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raditional software synthesis systems - which include Music V,' cmusic,2 
and Csound? - are based on the same principles. Composers use a score T language to describe a list of notes or sounds to be synthesized. Each note 

specifies a starting time, a duration, an instrument name, and a list of parameters 
specific to the instrument (such as pitch, loudness, and articulation). A separate 
orchestra language defines a set of instruments, each of which specifies a particular 
signal processing algorithm. An instrument is defined as a set of interconnected 
signal processing steps known as unit generators. Typical unit generators are 
osci I1 a t o rs, f i  I t e rs. adders, and m u  I t  i pl ie rs. 

.".' '' - Each note in the wore language invokes an instance (esentially a copy) ol' an  

Fugue provides 
functions to create and 
manipulate sounds as 
abstract, immutable 

objects. The interactive 
language supports 

behavioral abstraction, 
so composers can 
manage complex 

musical structures. 

instrument in the orchestra. This instrument instance computes sound for the 
duration of the note according to the parameters of the note statement. The 
synthesis system adds the resulting sound to that of the other notes in the score and 
writes them all to a disk file. After the computation completes, the system can read 
the synthesized music from the disk in real time and convert i t  into analog form for 
listening. 

This approach has been used without much change for over two decades. It 
offers excellent and robust ideas, but it also has some weaknesses. An obvious 
problem is the separation of the score and orchestra languages. 

In this article, we present Fugue. Unlike the traditional approach, which re- 
quires separate languages for different tasks, Fugue lets composers express signal 
processing algorithms for sound synthesis, musical scores, and higher level musical 
procedures all in one language. 

Although it extends the traditional sound synthesis approach2 with concepts 
borrowed from functional programming: Fugue retains the advantages of the 
Music V class of systems. One advantage of Music V is that composers can specify 
the starting time and duration of each note in the score. These temporal attributes 
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are implicit parameters to each instru- 
ment instance that tell the system when 
to start and how many samples to  com- 
pute. Fugue supports an extension of 
this technique. 

Another important contribution of 
Music V is the notion of combining unit 
generators into a signal flow graph. 
Fugue implements this feature effi- 
ciently. 

Programs as scores 

Historically, musical scores have been 
static data structures created by com- 
posers. Traditional scores do not ex- 
press computation beyond a few simple 
abbreviations to  indicate repeats or al- 
ternate endings. There is a good reason 
for this. Traditional scores are data in- 
tensive and contain much detailed in- 
formation because composers want to 
express the results of their creativity, 
rather than show the process of cre- 
ation. 

Consequently, lists of notes and their 
attributes have been the standard form 
of machine-readable scores for many 
years. As data structures, note lists can 
be transformed in time, in pitch, or  
along any other dimension defined by 
note attributes. It is generally easier to 
generate and manipulate data struc- 
tures than programs. For example, 
making all the notes in a section louder 
is easy if the notes are represented as 
data. But note lists can suffer from the 
fact that they are not programs. In par- 
ticular. there is a schism between the 
“score” and the “orchestra”: The score 
controls while the orchestra executes; 
the functions are not integrated. 

A common way to address this di- 
lemma is to use programs to compute 
note lists. This presents at  least two 
problems. Composers must deal with 
yet another language (as if two were 
not enough). and the ultimate result 
does not close the gap between the 
score and orchestra. For example, note- 
generating procedures cannot use the 
results of signal processing functions in 
the orchestra, and instruments in the 
orchestra cannot call on the note-gen- 
erating capabilities of the score. 

Fugue offers a new approach. Fugue 
scores are actually program expressions 
that. when evaluated. return audio or 
control signals. Fugue also defines in- 
struments in terms of expressions that 
denote audio signals. Thus. composers 

can use one language for both instru- 
ments and scores. 

With this unification, composers can 
express scores and instruments more 
flexibly. In traditional synthesis systems, 
it is difficult t o  alter a phrase of many 
notes by a single volume envelope. be- 
cause this requires a hierarchical nest- 
ing of notes within the volume envelope. 
In Fugue, however, scores and signals 
are all nested expressions, making hi- 
erarchical structures very natural. 

Composers can also use Fugue for 
signal analysis to determine aspects of a 
score. Signal analysis is a common 
practice in computer music, but signal 
analysis programs are rarely integrated 
into traditional sound synthesis lan- 
guages. 

Perhaps Fugue’s most valuable feature 
is that it encourages composers t o  de- 
velop personal musical vocabularies, 
unencumbered by a language-specified 
model of how music or music computa- 
tion should be structured. Of course. 
any language, including Fugue, is bound 
to influence how composers approach 
programming or composition. Howev- 
er ,  Fugue supports the Music V model 
of computation as a subset, so we can at  
least claim an improvement in flexibil- 
ity and generality. 

Fugue allows the composer to treat 
simple instruments  and  sounds as 
building blocks for more complex sound 
events. This development process is 
supported by its abstraction capabilities 
and an interactive language interpreter. 

Behavioral abstraction 

An important feature of Music V is 
that note starting times and durations 
determine when and how long the sys- 
tem instantiates an instrument. In ad- 
dition to unifying the score and orchestra, 
Fugue also supports this approach. 
Otherwise, temporal aspects of com- 
positions might be very difficult to ex- 
press. 

Starting times and durations in Music 
V provide a special kind of abstraction: 
Instruments define a class of behaviors 
that can have any starting time or  du- 
ration. Abstraction is important because 
it is not always obvious what to do to 
make a note longer. For example, a 
violinist typically lengthens a note by 
drawing the bow across the string for a 
longer period of time, but if the note is 
a tremolo, with rapid back-and-forth 

bowing, the violinist adds more bow 
strokes to extend the duration. Clearly, 
the notion of stretching is abstract, and 
the software instrument designer must 
control its implementation. The user of 
the instrument, however, need not be 
aware of the implementation details. 

T o  support  nested expressions in 
Fugue, we viewed a starting time o r  
duration as a transformation rather than 
as an absolute parameter. We extended 
the concept to allow transformations of 
articulation, loudness, and pitch. Com- 
posers can make additional qualities 
transformable and extend the system 
with new transformation operators. 

Programmers o r  composers define 
behuviors that describe how to generate 
a sound within a transformation context. 
A context in Fugue reflects the cumula- 
tive effect of nested transformations on 
environmental parameters such as cur- 
rent time. stretch. transposition, and 
overall loudness. Behaviors can be hi- 
erarchical compositions of other behav- 
iors. Once defined, a behavior can have 
many instances, each of which can be 
evaluated in a different context and/or 
with different parameters. In this way, 
composers can define concepts such as 
“drum roll” o r  “glissando” once and 
apply them in many different contexts. 

A behavior realized according to a 
context is called a behavioral ub- 
straction.’ We present a few examples 
to  show how Fugue uses behavioral 
abstractions. In a sequence of three 
sounds 

(seq (tremoloA3) (cue wind) (oscBf3)) 

cue is a behavior that simply plays a 
sound at  a given time, and tremolo and 
osc play pitches ( A  and B-flat below 
middle C). Osc and cue are built-in be- 
haviors, while tremolo is defined by the 
composer in terms of built-in behaviors. 
Wind is a sound, perhaps loaded from a 
sound file. 

If we want to hear the same sequence 
half as loud and with the wind sound 
delayed by 2 seconds, we write 

(loud 0.5 
(seq (tremoloA3) (at2.0(cuewind)) 

(osc Bf3))) 

Suppose we wish to  change the pitched 
sounds of the sequence. We write 

(transpose 3 (seq (tremolo A3) 
(cue wind) (osc Bf3))) 
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Figure 1. Page 25 from the score of Spomin. To generate the score, we replaced 
Fugue's sound generation modules with modules that output graphics com- 
mands. The modules ensure that the score accurately reflects the sound. The fi- 
nal score shown here includes manually added music symbols. 

This says to transpose the sequence up 
by three semitones. However, the cue 
abstraction overrides and prevents the 
transposition of wind because cue is 
intended for use with unpitched sounds. 
Hence. only the tremolo and osc behav- 
iors are affected. We could replace cue 
with a behavior that would allow the 
wind sound to transpose. 

In general, we defined transforma- 
tions and built-in behaviors to work 
like traditional unit generators. As a 
result, most instrument definitions in 
Fugue support the standard transfor- 
mations implicitly. But composers can 
always customize the default behavior 
as needed. 

An example 

The composition Spomin (an unpub- 
lished score by P. Velikonja) uses thou- 
sands of transformations of a single 
human vocal utterance (see the box at 
right). The composer used Fugue sound- 
processing primitives to manipulate the 
source sound to varying degrees, so some 
sounds are clearly vocal while other 
more highly processed sounds bear lit- 
tle relation to their vocal source. Using 
Fugue, the composer extracted slices of 
the source, in some cases down to the 
level of an individual period. Once ex- 
tracted, a period can be cycled to form a 

sustained tone (as in the technique used 
by sampling synthesizers). Quickly 
swapping periods during this cycling 
produces a tone with a time-varying 
spectrum, a technique used extensively 
in the latter half of the piece. In  the first 
half, the composer used tones generat- 
ed from extracted periods to create 
chords, glissandi, and chorus effects. 

Spomin illustrates the advantage of 
using an integrated language for ex- 
pressing score information as well as 
signal processing. Composers can dele- 
gate signal processing routines to low- 
level functions and then work more ab- 
stractly using high-level functions. 
Moreover, Fugue modules, modified to 
output printing information rather than 
digital samples, can produce the graph- 
ical portion of a score. Figure 1 gives an 
example. 

The code in Figure 2 shows the layer- 
ing of several levels of abstraction. In  
this example a short slice is cut from the 
source sound and cycled to form a grain. 
Grains of sound form pebbles, which 
are strung on a necklace. The second 
band from the top in Figure 1 shows 
necklaces modified at the grain level to 
rise in pitch over time. Each grain is 
represented by a short line, angled to 
indicate where (in the source) a slice 
was extracted. The third, fourth, and 
fifth bands show timing and amplitude 
information. The top band shows glis- 
sandi of tones built from extracted peri- 
ods. 

Without Fugue's abstraction capabil- 
ities and computational support, the top 
level of the score would consist of many 
thousands of notes, each corresponding 
to a tiny grain of sound. Such a score is 
technically feasible but impractical to 
construct or edit by hand. 

Because Fugue allows composers to 
combine components to form complex 
structures, they can control large sound 
events with a few commands. The inter- 
active environment provides rapid 
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feedback, so composers have greater 
control over sound materials. Fugue’s 
supportive framework helps composers 
explore new musical forms and compo- 
sitional methods. Composers can define 
a musical syntax so that they can com- 
pose music as a process rather than as a 
simple series of notes. Some might ob- 
ject that Lisp is too great an obstacle for 
noncomputer scientists, so it is worth 
mentioning that Spomin is the first full 
piece generated using Fugue and was 
the composer’s first exposure to Lisp. 

Implementation 

We implemented Fugue in a combi- 
nation of C and XLisp to run on Unix 
workstations. (Written by David Betz, 
XLisp is an interpreter which is in turn 
implemented in C.) We used XLisp 
because it is fairly easy to extend with 
new data types, and it is also easy to 
interface with C programs for signal 
processing. Lisp provides convenient 
and powerful interaction, and C effi- 
ciently implements low-level function- 
ality. It might be possible to use a more 
efficient compiled Lisp. However, most 
of the computation time is taken by 
signal processing primitives, so the Lisp 
interpretation represents only a small 
overhead. 

We implemented Fugue’s transfor- 
mation context in Lisp. Operators such 
as Transpose are macros that bind an 
element of the context (*Transpose* in 
this case) and then evaluate the em- 
bedded expression. The binding is re- 
stored upon exit from the transforma- 
tion. Composers can introduce new 
synthesis techniques into Fugue by 
combining existing behaviors or by 
writing new sound synthesis algorithms 
in C and calling them from Lisp. 

Our implementation includes multi- 
ple sample rates and lazy evaluation to 
increase time and memory efficiency. 
Multiple sample rates allow for “con- 
trol” signals at a low sample rate, as in 
the Music-11 system and Csound,3 re- 
ducing time and memory requirements. 
When the system must manipulate two 
sounds with different sample rates, it 
uses linear interpolation by default to 
resample the lower sample rate signal 
to the higher sample rate. Composers 
can explicitly specify other types of in- 
terpolation. Because there is no distinc- 
tion between control and audio signals, 
composers can use filters to modify spec- 

Figure 2. An example Fugue program taken from Spomin, showing multiple 
levels of abstraction. Any level can be invoked interactively for testing, or from 
within a higher level expression serving as a score. 

tra or to smooth envelopes, and use 
multiplication uniformly for gain con- 
trol, amplitude envelopes, or audio-rate 
amplitude modulation. 

We implemented sounds in Fugue as 
an extension to Lisp. Sounds are im- 
mutable values, meaning that once a 
composer creates a sound, it cannot be 
altered. Therefore, the implementation 
cannot add several sounds directly into 
a single buffer. Instead, each addition 
of two sounds produces a new sound. 
Using lazy evaluation,6 we avoid the 
inefficiency of immutable values. When 
composers perform additions (and 
many other operations), our implemen- 
tation merely builds a small data struc- 
ture describing the desired operation. 

Fugue doesn’t actually compute any 
samples until absolutely neosssary, and 
when it does, it can combine opera- 
tions. For example, Fugue commonly 
allocates only one array to hold the 
result of many additions. This tech- 
nique avoids many needless ‘copy oper- 
ations and is completely hidden from 
the composer. 

Example of lazy 
evaluation 

To demonstrate how Fugue’s imple- 
mentation of lazy evaluation works, we 
show what memory structures look like 
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Figure 3. Sequence of operations for the lazy evaluation example. 

Mysound L 
From 0.0 sec. 

Figure 4. Memory structure of My- 
sound after the first operation in Fig- 
ure 3, assuming the duration of My- 
sound is 1 second. The system loaded 
the samples from a file. 

I Scale 2.0 I 7:” 0.0 sec. 
2.0 sec. 

End 2.0 sec. 

Mysound 

Scale 1.0 I 

I From 0.0 sec. 
1 .O sec. 

End 1.0 sec. I Shift To 0.0 sec. 
Stretch 1.0 I SRate 16 kHz I 

Scale 1.0 Scale 1.0 
From 0.0 sec. From 0 0 sec. 
To 1.0 sec. To 1 .O sec 
End 1.0 sec. End 1.0 sec  shift 0.0 sec. Shift 1.0 sec. 
Stretch 1.0 Stretch 1 0 

~SRate 16 kHz SRate 16 kHz 

/ I 
Samples for “mysound” 

Figure 5. Memory structure of Demo after the second operation in Figure 3. 
The transformations and summation are reflected in the data structure, so the 
system doesn’t need to compute new sound samples. 

at each step of a sequence of operations. 
Figure 3 shows the operations. The first 
line sets the variable Mysound toa sound 
stored in the file “mysound.” Figure 4 
shows the resulting configuration. The 
second line evaluates a score consisting 
of two copies of Mysound in sequence. 
Because only time-shifting and addi- 

tion are involved, essentially no compu- 
tation takes place. Figure 5 shows the 
resulting configuration. The system has 
performed no addition; instead, Fugue 
represents the sum as a data structure. 
Finally, the third line forces the system 
to produce samples for Demo. It replac- 
es the representation for Demo with 

one in which the actual samples have 
been computed and storage for samples 
has been allocated, as shown in Figure 
6. This last step is the only time the 
system allocates new storage for sample 
data and actually computes a new sound 
sample. 

Imagine a typical computation of the 
form 

for i := 1 to 100 do  
mypiece := mypiece t 

MakeNote(i); 

In Fugue, a roughly equivalent program 
would be 

(seqrep (i 100) (make-note i)) 

where seqrep is a control construct that 
concatenates some number of instances 
of a behavior - in this case 100 copies 
of make-note. 

Typically, MakeNote(i) generates a 
relatively short signal to be added to a 
much longer mypiece. Without lazy 
evaluation, each addition requires the 
system to 

(1) allocate memory at  least the size 
of mypiece to hold the sum of the 
two signals, 

(2) copy mypiece into the new mem- 
ory area, and 

(3) add the result of MakeNote to 
form the new signal. 

Allocating memory and copying signals 
make this computation costly. 

With lazy evaluation, each “lazy” ad- 
dition simply adds another level to  a 
tree of sum nodes like the one in Figure 
5. To produce the final result, the sys- 
tem traverses the tree to determine the 
size of the result, allocates memory, and 
adds the leaves of the summation tree. 
This technique eliminates memory allo- 
cation and signal copying to form inter- 
mediate results. 

We considered but did not implement 
another approach for efficient execution. 
In the alternate approach, the composer 
explicitly allocates a buffer to hold the 
final sum of the MakeNote signals, and 
the system allows the buffer to be modi- 
fied by an add-signal operation. This 
approach violates the principle that sig- 
nals are immutable, and it places more 
storagemanagement burden on thecom- 
poser. Lazy evaluation, on the other hand, 
allows Fugue to exhibit clean and simple 
semantics without loss of efficiency. 
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Future directions 

We need to extend Fugue with more 
sound functions as in Moore’s cmusic 
(distributed by the University of Califor- 
nia at San Diego), Vercoe’s Csound (dis- 
tributed by the MIT Media Lab), Next’s 
Sound Kit,’ and Lansky’s Cmix (distrib- 
uted by the Princeton University Music 
Department). These systems are popu- 
lar partly because of the library of syn- 
thesis techniques they provide. 

We may investigate the use of Fugue 
in parallel computation. Because of its 
functional style, Fugue programs con- 
tain explicit parallelism in the sim (“si- 
multaneous”) construct. Even when 
there are data dependencies such as in 
the seq construct, lazy evaluation often 
defers signal computations so that the 
data dependencies can be resolved im- 
mediately. Then the signal processing 
can proceed in parallel. If we implement 
sounds in Fugue as streams, we can 
achieve even more parallelism by lazily 
evaluating streams. This could dramat- 
ically reduce the memory requirements 
for intermediate results in Fugue ex- 
pressions. Even with large virtual mem- 
ories and automatic garbage collection, 
storage is a serious problem in the cur- 
rent implementation. 

An exciting potential of the lazy eval- 
uation of streams is real-time execu- 
tion.8 This would require real-time 
garbage collection as well. We have not 
yet explored many opportunities for the 
compilation and optimization of Fugue 
behaviors. 

M any of the ideas we use in 
Fugue seem appropriate for 
computer graphics and com- 

puter animation. The idea of behavioral 
abstraction seems to fit nicely with graph- 
ical transformations (for example,  
“make this truck longer”) and also with 
action in animations (“run faster”). In 
computer animation, Fugue’s notions 
of explicit timing and constructs for 
parallel and sequential behavior might 
be useful. For images, new constructs 
might be added to represent spatial as 
well as temporal relationships. 

We could extend Fugue’s semantics 
in several ways. Currently, only some- 
one with a fair understanding of how 
contexts are implemented can extend 
the context in Fugue. We should make 

emo 

End 2.0 sec. 
Shift 0.0 sec. 
Stretch 1.0 
SRate 16 kHz 

und 

t 

Samples for “mysound” 

Figure 6. Memory structure of Demo 
after the third operation in Figure 3. 
The system computes samples accord- 
ing to the transformations in Figure 5 
and caches the resulting samples, re- 
placing the previous data structure 
with a new one. 

this simpler. Fugue should also sup- 
port the use of MIDI (musical instru- 
ment digital interface) files as scores 
so that composers can use existing 
music editors as data sources. Another 
improvement would be  to  allow 
time-varying transformations,y using 
signals in place of real numbers to 
achieve musical effects such as accele- 
rando (gradual increase in overall tem- 
po) and crescendo (gradual increase in 
overall loudness). Also, Fugue must 
support multidimensional signals. We 
plan to make these changes in a future 
version. W 
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