
A Framework for Coordination and
Synchronization of Media

Dawen Liang
Carnegie Mellon University

School of Music
5000 Forbes Ave, Pittsburgh, PA

dawenl@andrew.cmu.edu

Guangyu Xia

Carnegie Mellon University
School of Computer Science

5000 Forbes Ave, Pittsburgh, PA
gxia@cs.cmu.edu

Roger B. Dannenberg
Carnegie Mellon University
School of Computer Science

5000 Forbes Ave, Pittsburgh, PA
rbd@cs.cmu.edu

ABSTRACT
Computer music systems that coordinate or interact with
human musicians exist in many forms. Often, coordination is
at the level of gestures and phrases without synchronization at
the beat level (or perhaps the notion of “beat” does not even
exist). In music with beats, fine-grain synchronization can be
achieved by having humans adapt to the computer (e.g.
following a click track), or by computer accompaniment in
which the computer follows a predetermined score. We
consider an alternative scenario in which improvisation
prevents traditional score following, but where
synchronization is achieved at the level of beats, measures, and
cues. To explore this new type of human-computer interaction,
we have created new software abstractions for synchronization
and coordination of music and interfaces in different
modalities. We describe these new software structures, present
examples, and introduce the idea of music notation as an
interactive musical interface rather than a static document.

Keywords
Real-time, Interactive, Music Display, Popular Music,
Automatic Accompaniment, Synchronization

1. INTRODUCTION
Computer music systems have been used extensively in
interactive performances of cutting-edge electro-acoustic
music, and also in some advanced systems that model the
traditional role of the accompanist in Western art (or
“classical”) music [13]. In the realm of popular music,
computers have had their largest impact through new
instruments (almost every electronic instrument now has some
sort of embedded computer). The concept of “instrument” has
been extended to include the laptop computer, especially in
loop-based music related to the DJ phenomenon. We believe
that there are untapped possibilities in more traditional popular
music forms such as rock, jazz, and folk music. There are
opportunities here for innovative applications of highly
intelligent and coordinated computer music systems [11]. In
both rehearsal and live performance, computers could
contribute to make new sounds possible, fill in for missing
musicians, and ultimately to inspire new musical directions

based on new capabilities and concepts from new
technologies.
 To bring computers into the realm of popular music
performance, certain problems must be addressed. The main
problem is that popular music timing is organized around a
tight synchronization to beats. When live musicians are
involved, the tempo is not perfectly steady, and humans have a
difficult time synchronizing to an unyielding computer time-
keeper. At the same time, computers cannot reliably adapt to
human tempo variations. Another significant problem is the
improvisation and decision-making that goes on in many live
performances. It would be simple to prepare computers with
fixed sequences, but what happens when the vocalist comes in
a measure late or the bandleader signals to play another
chorus? These problems are even more difficult given the
amount of structure in popular music. Musicians and their
audience know when performers are tightly synchronized in
terms of rhythm and harmony. We cannot expect computers to
improvise freely or “play by ear.” Instead, they must
understand, communicate, and synchronize at the level of
beats, measures, and pre-determined musical structure such as
sections and chord progressions.
 Imagine a popular music performance system that could play
different representations of music including MIDI, audio,
guitar tabs, etc. as accompaniment and quickly adjust its tempo
to follow the performer. Furthermore, the performance system
could display an image of the score and automatically turn
pages. In rehearsals, the computer could cover missing parts,
especially for individual practice, and in live performance the
computer could play additional parts not covered by human
performers. The computer could be directed in part by pointing
to locations in the score image, and the computer could
confirm its location or intention to play by highlighting
locations in the score.
 To create such a system, we must coordinate time among
different media. We would like to do this systematically and
modularly so that new media can be added to the system
without rewriting all the low-level, time-critical software. For
example, one might want to synchronize video or lyrics to live
music. How would this fit into an audio framework? This
paper presents a flexible, beat-based “virtual time” framework
to meet this challenge. One of the interesting aspects of this
work is the two-way coordination of a visual score with a live
computer performance, creating an interesting human-
computer interface. Using a music notation display, the human
can direct the performance to a location in the score, and the
computer can give feedback to the human as to the current
score location.
 The next section presents related work. Section 3 describes
how synchronization is achieved by scheduling computation
according to piece-wise linear maps between time and beat

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

167

mailto:dawenl@andrew.cmu.edu
mailto:gxia@cs.cmu.edu
mailto:rbd@cs.cmu.edu

position. Techniques to keep these maps smooth in the face of
latency and changing tempo estimates are presented. Section 4
describes a modular software framework for controlling
multiple synchronized media player objects. Section 5
discusses the use of music notation as a bi-directional
graphical interface for controlling music performance and
monitoring the status of a computer performer. Our current
implementation is discussed in Section 6. Finally, conclusions
are presented in Section 7.

2. RELATED WORK
 Much work has been done in the area of music performance
systems. For example, automatic accompaniment systems for
classical music performance [8], [9], [17], [18] and real-time
music composition and performance systems [20] have been
used and studied for many years. Related work exists in the
area of music conducting. The work by Lee, Karrer, and
Borchers [16] is especially relevant to our work in its
discussion of synchronization of beats and smooth time map
adjustment, and recent work [3], [14] discusses both tempo
adjustment and synchronized score display, using an
architecture similar to ours. However, the particular problems
of popular music seem largely to be ignored. Of course, one
simple way to incorporate computers in live popular music
performance is to change the problem: humans can adapt to
the steady time of the computer by listening to drums or a
click track, and a fixed structure enables computers to play
fixed sequences. Ableton Live [1] is an example of software
that uses a beat, measure, and section framework to
synchronize music in live performance, but the program is not
well-suited to adapting to the tempo of live musicians.
Robertson and Plumbley used a real-time beat tracker in
conjunction with Ableton Live software to synchronize pre-
recorded music to a live drummer [19]. Our goal is to create a
more autonomous “artificial performer” that does not require a
human operator sitting at a computer console, but rather uses
more natural interfaces for direct control and more
sophisticated listening and sensing for indirect control.

3. MEDIA SYNCHRONIZATION
The main role of our architecture is to synchronize media in
multiple modalities. Because we assume popular music forms,
we also assume a common structure of beats and measures
across all media. Thus time is measured in beats. The basis for
synchronization is a shared notion of the current beat and the
current tempo. Beats are represented by a floating point
number, hence they are continuous rather than integers or
messages such as in MIDI clock messages. Also, rather than
update the beat number at frequent intervals, we use a
continuous linear mapping from time to beat. This mapping is
conveniently expressed using three parameters (b0, t0, s):

 b = b0 + (t – t0) × s (1)

where tempo s is expressed in beats per second, at some time
in the past beat b0 occurred at time t0, the current time is t, and
the current beat is b. (One could also solve for b0 when t0 = 0
to eliminate one parameter, but we find this formulation more
convenient.
 One advantage of this approach is that it is almost
independent of latency. One can send (t0, b0, s) to another
computer or process and the mapping will remain valid
regardless of the transmission latency. There is an underlying
assumption of a shared global clock (t), but accurate clock
synchronization is straightforward [5] and can be achieved
independently of media synchronization, thus making the
system more modular. When parameters change, there can be a
momentary disagreement in the current time among various

processes, but this should be small given that tempo is
normally steady. We will see below how these slight
asynchronies can be smoothed and do not lead to long-term
drift.
 In our system, media players schedule computation to affect
the output at specific beat times. For example, an audio player
may begin a sample playback at beat 3, or a MIDI player may
send a note-on message at beat 5. The current beat time b in
Eq. 1 refers to the beat position of media which are being
output currently, e.g. the beat position corresponding to the
current output of a digital-to-analog converter (DAC). Time-
dependent computation of media must of course occur earlier.
For example, if the audio output buffer contains 0.01s of
audio, then computation associated with beat b should be
performed 0.01s earlier than b. Thus, given a player-specific
latency l, we need to compute the real time t at which to
schedule a computation associated with beat b. The following
formula is easily derived:

 t = t0 + (b – b0) / s – l (2)

We simply map the beat position b according to (b0, t0, s), and
then subtract the latency l to get the computation time t.

3.1 Estimating the Mapping
 Our current system relies on a simple foot pedal to tap beats.
A linear regression over recent taps is used to estimate the
mapping from beat to time (i.e. to estimate t0, b0, and s). At
this stage, successive beats are numbered with successive
integers, but these start at an arbitrary number. Once the tempo
and beat phase is established, there must be some way to
determine an offset from the arbitrary beat number to the beat
number in the score. This might be determined by a cue that
tells when the system should begin to play. In other cases,
especially with a foot-pedal interface, the system can be
constructed to, say, start on the third foot tap.
 We believe that audio analysis could be used to automate
beat identification to a large extent, and we are investigating
combinations of automated and manual techniques to achieve
the high reliability necessary for live performance. The
important point here is that some mechanism estimates a local
mapping between time and beat position, and this mapping is
updated as the performance progresses.

3.2 Tempo and Scheduling
Schedulers in computer music systems accept requests to
perform specific computations at specific times in the future.
Sometimes, the specified time can be a “virtual” time in units
such as beats that are translated to real time according to a
(possibly varying) tempo, as in Eq. 2. Previous architectures
for handling tempo control and scheduling [2] have assumed a
fixed and uniform latency for all processing. Under this
assumption, there are some interesting fast algorithms for
scheduling [9]. An important idea is that all pending events
(callbacks) can be sorted according to beat time and then one
need only worry about the earliest event. If the tempo changes,
only the time of this earliest event needs to be recomputed.
Unfortunately, when event times are computed according to
Eq. 2, the earliest pending event can change when tempo
changes. Therefore, we need to rethink scheduling structures
of previous systems. The non-uniformity of latency is a real
issue in our experience because audio time-stretching can have
a substantial latency due to pre-determined overlap-add
window sizes, page turning might need to begin seconds ahead
of the time of the first beat on the new page, etc.
 A second problem is that when the time-to-beat mapping is
calculated from linear regression, there can be discontinuities
in the time-to-beat-position function that cause the beat

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

168

position to jump forward or backward instantaneously. Most
media players will need to construct a smooth and continuous
curve that approximates the estimated time-to-beat mapping.
We do this using a piece-wise linear time-to-beat map,
adjusting the slope occasionally so that the map converges to
the most recent linear regression estimate of the mapping.
 Figure 1 illustrates this process. The lower line represents an
initial mapping according to Eq. 1. Imagine that at time t1, a
new beat has resulted in a new linear regression and a new
estimate of the time-to-beat map shown in the upper line. This
line is specified by an origin at (te, be) and a slope (tempo) of se
beats per second. The problem is that switching instantly to the
new map could cause a sudden jump in beat position. Instead
of an instant switch, we want to “bend” our map in the
direction of the new estimate. We cannot change the current
(lower) map immediately at t1 because output has already been
computed until t1+l, where l is the latency. For example, if
audio output has a 0.1s latency, then samples computed for
beat position b at time t1 will emerge at t1+0.1. Thus, the
earliest we can adjust the map will be at time t1+l
corresponding to beat b. Let us call the new map parameters tn,
bn, and sn. Since the current map passes through (t1+l, b), we
will choose this point as the origin for the new map (Eqs. 3, 4,
5) leaving only sn to be determined.

Figure 1. Modifying the local time-to-beat mapping upon

receipt of a new regression-based mapping estimate.

 b = b0 + (t1 + l − t0) × s0 (3)
 tn = t1 + l (4)
 bn = b (5)

 We choose sn so that the new time map will meet the
estimated (upper) time map after d beats, where larger values
of d give greater smoothing, and shorter values of d give more
rapid convergence to the estimated time map. (We use 4 beats.)
In practice, we expect a new linear regression every 2 beats
(cut time), thus the new time map will only converge about
half way to the estimated map before this whole process is
repeated to again estimate a new map that “bends” toward the
most recent time-to-beat map estimate.
 To solve for sn, notice that we want both the upper
regression line and the new time map to meet at (t, bn+d), so
we can substitute into Eq. 1 to obtain an equation for each line.
This gives two equations (Eqs. 6, 7) in two unknowns (t and
sn):

 bn + d = be + (t − te) × se (6)
 bn + d = bn + (t − tn) × sn (7)

Solving for sn gives us Eq. 8:

 sn =
�

�����������������
	
 (8)�

 Under this scheme, we set (b0, t0, s0) to (bn, tn, sn) after each
new estimated time map is received. Because of Eq. 3, these
parameters depend on latency l, which can differ according to
different players. It follows that different media will follow
slightly different mappings. This can be avoided, and things
can be simplified by giving all media the same latency. For
example, MIDI messages can be delayed to match a possibly
higher audio latency. In any case, time map calculation is still
needed to avoid discontinuities that arise as new beat times
suddenly change the linear regression, so we prefer to do the
scheduling on a per-player basis, allowing each player to
specify a media-dependent latency l. Note that (bn, tn, sn)
describes the output time for media. Given latency l,
computation must be scheduled early according to Eq. 2.
Equivalently, we can shift the time map left by l.

4. MODULAR STRUCTURE
Our system is organized as a set of “Player” objects that
interact with a “Conductor” object that controls the players.
The Conductor provides a central point for system control. The
Players also use a real-time scheduler object to schedule
computation according to Eq. 2. The interface and interaction
between the Conductor and Players is illustrated in Figure 2.

4.1 The Player Class
A Player is any object such as an audio or MIDI sequencer that
generates output according to the current tempo and beat
position. A Player can also generate visual output, including
page turning for music notation or an animated display of the
beat.

Figure 2. Interfaces for Conductor and Player objects.

Every “player” implements four methods used for external
control: set_position(pos), start(), stop(), and set_timemap(b, t,
s). The set_position(pos) method is a command to prepare to
output media beginning at beat position pos. This may require
the player to pre-load data or to output certain data such as
MIDI controller messages or a page of music notation. The
start() method is a command to begin output according to the
current tempo and the mapping from time to beat position. The
playback can be stopped with the stop() command. Note that
stopping (sound will cease, displays indicate performance has
finished) is different from setting the tempo to zero (sound
sustains, displays are still active), so we need explicit start and
stop signaling. The set_timemap(b, t, s) method updates the
mapping from real time to beat position to the linear function
that passes through beat b at time t with slope s (in beats per
second). This is how the new linear regression data (te, be, se)
described in the previous section is transmitted to each Player.
 Note that the external interface to Players concerns time,
beats, and control, but says nothing about media details. In this

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

169

way, new players can be added in a modular fashion, and the
details of player operation can be abstracted from the overall
system control.

4.2 The Conductor Class
 The role of a Conductor is to provide a single point of
control and synchronization for all players. The Conductor
methods include the same set_position(pos), start(), stop(), and
set_timemap(b, t, s) methods as do Player objects. These
methods are to be used by higher level control objects. For
example, a graphical user interface may have a conventional
play/stop/pause/rewind interface that is implemented by
Conductor methods. Alternatively, a more intelligent system
might use automatic music listening, gestures, or other ways to
determine when and where to start and stop. In addition, an
add_player(p) method allows new Player objects to add
themselves to the list of Players managed by a single
Conductor.

4.3 Scheduling
We assume the existence of a real-time scheduler object [9] to
be used by Players. A typical player has computation to
perform at specific beat times. Usually, a computation will
perform some action needed at the present time, followed by
the scheduling of the next action. The scheduler’s role is to
keep track of all pending actions and to invoke them at the
proper time, thus eliminating the need for Players to busy wait,
poll, or otherwise waste computer cycles to ensure that their
next computation is performed on time. Players use Eq. 2 to
determine the real time t at which to perform an action
scheduled for beat position b.

4.4 Coordination of Media
An important feature of the framework is that it coordinates
media of different forms – midi, audio, score, etc. – in real-
time performance. In this section, we will discuss the details of
time synchronization.

4.4.1 Shared Time System
As introduced in Section 2, the framework is based on a shared
notion of beat position, i.e. all the players controlled by the
Conductor share the same beat position. The beat information
for most MIDI is easy to extract because it is normally
encoded in a Standard MIDI File. Audio and score images are
more problematic.
 For audio, we must have auxiliary information that encodes
a mapping from beat position to audio time. An audio Player
can then use time-stretching algorithms to adjust the audio
speed to synchronize to a live performance. The audio can be
recorded at constant tempo, e.g. using a click track, so that
beat positions can be calculated directly from the known
tempo. Alternatively, audio can also be labeled by manual
tapping, by automatic beat tracking (for music where this is
possible), or by automatic alignment [13] to audio or MIDI for
which beat times are known.
 For music notation, we can use structured documents such as
MusicXML [6] or unstructured scanned images. In principle,
structured score documents have all the information needed to
map from beats to page numbers and positions, but in practice,
rendering music notation is difficult and there is no readily
available software that can be adapted to our purpose. Instead,
we let users indicate the time signature (or by default 4/4) and
manually label the start position of each measure to construct a
mapping from beats to image position. Using this information,
the score Player can convert beat positions to approximate
page locations. In the future, we hope to adapt some optical
music recognition (OMR) software to detect systems and bar
lines to speed up the process of annotating score images. OMR

combined with symbolic music to audio alignment is another
promising approach to label scanned music notation [15].

4.4.2 Distributed Computation
The framework supports distributed computation or
computation in separate threads on multi-core computers.
Coordination and synchronization is often difficult in
distributed systems because of unknown communication
latency. In our approach, communication latency is not critical.
Communication latency certainly affects the responsiveness of
the system, but unless tempo changes drastically, beat
positions are predictable in the near future. Instead of
transmitting beat times, we transmit mappings from global
time to beat position. These mappings are expressed with
respect to a shared global clock, and they do not change even
if their delivery is delayed. Any two processes that agree in
terms of their real clock time and their mapping (t0, b0, s) will
agree on the current beat position.
 In a distributed implementation, the Conductor
communicates via (reliable) messages with Players, and
Players rely on local schedulers to activate timed computations
(see Figure 3). If the schedulers are on separate computers, the
computer real-time clocks must use a clock synchronization
protocol to ensure that every scheduler agrees on the real clock
time.
 We have found it easy to synchronize clocks at the
application level. For example, designated slave machines
send a request to a master for the time, and the master time is
returned. This round trip time is usually less than a few
milliseconds, and the slave can set its clock assuming a
communication latency of half the round trip time. This can
easily produce synchronization to within 1ms. If the round trip
time is longer than normal, the slave simply assumes that an
unexpected network delay has made the result unreliable,
ignores the result, and tries again. More elaborate techniques
based on averaging and estimating clock drift can even
synchronize clocks to microseconds if needed [5].

Figure 3. Distributed message-based implementation.

4.4.3 Static vs. Dynamic Scores
Even after providing mappings from beat position to specific
time and spatial coordinates of different media, there is an
important difference between scores and most other media that
we must deal with. Scores are a bit like programs that must be
“executed” to determine a music performance. Repeats and the
“dal segno al coda” are forms of looping behavior. First and
second endings and the coda are forms of conditional behavior
based on the loop count. Thus, the score is a “static”
representation of music in the sense of static code, and an
audio file or MIDI file is a “dynamic” representation of music
in the sense of dynamic or run-time program behavior.
Because of repetition, there is a one-to-many association
between static score position and dynamic beat position. Our
current system implements conventional music control

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

170

structures, but real scores often resort to informal instructions
that are difficult to formalize.

5. NOTATION AS INTERFACE
The idea of electronic display of music is not a new idea
[7] [15] [17], but we introduce the notion of active music
notation as a bi-directional human-computer interface.

5.1 Location Feedback and Page Turning
In an interactive music system where synchronization is key, it
is important for performers to communicate their coordination
with the group. For example, when it is time for a guitar solo,
the vocalist and guitarist might look at each other to
acknowledge that both musicians expect the solo. If the
vocalist’s gestures instead indicate he or she will sing another
chorus, the guitarist might hold off until later. In a similar way,
it is important for the computer to signal its current position
human players so that they can either adapt to the computer or
provide some override to steer the computer back into
synchronization.
 Music notation provides an attractive basis for
communication because it provides an intuitive and human
readable representation of musical time, it is visual so that it
does not interfere with music audio, and it provid
history and look-ahead that facilitates planning and
synchronization. Given a mapping from beat position to score
image location, it is easy to display the real
directly on an image of the score. Human musicians can then
notice when the measure they are reading does not correspond
to the measure that is highlighted and take corrective action.
 Another possibility is automatic page turning, which was
introduced in early computer accompaniment systems. For
example, SmartMusic [17] uses the Finale notation engine to
show scores and score position in real time as it follows a
soloist in the score. In our framework, page turning is easily
controlled by the Conductor. Just like scheduling an event
from the MIDI player, the score player can also schedule a
“scrolling-up” event.
 Various schemes have been implemented for “page turning”
on a display screen of limited size. It is well known that
musicians read ahead, so it is essential to display the current
music as well as several measures in the future.
common approach is to split the screen into top and bottom
halves. While the musician reads one half, the computer
updates the other half to the next system(s) of music. Other
solutions include: scrolling up at a constant speed, scr
by one system when it is finished, scrolling at a variable speed
which is proportional to the tempo, and scrolling an “infinitely
wide” score horizontally. Our implementation presents
multiple “slices” of the score on the screen (see
we plan to experiment with different approaches.

5.2 Selecting Locations from Notation
In addition to affording computer-to-human feedback, music
notation can be used as an “input device,” for example to
indicate where to begin in a rehearsal. Our system has start
positions for every measure stored as coordina
When we point to the position where we woul
the system can map the position to a beat number and use the
Conductor’s set_position method to prepare all Players to start
from that location. This will also indicate the position in the
score, giving a confirmation to the user that the correct
location was detected.

6. IMPLEMENTATION
We have implemented a prototype system in Serpent
real-time programming language inspired by Python. Our
system follows the architecture described earlier, with classes

structures, but real scores often resort to informal instructions

NOTATION AS INTERFACE
The idea of electronic display of music is not a new idea [4],

, but we introduce the notion of active music
computer interface.

Location Feedback and Page Turning
In an interactive music system where synchronization is key, it

ers to communicate their coordination
with the group. For example, when it is time for a guitar solo,
the vocalist and guitarist might look at each other to
acknowledge that both musicians expect the solo. If the

she will sing another
chorus, the guitarist might hold off until later. In a similar way,

s current position to
can either adapt to the computer or

omputer back into

Music notation provides an attractive basis for
communication because it provides an intuitive and human-
readable representation of musical time, it is visual so that it
does not interfere with music audio, and it provides both

ahead that facilitates planning and
synchronization. Given a mapping from beat position to score
image location, it is easy to display the real-time beat position
directly on an image of the score. Human musicians can then

hen the measure they are reading does not correspond
to the measure that is highlighted and take corrective action.

Another possibility is automatic page turning, which was
animent systems. For

uses the Finale notation engine to
score position in real time as it follows a

soloist in the score. In our framework, page turning is easily
controlled by the Conductor. Just like scheduling an event

can also schedule a

schemes have been implemented for “page turning”
It is well known that

musicians read ahead, so it is essential to display the current
music as well as several measures in the future. The most

it the screen into top and bottom
halves. While the musician reads one half, the computer
updates the other half to the next system(s) of music. Other
solutions include: scrolling up at a constant speed, scrolling up

lling at a variable speed
which is proportional to the tempo, and scrolling an “infinitely

Our implementation presents
multiple “slices” of the score on the screen (see Figure 4), but
we plan to experiment with different approaches.

Selecting Locations from Notation
human feedback, music

notation can be used as an “input device,” for example to
e to begin in a rehearsal. Our system has start

positions for every measure stored as coordinates (page, x, y).
would like to start,

system can map the position to a beat number and use the
method to prepare all Players to start

This will also indicate the position in the
score, giving a confirmation to the user that the correct

We have implemented a prototype system in Serpent [10], a
time programming language inspired by Python. Our

ecture described earlier, with classes

Conductor, Player, and Time_map
subclassed to form Midi_player
notation display program), and
current position). Each player implements methods for
set_position, start, stop, and they all inherit a method for
set_timemap that adjusts each local player time map to
converge to that of the conductor.
 The score player class is the most complex (about
of Serpent code). It displays music notation, turning “pages”
automatically according to score position given by the
conductor. The music notation comes from image files (e.g.
jpeg or png), which are manually annotated. The score player
includes graphical annotation tools to: (1) indicate the staff
height, (2) subdivide the score into systems, (3) mark bar lines,
(4) mark repeat signs, endings, D.S
starting measure, and (6) add arbitrary free hand and text
annotations. (See Figure 4.)
 After annotating the score, the score player sorts measures,
repeats, and other symbols to form a representation of the
static score. It can then compute a
“unfolding” the repeats and computing a list of dynamic
measures. The score player also scales the music notation
images to fit the width of the display and divides the images
into slices that are stacked vertically on the display.
 There are many possibilities for music scrolling and page
turning. In the current implementation, we
into thirds and always display the previous, current, and next
sub-pages. For example, the initial display shows the first 3
sub-pages, in the order 1-2-3. When the player advances to the
third sub-page, the display is updated to show 4
player continues reading sub-page 4 at the top of the display,
at which time the display updates to 4

Figure 4. Score display showing editing toolbar at top and
a vertical division into thirds.

 We have also implemented a player for multi
that applies high-quality time stretching to each channel
according to a time map [12]. However, this system
integrated into the conductor/player framework
have implemented a tempo control object that accepts beats
from a space-bar or foot pedal, rejects outliers, and performs
linear regression on recent taps to estimate a time map.

ime_map. The Player class is
Midi_player, Score_player (a music

notation display program), and Posn_player (to display the
current position). Each player implements methods for

, and they all inherit a method for
adjusts each local player time map to

converge to that of the conductor.
The score player class is the most complex (about 2400 lines

code). It displays music notation, turning “pages”
automatically according to score position given by the
conductor. The music notation comes from image files (e.g.
jpeg or png), which are manually annotated. The score player
includes graphical annotation tools to: (1) indicate the staff
height, (2) subdivide the score into systems, (3) mark bar lines,

D.S., coda, and fine, (5) mark a
starting measure, and (6) add arbitrary free hand and text

After annotating the score, the score player sorts measures,
repeats, and other symbols to form a representation of the

score. It can then compute a dynamic score by
“unfolding” the repeats and computing a list of dynamic

also scales the music notation
images to fit the width of the display and divides the images

that are stacked vertically on the display.
There are many possibilities for music scrolling and page-

In the current implementation, we divide the screen
into thirds and always display the previous, current, and next

For example, the initial display shows the first 3
3. When the player advances to the

page, the display is updated to show 4-2-3. The
page 4 at the top of the display,

at which time the display updates to 4-5-3, etc.

. Score display showing editing toolbar at top and

a vertical division into thirds.

lemented a player for multi-channel audio
quality time stretching to each channel

However, this system is not yet
into the conductor/player framework. Finally, we

have implemented a tempo control object that accepts beats
bar or foot pedal, rejects outliers, and performs

linear regression on recent taps to estimate a time map.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

171

7. CONCLUSIONS AND FUTURE
WORK
In conclusion, our framework implements a beat-based
strategy for coordination and synchronization of media in real-
time performance. We convert the music notation from images
of score to a dynamic interactive display medium interface,
which could cooperate with other forms of media to create a
human-computer music performance system.
 In the future, we plan to focus on applications that integrate
music notation with audio playback, gaining practical
experience using music notation as an interactive medium. We
plan to test and evaluate different methods of music scrolling
and assess whether music notation on a touch display can be
used to control a computer musician during real performances.
 Considering the complexity for prototyping and testing, our
most recent system is based on MIDI and score images. As the
framework structure becomes mature, we will integrate audio
playback using PSOLA [21] and phase vocoder [16] time-
stretching techniques. We will also need to implement editing
techniques to label audio.
 The scheduling and music notation framework described
here is part of a larger overall architecture that facilitates
music representation, preparation, and performance, and there
are many more components required to achieve the kind of
music production and performance flexibility that we envision.
However, even based on this framework, many applications
can be developed. For example, we could automatically align
rehearsal recordings to MIDI files to quickly (and roughly)
label audio. Then, we could listen to particular parts by
pointing to the score, comparing the rehearsal performance of
the same piece from two different days, etc. The flexibility of
the framework provides many possibilities for future work.

8. ACKNOWLEDGMENTS
Thanks to Ryan Calorus, who implemented our first
experimental music display, and Nicolas Gold for valuable
discussions. Our first performance system and the music
display work were supported by Microsoft Research and the
Carnegie Mellon School of Music. Zplane kindly contributed
their high-quality audio time-stretching library for our use.
Current work is supported by the National Science Foundation
under Grant No. 0855958.

9. REFERENCES
[1] Ableton. Ableton reference manual (version 8).

http://www.ableton.com/pages/downloads/manuals
(2011).

[2] Anderson, D. and Kuivila, R. A system for computer
music performance. ACM Transactions on Computer
Systems, Volume 8 Issue 1 (1990), pp. 56-82.

[3] Baba, T., Hashida, M., and Katayose, H.
“VirtualPhilharmony”: A Conducting System with
Heuristics of Conducting an Orchestra. Proceedings of
the 2010 Conference on New Interfaces for Musical
Expression (NIME 2010), ACM Press, 2010, 263-270.

[4] Bainbridge, D. and Bell, T. An ajax-based digital music
stand for greenstone. Proceedings of the 9th ACM/IEEE-
CS joint conference on Digital libraries (JCDL '09),
ACM, New York (2009), pp. 463-464.

[5] Brandt, E. and Dannenberg, R. Time in distributed real-
time systems. Proceedings of the 1999 International

Computer Music Conference, ICMA, San Francisco
(1999), pp. 523-526.

[6] Castan, G., Good, M. and Roland, P. Extensible markup
language (XML) for music applications: An introduction.
The Virtual Score, MIT Press, Cambridge, MA, 2001, pp.
95-102.

[7] Connick, H. Jr. System and method for coordinating
music display among players in an orchestra. US Patent
#6348648 (2002).

[8] Cont, A. ANTESCOFO: Anticipatory synchronization
and control of interactive parameters in computer music.
Proceedings of International Computer Music
Conference (ICMC), ICMA, San Francisco, 2008.

[9] Dannenberg, R. Real-time scheduling and computer
accompaniment. In Current Directions in Computer
Music Research, edited by Max. V. Mathews & John R.
Pierce, MIT Press, Cambridge, MA, 1989, pp.225-261.

[10] Dannenberg, R. A Language for Interactive Audio
Applications. Proceedings of the 2002 International
Computer Music Conference, ICMA, San Francisco,
2002, 509-515.

[11] Dannenberg, R. New interfaces for popular music
performance. Seventh International Conference on New
Interfaces for Musical Expression: NIME 2007, New
York, NY, 2007, 130-135.

[12] Dannenberg, R. A Virtual Orchestra for Human
Computer Music Performance. Proceedings of the 2011
International Computer Music Conference, (to appear).

[13] Dannenberg, R. and Raphael, C. Music score alignment
and computer accompaniment. Commun. ACM 49, 8
(August 2006), pp. 38-43.

[14] Katayose, H. and Okudaira, K. Using an Expressive
Performance Template in a Music Conducting Interface.
Proceedings of the 2004 Conference on New Interfaces
for Musical Expression (NIME04), (Hamamatsu), ACM
Press., 2004, 124-129.

[15] Kurth, F., Müller, M., Fremerey, C., Chang, Y. and
Clausen, M. Automated synchronization of scanned sheet
music with audio recordings. Proceedings of ISMIR,
Vienna (2007), pp. 261-266.

[16] Lee, E., Karrer, T. and Borchers, J. Toward a framework
for interactive systems to conduct digital audio and video
streams. Computer Music Journal, 30(1) (Spring 2006),
pp. 21-36.

[17] MakeMusic, Inc. SmartMusic interactive music software
transforms the way students practice (web page),
http://www.smartmusic.com (2011).

[18] Raphael, C. Music Plus One: A system for flexible and
expressive musical accompaniment. Proceedings of the
International Computer Music Conference, (Havana,
Cuba), ICMA, San Francisco, 2001.

[19] Robertson, A. and Plumbley, M. D. B-Keeper: A beat
tracker for real time synchronisation within performance.
Proceedings of New Interfaces for Musical Expression
(NIME 2007), New York, NY, USA, (2007), pp 234-237.

[20] Rowe, R. Interactive Music Systems. MIT Press,
Cambridge, MA (1993).

[21] Schnell, N., Peeters, G., Lemouton, S., Manoury, P.,
Rodet, X. Synthesizing a choir in real-time using Pitch
Synchronous Overlap Add (PSOLA). International
Computer Music Conference (ICMC), (Berlin), ICMA,
San Francisco, 2000.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

172

