 
Even after providing mappings from beat position to specific 
time and spatial coordinates of different media, there is an 
important difference between scores and most other media that 
we must deal with. Scores are a bit like programs that must be 
“executed” to determine a music performance. Repeats and the 
“dal segno al coda” are forms of looping behavior. First and 
second endings and the coda are forms of conditional behavior 
based on the loop count. Thus, the score is a “static” 
representation of music in the sense of static code, and an 
audio file or MIDI file is a “dynamic” representation of music 
in the sense of dynamic or run-time program behavior. 
Because of repetition, there is a one-to-many association 
between static score position and dynamic beat position. Our 
current system implements conventional music control 
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structures, but real scores often resort to informal instructions 
that are difficult to formalize. 

5. NOTATION AS INTERFACE
The idea of electronic display of music is not a new idea 
[7] [15] [17], but we introduce the notion of active music 
notation as a bi-directional human-computer interface.

5.1 Location Feedback and Page Turning
In an interactive music system where synchronization is key, it 
is important for performers to communicate their coordination 
with the group. For example, when it is time for a guitar solo, 
the vocalist and guitarist might look at each other to 
acknowledge that both musicians expect the solo. If the 
vocalist’s gestures instead indicate he or she will sing another 
chorus, the guitarist might hold off until later. In a similar way, 
it is important for the computer to signal its current position 
human players so that they can either adapt to the computer or 
provide some override to steer the computer back into 
synchronization. 
 Music notation provides an attractive basis for 
communication because it provides an intuitive and human
readable representation of musical time, it is visual so that it 
does not interfere with music audio, and it provid
history and look-ahead that facilitates planning and 
synchronization. Given a mapping from beat position to score 
image location, it is easy to display the real
directly on an image of the score. Human musicians can then 
notice when the measure they are reading does not correspond 
to the measure that is highlighted and take corrective action.
 Another possibility is automatic page turning, which was 
introduced in early computer accompaniment systems. For 
example, SmartMusic [17] uses the Finale notation engine to 
show scores and score position in real time as it follows a 
soloist in the score. In our framework, page turning is easily 
controlled by the Conductor. Just like scheduling an event 
from the MIDI player, the score player can also schedule a 
“scrolling-up” event.  
 Various schemes have been implemented for “page turning” 
on a display screen of limited size. It is well known that 
musicians read ahead, so it is essential to display the current 
music as well as several measures in the future. 
common approach is to split the screen into top and bottom 
halves. While the musician reads one half, the computer 
updates the other half to the next system(s) of music. Other 
solutions include: scrolling up at a constant speed, scr
by one system when it is finished, scrolling at a variable speed 
which is proportional to the tempo, and scrolling an “infinitely 
wide” score horizontally. Our implementation presents 
multiple “slices” of the score on the screen (see 
we plan to experiment with different approaches.

5.2 Selecting Locations from Notation
In addition to affording computer-to-human feedback, music 
notation can be used as an “input device,” for example to 
indicate where to begin in a rehearsal. Our system has start 
positions for every measure stored as coordina
When we point to the position where we woul
the system can map the position to a beat number and use the 
Conductor’s set_position method to prepare all Players to start 
from that location. This will also indicate the position in the 
score, giving a confirmation to the user that the correct 
location was detected. 

6. IMPLEMENTATION 
We have implemented a prototype system in Serpent 
real-time programming language inspired by Python. Our 
system follows the architecture described earlier, with classes 

structures, but real scores often resort to informal instructions 
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We have implemented a prototype system in Serpent [10], a 
time programming language inspired by Python. Our 

ecture described earlier, with classes 

Conductor, Player, and Time_map
subclassed to form Midi_player
notation display program), and 
current position). Each player implements methods for 
set_position, start, stop, and they all inherit a method for 
set_timemap that adjusts each local player time map to 
converge to that of the conductor.
 The score player class is the most complex (about 
of Serpent code). It displays music notation, turning “pages” 
automatically according to score position given by the
conductor. The music notation comes from image files (e.g. 
jpeg or png), which are manually annotated. The score player 
includes graphical annotation tools to: (1) indicate the staff 
height, (2) subdivide the score into systems, (3) mark bar lines, 
(4) mark repeat signs, endings, D.S
starting measure, and (6) add arbitrary free hand and text 
annotations. (See Figure 4.) 
 After annotating the score, the score player sorts measures, 
repeats, and other symbols to form a representation of the 
static score. It can then compute a 
“unfolding” the repeats and computing a list of dynamic 
measures. The score player also scales the music notation 
images to fit the width of the display and divides the images 
into slices that are stacked vertically on the display. 
 There are many possibilities for music scrolling and page
turning. In the current implementation, we 
into thirds and always display the previous, current, and next 
sub-pages. For example, the initial display shows the first 3 
sub-pages, in the order 1-2-3. When the player advances to the 
third sub-page, the display is updated to show 4
player continues reading sub-page 4 at the top of the display, 
at which time the display updates to 4

Figure 4. Score display showing editing toolbar at top and 
a vertical division into thirds.

 We have also implemented a player for multi
that applies high-quality time stretching to each channel 
according to a time map [12]. However, this system 
integrated into the conductor/player framework
have implemented a tempo control object that accepts beats 
from a space-bar or foot pedal, rejects outliers, and performs 
linear regression on recent taps to estimate a time map.

ime_map. The Player class is 
Midi_player, Score_player (a music 

notation display program), and Posn_player (to display the 
current position). Each player implements methods for 

, and they all inherit a method for 
adjusts each local player time map to 

converge to that of the conductor. 
The score player class is the most complex (about 2400 lines 

code). It displays music notation, turning “pages” 
automatically according to score position given by the 
conductor. The music notation comes from image files (e.g. 
jpeg or png), which are manually annotated. The score player 
includes graphical annotation tools to: (1) indicate the staff 
height, (2) subdivide the score into systems, (3) mark bar lines, 

D.S., coda, and fine, (5) mark a 
starting measure, and (6) add arbitrary free hand and text 

After annotating the score, the score player sorts measures, 
repeats, and other symbols to form a representation of the 

score. It can then compute a dynamic score by 
“unfolding” the repeats and computing a list of dynamic 

also scales the music notation 
images to fit the width of the display and divides the images 

that are stacked vertically on the display.  
There are many possibilities for music scrolling and page-

In the current implementation, we divide the screen 
into thirds and always display the previous, current, and next 

For example, the initial display shows the first 3 
3. When the player advances to the 

page, the display is updated to show 4-2-3. The 
page 4 at the top of the display, 

at which time the display updates to 4-5-3, etc. 

 
. Score display showing editing toolbar at top and 

a vertical division into thirds. 

lemented a player for multi-channel audio 
quality time stretching to each channel 

However, this system is not yet 
into the conductor/player framework. Finally, we 

have implemented a tempo control object that accepts beats 
bar or foot pedal, rejects outliers, and performs 

linear regression on recent taps to estimate a time map. 
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7. CONCLUSIONS AND FUTURE 
WORK  
In conclusion, our framework implements a beat-based 
strategy for coordination and synchronization of media in real-
time performance. We convert the music notation from images 
of score to a dynamic interactive display medium interface, 
which could cooperate with other forms of media to create a 
human-computer  music performance system.   
 In the future, we plan to focus on applications that integrate 
music notation with audio playback, gaining practical 
experience using music notation as an interactive medium. We 
plan to test and evaluate different methods of music scrolling 
and assess whether music notation on a touch display can be 
used to control a computer musician during real performances. 
 Considering the complexity for prototyping and testing, our 
most recent system is based on MIDI and score images. As the 
framework structure becomes mature, we will integrate audio 
playback using PSOLA [21] and phase vocoder [16] time-
stretching techniques. We will also need to implement editing 
techniques to label audio. 
 The scheduling and music notation framework described 
here is part of a larger overall architecture that facilitates 
music representation, preparation, and performance, and there 
are many more components required to achieve the kind of 
music production and performance flexibility that we envision. 
However, even based on this framework, many applications 
can be developed. For example, we could automatically align 
rehearsal recordings to MIDI files to quickly (and roughly) 
label audio. Then, we could listen to particular parts by 
pointing to the score, comparing the rehearsal performance of 
the same piece from two different days, etc. The flexibility of 
the framework provides many possibilities for future work. 
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