
Fugue:
A Functional Language
for Sound Synthesis

Roger B. Dannenberg, Carnegie Mellon University

Christopher Lee Fraley, Microsoft Corporation

Peter Velikonja, West Virginia University

raditional software synthesis systems - which include Music V,' cmusic,2
and Csound? - are based on the same principles. Composers use a score T language to describe a list of notes or sounds to be synthesized. Each note

specifies a starting time, a duration, an instrument name, and a list of parameters
specific to the instrument (such as pitch, loudness, and articulation). A separate
orchestra language defines a set of instruments, each of which specifies a particular
signal processing algorithm. An instrument is defined as a set of interconnected
signal processing steps known as unit generators. Typical unit generators are
osci I1 a t o rs, f i I t e rs. adders, and m u I t i pl ie rs.

.".' '' - Each note in the wore language invokes an instance (esentially a copy) ol' an

Fugue provides
functions to create and
manipulate sounds as
abstract, immutable

objects. The interactive
language supports

behavioral abstraction,
so composers can
manage complex

musical structures.

instrument in the orchestra. This instrument instance computes sound for the
duration of the note according to the parameters of the note statement. The
synthesis system adds the resulting sound to that of the other notes in the score and
writes them all to a disk file. After the computation completes, the system can read
the synthesized music from the disk in real time and convert i t into analog form for
listening.

This approach has been used without much change for over two decades. It
offers excellent and robust ideas, but it also has some weaknesses. An obvious
problem is the separation of the score and orchestra languages.

In this article, we present Fugue. Unlike the traditional approach, which re-
quires separate languages for different tasks, Fugue lets composers express signal
processing algorithms for sound synthesis, musical scores, and higher level musical
procedures all in one language.

Although it extends the traditional sound synthesis approach2 with concepts
borrowed from functional programming: Fugue retains the advantages of the
Music V class of systems. One advantage of Music V is that composers can specify
the starting time and duration of each note in the score. These temporal attributes

COMPUTER 36 00 18-9 162/91/0700-0036$01 .OO 0 1991 IEEE

are implicit parameters to each instru-
ment instance that tell the system when
to start and how many samples to com-
pute. Fugue supports an extension of
this technique.

Another important contribution of
Music V is the notion of combining unit
generators into a signal flow graph.
Fugue implements this feature effi-
ciently.

Programs as scores

Historically, musical scores have been
static data structures created by com-
posers. Traditional scores do not ex-
press computation beyond a few simple
abbreviations to indicate repeats or al-
ternate endings. There is a good reason
for this. Traditional scores are data in-
tensive and contain much detailed in-
formation because composers want to
express the results of their creativity,
rather than show the process of cre-
ation.

Consequently, lists of notes and their
attributes have been the standard form
of machine-readable scores for many
years. As data structures, note lists can
be transformed in time, in pitch, or
along any other dimension defined by
note attributes. It is generally easier to
generate and manipulate data struc-
tures than programs. For example,
making all the notes in a section louder
is easy if the notes are represented as
data. But note lists can suffer from the
fact that they are not programs. In par-
ticular. there is a schism between the
“score” and the “orchestra”: The score
controls while the orchestra executes;
the functions are not integrated.

A common way to address this di-
lemma is to use programs to compute
note lists. This presents at least two
problems. Composers must deal with
yet another language (as if two were
not enough). and the ultimate result
does not close the gap between the
score and orchestra. For example, note-
generating procedures cannot use the
results of signal processing functions in
the orchestra, and instruments in the
orchestra cannot call on the note-gen-
erating capabilities of the score.

Fugue offers a new approach. Fugue
scores are actually program expressions
that. when evaluated. return audio or
control signals. Fugue also defines in-
struments in terms of expressions that
denote audio signals. Thus. composers

can use one language for both instru-
ments and scores.

With this unification, composers can
express scores and instruments more
flexibly. In traditional synthesis systems,
it is difficult t o alter a phrase of many
notes by a single volume envelope. be-
cause this requires a hierarchical nest-
ing of notes within the volume envelope.
In Fugue, however, scores and signals
are all nested expressions, making hi-
erarchical structures very natural.

Composers can also use Fugue for
signal analysis to determine aspects of a
score. Signal analysis is a common
practice in computer music, but signal
analysis programs are rarely integrated
into traditional sound synthesis lan-
guages.

Perhaps Fugue’s most valuable feature
is that it encourages composers t o de-
velop personal musical vocabularies,
unencumbered by a language-specified
model of how music or music computa-
tion should be structured. Of course.
any language, including Fugue, is bound
to influence how composers approach
programming or composition. Howev-
er , Fugue supports the Music V model
of computation as a subset, so we can at
least claim an improvement in flexibil-
ity and generality.

Fugue allows the composer to treat
simple instruments and sounds as
building blocks for more complex sound
events. This development process is
supported by its abstraction capabilities
and an interactive language interpreter.

Behavioral abstraction

An important feature of Music V is
that note starting times and durations
determine when and how long the sys-
tem instantiates an instrument. In ad-
dition to unifying the score and orchestra,
Fugue also supports this approach.
Otherwise, temporal aspects of com-
positions might be very difficult to ex-
press.

Starting times and durations in Music
V provide a special kind of abstraction:
Instruments define a class of behaviors
that can have any starting time or du-
ration. Abstraction is important because
it is not always obvious what to do to
make a note longer. For example, a
violinist typically lengthens a note by
drawing the bow across the string for a
longer period of time, but if the note is
a tremolo, with rapid back-and-forth

bowing, the violinist adds more bow
strokes to extend the duration. Clearly,
the notion of stretching is abstract, and
the software instrument designer must
control its implementation. The user of
the instrument, however, need not be
aware of the implementation details.

T o support nested expressions in
Fugue, we viewed a starting time o r
duration as a transformation rather than
as an absolute parameter. We extended
the concept to allow transformations of
articulation, loudness, and pitch. Com-
posers can make additional qualities
transformable and extend the system
with new transformation operators.

Programmers o r composers define
behuviors that describe how to generate
a sound within a transformation context.
A context in Fugue reflects the cumula-
tive effect of nested transformations on
environmental parameters such as cur-
rent time. stretch. transposition, and
overall loudness. Behaviors can be hi-
erarchical compositions of other behav-
iors. Once defined, a behavior can have
many instances, each of which can be
evaluated in a different context and/or
with different parameters. In this way,
composers can define concepts such as
“drum roll” o r “glissando” once and
apply them in many different contexts.

A behavior realized according to a
context is called a behavioral ub-
straction.’ We present a few examples
to show how Fugue uses behavioral
abstractions. In a sequence of three
sounds

(seq (tremoloA3) (cue wind) (oscBf3))

cue is a behavior that simply plays a
sound at a given time, and tremolo and
osc play pitches (A and B-flat below
middle C). Osc and cue are built-in be-
haviors, while tremolo is defined by the
composer in terms of built-in behaviors.
Wind is a sound, perhaps loaded from a
sound file.

If we want to hear the same sequence
half as loud and with the wind sound
delayed by 2 seconds, we write

(loud 0.5
(seq (tremoloA3) (at2.0(cuewind))

(osc Bf3)))

Suppose we wish to change the pitched
sounds of the sequence. We write

(transpose 3 (seq (tremolo A3)
(cue wind) (osc Bf3)))

July 199 I 37

Figure 1. Page 25 from the score of Spomin. To generate the score, we replaced
Fugue's sound generation modules with modules that output graphics com-
mands. The modules ensure that the score accurately reflects the sound. The fi-
nal score shown here includes manually added music symbols.

This says to transpose the sequence up
by three semitones. However, the cue
abstraction overrides and prevents the
transposition of wind because cue is
intended for use with unpitched sounds.
Hence. only the tremolo and osc behav-
iors are affected. We could replace cue
with a behavior that would allow the
wind sound to transpose.

In general, we defined transforma-
tions and built-in behaviors to work
like traditional unit generators. As a
result, most instrument definitions in
Fugue support the standard transfor-
mations implicitly. But composers can
always customize the default behavior
as needed.

An example

The composition Spomin (an unpub-
lished score by P. Velikonja) uses thou-
sands of transformations of a single
human vocal utterance (see the box at
right). The composer used Fugue sound-
processing primitives to manipulate the
source sound to varying degrees, so some
sounds are clearly vocal while other
more highly processed sounds bear lit-
tle relation to their vocal source. Using
Fugue, the composer extracted slices of
the source, in some cases down to the
level of an individual period. Once ex-
tracted, a period can be cycled to form a

sustained tone (as in the technique used
by sampling synthesizers). Quickly
swapping periods during this cycling
produces a tone with a time-varying
spectrum, a technique used extensively
in the latter half of the piece. In the first
half, the composer used tones generat-
ed from extracted periods to create
chords, glissandi, and chorus effects.

Spomin illustrates the advantage of
using an integrated language for ex-
pressing score information as well as
signal processing. Composers can dele-
gate signal processing routines to low-
level functions and then work more ab-
stractly using high-level functions.
Moreover, Fugue modules, modified to
output printing information rather than
digital samples, can produce the graph-
ical portion of a score. Figure 1 gives an
example.

The code in Figure 2 shows the layer-
ing of several levels of abstraction. In
this example a short slice is cut from the
source sound and cycled to form a grain.
Grains of sound form pebbles, which
are strung on a necklace. The second
band from the top in Figure 1 shows
necklaces modified at the grain level to
rise in pitch over time. Each grain is
represented by a short line, angled to
indicate where (in the source) a slice
was extracted. The third, fourth, and
fifth bands show timing and amplitude
information. The top band shows glis-
sandi of tones built from extracted peri-
ods.

Without Fugue's abstraction capabil-
ities and computational support, the top
level of the score would consist of many
thousands of notes, each corresponding
to a tiny grain of sound. Such a score is
technically feasible but impractical to
construct or edit by hand.

Because Fugue allows composers to
combine components to form complex
structures, they can control large sound
events with a few commands. The inter-
active environment provides rapid

38 COMPUTER

feedback, so composers have greater
control over sound materials. Fugue’s
supportive framework helps composers
explore new musical forms and compo-
sitional methods. Composers can define
a musical syntax so that they can com-
pose music as a process rather than as a
simple series of notes. Some might ob-
ject that Lisp is too great an obstacle for
noncomputer scientists, so it is worth
mentioning that Spomin is the first full
piece generated using Fugue and was
the composer’s first exposure to Lisp.

Implementation

We implemented Fugue in a combi-
nation of C and XLisp to run on Unix
workstations. (Written by David Betz,
XLisp is an interpreter which is in turn
implemented in C.) We used XLisp
because it is fairly easy to extend with
new data types, and it is also easy to
interface with C programs for signal
processing. Lisp provides convenient
and powerful interaction, and C effi-
ciently implements low-level function-
ality. It might be possible to use a more
efficient compiled Lisp. However, most
of the computation time is taken by
signal processing primitives, so the Lisp
interpretation represents only a small
overhead.

We implemented Fugue’s transfor-
mation context in Lisp. Operators such
as Transpose are macros that bind an
element of the context (*Transpose* in
this case) and then evaluate the em-
bedded expression. The binding is re-
stored upon exit from the transforma-
tion. Composers can introduce new
synthesis techniques into Fugue by
combining existing behaviors or by
writing new sound synthesis algorithms
in C and calling them from Lisp.

Our implementation includes multi-
ple sample rates and lazy evaluation to
increase time and memory efficiency.
Multiple sample rates allow for “con-
trol” signals at a low sample rate, as in
the Music-11 system and Csound,3 re-
ducing time and memory requirements.
When the system must manipulate two
sounds with different sample rates, it
uses linear interpolation by default to
resample the lower sample rate signal
to the higher sample rate. Composers
can explicitly specify other types of in-
terpolation. Because there is no distinc-
tion between control and audio signals,
composers can use filters to modify spec-

Figure 2. An example Fugue program taken from Spomin, showing multiple
levels of abstraction. Any level can be invoked interactively for testing, or from
within a higher level expression serving as a score.

tra or to smooth envelopes, and use
multiplication uniformly for gain con-
trol, amplitude envelopes, or audio-rate
amplitude modulation.

We implemented sounds in Fugue as
an extension to Lisp. Sounds are im-
mutable values, meaning that once a
composer creates a sound, it cannot be
altered. Therefore, the implementation
cannot add several sounds directly into
a single buffer. Instead, each addition
of two sounds produces a new sound.
Using lazy evaluation,6 we avoid the
inefficiency of immutable values. When
composers perform additions (and
many other operations), our implemen-
tation merely builds a small data struc-
ture describing the desired operation.

Fugue doesn’t actually compute any
samples until absolutely neosssary, and
when it does, it can combine opera-
tions. For example, Fugue commonly
allocates only one array to hold the
result of many additions. This tech-
nique avoids many needless ‘copy oper-
ations and is completely hidden from
the composer.

Example of lazy
evaluation

To demonstrate how Fugue’s imple-
mentation of lazy evaluation works, we
show what memory structures look like

July 1991 39

I I

Figure 3. Sequence of operations for the lazy evaluation example.

Mysound L
From 0.0 sec.

Figure 4. Memory structure of My-
sound after the first operation in Fig-
ure 3, assuming the duration of My-
sound is 1 second. The system loaded
the samples from a file.

I Scale 2.0 I 7:” 0.0 sec.
2.0 sec.

End 2.0 sec.

Mysound

Scale 1.0 I

I From 0.0 sec.
1 .O sec.

End 1.0 sec. I Shift To 0.0 sec.
Stretch 1.0 I SRate 16 kHz I

Scale 1.0 Scale 1.0
From 0.0 sec. From 0 0 sec.
To 1.0 sec. To 1 .O sec
End 1.0 sec. End 1.0 sec shift 0.0 sec. Shift 1.0 sec.
Stretch 1.0 Stretch 1 0

~SRate 16 kHz SRate 16 kHz

/ I
Samples for “mysound”

Figure 5. Memory structure of Demo after the second operation in Figure 3.
The transformations and summation are reflected in the data structure, so the
system doesn’t need to compute new sound samples.

at each step of a sequence of operations.
Figure 3 shows the operations. The first
line sets the variable Mysound toa sound
stored in the file “mysound.” Figure 4
shows the resulting configuration. The
second line evaluates a score consisting
of two copies of Mysound in sequence.
Because only time-shifting and addi-

tion are involved, essentially no compu-
tation takes place. Figure 5 shows the
resulting configuration. The system has
performed no addition; instead, Fugue
represents the sum as a data structure.
Finally, the third line forces the system
to produce samples for Demo. It replac-
es the representation for Demo with

one in which the actual samples have
been computed and storage for samples
has been allocated, as shown in Figure
6. This last step is the only time the
system allocates new storage for sample
data and actually computes a new sound
sample.

Imagine a typical computation of the
form

for i := 1 to 100 do
mypiece := mypiece t

MakeNote(i);

In Fugue, a roughly equivalent program
would be

(seqrep (i 100) (make-note i))

where seqrep is a control construct that
concatenates some number of instances
of a behavior - in this case 100 copies
of make-note.

Typically, MakeNote(i) generates a
relatively short signal to be added to a
much longer mypiece. Without lazy
evaluation, each addition requires the
system to

(1) allocate memory at least the size
of mypiece to hold the sum of the
two signals,

(2) copy mypiece into the new mem-
ory area, and

(3) add the result of MakeNote to
form the new signal.

Allocating memory and copying signals
make this computation costly.

With lazy evaluation, each “lazy” ad-
dition simply adds another level to a
tree of sum nodes like the one in Figure
5. To produce the final result, the sys-
tem traverses the tree to determine the
size of the result, allocates memory, and
adds the leaves of the summation tree.
This technique eliminates memory allo-
cation and signal copying to form inter-
mediate results.

We considered but did not implement
another approach for efficient execution.
In the alternate approach, the composer
explicitly allocates a buffer to hold the
final sum of the MakeNote signals, and
the system allows the buffer to be modi-
fied by an add-signal operation. This
approach violates the principle that sig-
nals are immutable, and it places more
storagemanagement burden on thecom-
poser. Lazy evaluation, on the other hand,
allows Fugue to exhibit clean and simple
semantics without loss of efficiency.

40 COMPUTER

Future directions

We need to extend Fugue with more
sound functions as in Moore’s cmusic
(distributed by the University of Califor-
nia at San Diego), Vercoe’s Csound (dis-
tributed by the MIT Media Lab), Next’s
Sound Kit,’ and Lansky’s Cmix (distrib-
uted by the Princeton University Music
Department). These systems are popu-
lar partly because of the library of syn-
thesis techniques they provide.

We may investigate the use of Fugue
in parallel computation. Because of its
functional style, Fugue programs con-
tain explicit parallelism in the sim (“si-
multaneous”) construct. Even when
there are data dependencies such as in
the seq construct, lazy evaluation often
defers signal computations so that the
data dependencies can be resolved im-
mediately. Then the signal processing
can proceed in parallel. If we implement
sounds in Fugue as streams, we can
achieve even more parallelism by lazily
evaluating streams. This could dramat-
ically reduce the memory requirements
for intermediate results in Fugue ex-
pressions. Even with large virtual mem-
ories and automatic garbage collection,
storage is a serious problem in the cur-
rent implementation.

An exciting potential of the lazy eval-
uation of streams is real-time execu-
tion.8 This would require real-time
garbage collection as well. We have not
yet explored many opportunities for the
compilation and optimization of Fugue
behaviors.

M any of the ideas we use in
Fugue seem appropriate for
computer graphics and com-

puter animation. The idea of behavioral
abstraction seems to fit nicely with graph-
ical transformations (for example,
“make this truck longer”) and also with
action in animations (“run faster”). In
computer animation, Fugue’s notions
of explicit timing and constructs for
parallel and sequential behavior might
be useful. For images, new constructs
might be added to represent spatial as
well as temporal relationships.

We could extend Fugue’s semantics
in several ways. Currently, only some-
one with a fair understanding of how
contexts are implemented can extend
the context in Fugue. We should make

emo

End 2.0 sec.
Shift 0.0 sec.
Stretch 1.0
SRate 16 kHz

und

t

Samples for “mysound”

Figure 6. Memory structure of Demo
after the third operation in Figure 3.
The system computes samples accord-
ing to the transformations in Figure 5
and caches the resulting samples, re-
placing the previous data structure
with a new one.

this simpler. Fugue should also sup-
port the use of MIDI (musical instru-
ment digital interface) files as scores
so that composers can use existing
music editors as data sources. Another
improvement would be to allow
time-varying transformations,y using
signals in place of real numbers to
achieve musical effects such as accele-
rando (gradual increase in overall tem-
po) and crescendo (gradual increase in
overall loudness). Also, Fugue must
support multidimensional signals. We
plan to make these changes in a future
version. W

Acknowledgments

We thank Carnegie Mellon University and
Yamaha Music Technologies for their sup-
port of this work. Dean Rubine provided
Lisp consultation for the production of
Spomin, and we used his Strips library to
produce the graphical score. George Polly
contributed some of Fugue’s signal process-
ing functions.

References

1. M.V. Mathews, The Technology of
Computer Music, MIT Press, Boston,
1969.

2. F.R. Moore, Elements of Computer Mu-
sic, Prentice Hall, Englewood Cliffs, N.J.,
1990.

3. B. Vercoe, “Csound: A Manual for the
Audio Processing System and Support-
ing Programs,” MIT Media Lab, MIT,
Cambridge, Mass., 1986.

4. A.J. Field andP.G. Harrison, Functional
Programming, Addison-Wesley, Read-
ing, Mass., 1988.

5. R.B. Dannenberg, “Expressing Tempo-
ral Behavior Declaratively,” Carnegie
Mellon Computer Science 25th Anniver-
sary Proc., Addison-Wesley, Reading,
Mass., 1991.

6. R.B. Dannenberg and C.L. Fraley,
“Fugue: Composition and Sound Syn-
thesis with Lazy Evaluation and Behav-
ioral Abstraction,” Proc. Int’l Computer
Music C o n f , Computer Music Assoc.,
San Francisco, 1989, pp. 76-79.

7. D. Jaffe and L. Boynton, “An Overview
of the Sound and Music Kit for the Next
Computer,” Computer MusicJ., Vol. 13,
No. 2, Summer 1989, pp. 48-55.

8. R.B. Dannenberg, “A Runtime System
for Arctic,” Proc. Int’l Computer Music
Conf., Computer Music Assoc., San
Francisco, 1990, pp. 185.187.

9. R.B. Dannenberg, “The Canon Score
Language,” Computer MusicJ., Vol. 13,
No. 1, Spring 1989, pp. 47-56.

Roger B. Dannenberg is a senior research
computer scientist at Carnegie Mellon Uni-
versity. His research interests include pro-
gramming-language design and implemen-
tation, and the application of computer
science techniques to the generation, con-
trol, and composition of computer music. He

July 1991 41

- - - = - -

P
T

-m
For
registration
information
contact-

Carnegie Mellon University
Software Engineering Institute

SEI Conference on
s o f i m

are Maintenance Project

aduate Courses in Software

g for Software Engineers

Computing Curricula 1991 :
Its Implications for Software Engineering
Education

Computer Based Systems Engineering

Teaching Styles for Software Engineering

Teaching Project Management Bottom Up

Seven Lessons to Teach Design

Desi n Evolution: Implications for
Aca$emia and Industry

Teaching Software Design in the Freshman
Year

Teaching Software Engineering for Real-Time
Design

Industrial-Strength CASE Tools for
Software Engineering Classes

What We Have Learned About
Software Engineering Expertise

Instruction for Software Engineering Expertise

Knowledge Elicitation for
Software Engineering Expertise

Helen E. Joyce
(41 2) 268-6504

is codirector of the Piano Tutor project, whose
goal is applying music understanding and ex-
pert system technology to music education.
He frequently performsjazz and experimental
music on trumpet or electronically.

Dannenberg received a BSEE from Rice
University in 1977, an MS in computer engi-
neering from Case Western Reserve Universi-
ty in 1979, and a PhD in computer science from
Carnegie Mellon in 1982. He is a member of Phi
Beta Kappa, Sigma Xi, Tau Beta Pi, Phi Mu
Alpha, ACM, and SIGCHI, and research coor-
dinator for the Computer Music Association.

Christopher Lee Fraley is a computer de4ign
engineer at Microsoft Corporation, where he
is working on graphical user interface build-
ers. His interests include computer applica-
tions in music and poetry. He received his BA
in computer engineering from Carnegie Mel-
Ion University in 1989.

Peter Velikonja is an assistant professor of
oboe and theory at West Virginia University
and is active as a performer and composer. He
has performed with several major orchestras,
including the Chicago Symphony and the Met-
ropolitan Opera Orchestra. At the School of
Computer Science at Carnegie Mellon Uni-
versity. he writes music using digital synthesis
and develops other music software.

Velikonja received his training at North-
western University; the Folkwang Musikhoch-
schuleinEssen,Germany,onaFulbrightgrant;
and the Mannes College in New York City.

Dannenberg can be reached at the School of
Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213-3890. His e-mail
address is dannenberg@cs.cmu.edu.

1

I COMPUTER

mailto:dannenberg@cs.cmu.edu

