
1The Implementation of Nyquist, A Sound Synthesis Language

Roger B. Dannenberg
Carnegie Mellon University
Pittsburgh, PA 15213 USA

dannenberg@cs.cmu.edu

ABSTRACT: Nyquist is a functional language for sound synthesis with an efficient implementation.
It is shown how various language features lead to a rather elaborate representation for signals,
consisting of a sharable linked list of sample blocks terminated by a suspended computation. The
representation supports infinite sounds, allows sound computations to be instantiated dynamically, and
dynamically optimizes the sound computation.

loop expressions into C code for use in Nyquist,1. Introduction
making it possible to extend Nyquist without aNyquist is a new language for sound synthesis, based
detailed understanding of the internal data structureson an evolving series of languages and
and programming conventions. Also, a detailedimplementations that include Arctic, Canon, and
comparison of Nyquist with other systems is useful inFugue. These languages are all based on powerful
understanding design decisions. These topics awaitfunctional programming mechanisms for describing
future publication.temporal behavior. From these general mechanisms,

composers can create a variety of temporal structures
such as notes, chords, phrases, trills, and synthesis 2. Incremental (Lazy) Evaluation
elements such as granular synthesis, envelopes and Nyquist uses a declarative and functional style, in
vibrato functions. Unfortunately, previous which expressions are evaluated to create and modify
implementations have had too many limitations for sounds. For example, to form the sum of two
practical use. For example, Canon did not handle sinusoids, write: (s-add (osc) (osc)), where
sampled audio, and Fugue used vast amounts of each (osc) expression evaluates to a signal, and
memory and was hard to extend. s-add sums the two signals. In Fugue, the addition

of signals took place as follows: space was allocatedNyquist solves these practical problems using new
for the entire result, then signals were added one-at-a-implementation techniques. Declarative programs
time. This was workable for small sounds, butare automatically transformed into an efficient
practical music synthesis required too much space.incremental form taking approximately the same
The solution in Nyquist is to perform the synthesisspace (within a constant factor) as Music V or
and addition incrementally so that at any one timeCsound. This transformation takes place
there are only a few blocks of samples in memory.dynamically, so Nyquist has no need to preprocess an

orchestra or ‘‘patch’’. This allows Lisp-based This is similar to the approach taken in Music n
Nyquist programs to construct new synthesis patches languages such as Csound, cmusic, and Cmix [Pope
on-the-fly and allows users to execute synthesis 93], and, in fact, there is a close correspondence
commands interactively. Furthermore, infinite (in between unit generators of Music n and functions in
time) sounds and scores can be written and evaluated. Nyquist. The main difference is that in Music n, the
Nyquist is intended to operate in both real-time and order of execution is explicit, whereas in Nyquist,
non-real-time modes. evaluation order is deduced from data dependencies.

Also, Nyquist sounds are first-class values that mayDue to space limitations, this paper will focus on the
be assigned to variables or passed as parameters.run-time representation of sound in Nyquist. I will

describe only enough of Nyquist to motivate the Figure 1 illustrates an expression and the resulting
representation issues. To get a more complete computation structure consisting of a graph of
picture, consult previous articles on the language synthesis objects. This graph is, in effect, a
design [Dannenberg 91, Dannenberg 92a] and ‘‘suspended computation,’’ that is, a structure that
performance issues [Dannenberg 92b]. The story is represents a computation waiting to happen. This
still not complete. An interesting part of the Nyquist graph is an efficient way to represent the sound.
implementation is a compiler that translates inner When actual samples are needed, the s-add

1Published as: Dannenberg, ‘‘The Implementation of Nyquist, A Sound Synthesis
Language,’’ in Proceedings of the 1993 International Computer Music Conference,
International Computer Music Association, (September 1993), pp. 168-171.

suspension is asked to deliver a block of samples. signals are special data types that can only be
This suspension recognizes that it needs blocks from accessed ‘‘now’’ at a global current time. In Cmix,
each osc suspension, so it recursively asks each of sounds can be accessed randomly only after writing
them to produce a block of samples. These are added them to sound files.
to produce a result block. The suspensions keep The need for sharing leads to a new representation
track of their state (e.g., current phase and frequency (see Figure 2) in which samples are stored in a linked
of oscillation) so that computation can be resumed list of sample blocks. Sound sample blocks are
when the next block is requested. accessed sequentially by following list pointers.

Each reader of a sound uses a sound header object to
remember the current position in the list and other
state information. In the figure, the sound is shared
by two readers, each with a sound header. One
reader is a block ahead of the other. Incremental
evaluation is still used, placing the suspension at the

(s−add (osc) (osc))

s−add
osc

osc

end of the list. When a reader needs to read beyond
Figure 1: Nyquist sound expression and the last block on the list, the suspension is asked to
resulting representation. compute a new block which is inserted between the

end of the list and the suspension. The list is
organized so that all readers see and share the sameWith this evaluation strategy, each block of samples
samples, regardless of when the samples areis typically used immediately after it is computed,
produced by the suspension or which reader readsand the space requirements are similar to those of
first.Music n. Furthermore, whenever a block is needed,

it is computed on demand, so the order of evaluation
is determined automatically. There is no need to
order unit generators by hand as in Music n. Since
the order is determined at the time of evaluation, the
computation graph may change dynamically. In
particular, when a new ‘‘note’’ is played, the graph is
expanded accordingly. This is in contrast to the static
graphs used by Max on the ISPW [Puckette 91],
where all resources must be pre-allocated.

Sound
Header

Sample
Block

Suspension

Sound
Header

... ...

Sound
Header

Sound List NodesSound
Header

3. Shared Values
Figure 2: Sound representation in Nyquist.As is often the case, things are not really so simple.

In Nyquist, sounds are values that can be assigned to
variables and reused any number of times. It would
be conceivable (and semantically correct) to simply 4. Storage Reclamation
copy a sound structure whenever it is needed in the Now a new problem arises. Since blocks are attached
same way that most languages copy integer values to a list as they are generated, what prevents lists
when they are passed as parameters or read from from exhausting the available storage? The solution
variables. Unfortunately, sounds can be large uses reference counting to move blocks from the
structures that are expensive to copy. Furthermore, if head of the list to a free list from which they can be
a sound were copied, each copy would eventually be allocated for reuse.
called upon to perform identical computations to

Reference counts record the number of outstandingdeliver identical sample streams. Clearly, we need a
references (pointers) to list nodes and sample blocks.way to share sounds that eliminates redundant
When the count goes to zero, the node or samplecomputation.
block is freed. Reference counting is used so that

Nyquist allows great flexibility in dealing with blocks are freed as early as possible. In Figure 2, the
sounds. For example, it is possible to compute the dotted lines illustrate the previous head of the sound
maximum value of a sound or to reverse the sound, list, which was freed when no more sound headers
both of which require a full representation of the referenced it.
sound. What happens if a maximum value
suspension asks a sound to compute and return all of

5. Additionits blocks, and then an addition begins asking for
Nyquist can add sounds with different start times, soblocks (starting with the first)? If the sound samples
signal addition must be efficient in the frequent caseare to be shared, it is necessary to save sample blocks
where one signal is zero. Figure 3 illustrates a casefor as long as there are potential readers. Note that
where two sounds at widely spaced times must bethis problem does not occur in Music n because

2

added. When sound operands start at different times, if the scale factor is 1.0 so that a penalty is
paid only for non-unity scale factors.the suspension can either ‘‘coerce’’ one operand into

supplying leading zeros to align the sounds, or the 3. A scaling function can be applied to operands
misalignment can be handled as a special case. with non-unity scale factors, creating a new

header, sound list, and suspension.

4. The scale factor can be commuted to the
result, e.g., the multiply operator returns a
sound whose scale factor is the product of the
scale factors of the operand sounds.

5. The scale factor can be factored into other

(s−add (at 5 (osc))
 (at 10 (osc)))

time operations, for example, pre-scaling filter
coefficients, to avoid any per-sample cost.Figure 3: Sounds may have leading zeros,

trailing zeros, and internal gaps. The Nyquist compiler chooses one of methods 5, 4,
and 3, in that order of preference.

Addition is optimized to handle the case of Figure 3
with maximum efficiency. The addition suspension 7. Signal Termination
is implemented as a finite-state machine, where the Although lazy evaluation allows Nyquist sounds to
state indicates which operands are non-zero, and be infinite, efficiency concerns dictate that sound
transitions occur at the start and stop times of the computation should come to an end if possible. Most
operands. When one operand is zero, the sound signal generators in Nyquist produce a signal only
block from the other operand can simply be linked over some time interval, and Nyquist semantics say
into the sound list representing the sum. No samples that the sound is zero outside of this interval. A
are added or even copied! signal that goes to zero is represented by a list node

that points to itself (see Figure 4), creating a virtuallyMultiplication can use a similar optimization: if one
infinite list of zero sound blocks. When a suspensionoperand block is all zero (tested by a pointer
detects that its future output will be zero, it links thecomparison), the zero block can be linked into the
tail of its sound list to the special terminal list node.result with no multiplication or zero-fill required.
The suspension then deletes itself. Other suspensions

Some of these optimizations require block alignment. can check for the terminal list node to discover when
List nodes have a length field, allowing suspensions their operands have gone to zero.
to generate partially filled blocks. Since blocks can
vary in size and sample rate, suspensions are written
to compute samples up to the next operand block
boundary, fetch a new block, and resume until an
output block is filled.

6. Efficient Transformations
Nyquist allows various transformations on sounds,

Sound
Header

Sample
Block

Sound
Header

Sample
Block

Zeros

such as shifting in time, scaling, and stretching.
Figure 4: Representation for soundThese need to be efficient since they are common
termination. Two sounds are shown, eachoperations. The sound headers mentioned earlier
with one more block to read beforecontain transformation information: to scale a sound,
termination.the header is copied and the copy’s scale-factor field

2is modified .

A drawback of storing transformations in the header
8. Logical Stop Time and Sequencesis that all operators must apply the transformations to
Another feature of Nyquist is that sounds havethe raw samples. We have already seen how time-
intrinsic ending times called the logical stop timeshifted signals are handled. In the case of scale
(LST). A seq operator allows sounds to be addedfactors, there are several approaches:
together, aligning the start time of one sound with the1. The operator object can always multiply each
LST of the previous sound. The LST may be earliersample by the scale factor, costing one
or later than the termination time. For example, themultiply per reader.
LST may correspond to a note release time, after

2. The operator object can use special-case code which the note may decay until the termination time.

In the example, (seq (osc) (osc)), the start
time of the second (osc) expression depends upon2The copy is necessary because the sound might be shared.
the LST of the first (osc). We reserve a flag inRemember that sounds are immutable values, so all operators and

transformations generate new sounds rather than modify old ones.
3

each list node to mark the logical stop location. operand samples (linearly) when rate conversion is
When the flag is set, it indicates the LST is the time required. Originally, it was planned to fold
of the first sample of the block pointed to by the list interpolation into the inner loop, but it was

3node . Since block lengths are variable, the LST is discovered that this does not result in substantial
accurate to the nearest sample. savings, so sample interpolation is performed by a

separate suspension when needed.Evaluation of each item in a sequence must be
deferred until the LST of the previous item. This is Multichannel signals are represented by Lisp arrays
accomplished by capturing the Lisp environment where each element of the array is a single channel
(including local variable bindings) in a closure and sound. Nyquist operators are generalized in the
saving the closure in a special seq suspension. The expected way. For example, when a stereo signal is
closure is evaluated when the LST is reached. At this enveloped, the left and right channels are each
point, the seq suspension is converted to an addition multiplied by the envelope signal, yielding a stereo
suspension, and the signals are added. signal. If the envelope is also stereo, then the

corresponding channels are multiplied.Since seq suspensions are converted to additions,
there is the danger that a long sequence will
degenerate to a deeply nested structure of additions. 10. Discussion
The addition suspension is optimized to link its What started out as a fairly simple idea (linked sound
output list to its operand list when only one operand blocks with sharing and lazy evaluation) has become
remains. (See Figure 5.) In effect, this simplifies quite complex. The complexity is a direct result of
computations of the form ‘‘0 + x’’ to ‘‘x’’ by supporting a set of powerful language features. For
eliminating one addition. This is only possible, example, the linked list of blocks occurs because
however, when the operand’s scale factor is one, and Nyquist sound values must be easy to copy and share.
the sample rate matches that of the sum.

The order of invoking suspensions is dynamically
determined because sound graphs in Nyquist are
dynamic. However, it should be possible for a
compiler to find static schedules for subgraphs; e.g.,
the patch for a single note. Static graphs allow other
optimizations that might not be possible with
Nyquist.

An interesting feature of Nyquist is the seq operator,
which instantiates a new signal computation when
another reaches its logical stop time. This can take
place on any sample boundary, and the location can
be computed at the signal processing level. This is in
contrast to most systems where the stop time (logical
or otherwise) is considered control information to be
passed ‘‘down’’ to the signal processing objects
rather than passed ‘‘up’’ from signals to the control
level.

Nyquist, with its support for multiple sample rates
and dynamic computation ordering, has a very
distributed style of control. Compare this to Music n,
where there is a global sample rate and global block

Sound
Header

Sample
Block s−add

Sound
Header

zero

Sample
Block susp.

Sound
Header

Sample
Block Sample

Block susp.

BEFORE

AFTER
... ...

... ...
size, and all unit generators are kept in lock step. For
large blocks, overhead is small, but there could be aFigure 5: Optimization of add when one

operand terminates and one remains. problem in real-time systems with smaller block
sizes. We need experience with a multi-sample-rate
language with sample-accurate controls (like
Nyquist) to judge which of these features justify the9. Sample Rate and Multichannel Signals
overhead and complexity. To this end, Nyquist is

Sample rate is specified in the header of each sound,
available from the author.

and Nyquist allows arbitrarily mixed sample rates. It
is the responsibility of the suspension to interpolate

References
[Dannenberg 91] Dannenberg, R. B., C. L. Fraley, and
P. Velikonja. Fugue: A Functional Language for Sound

3The LST can be changed by a transformation, indicated by an Synthesis. Computer 24(7):36-42, July, 1991.
LST field in each reader. If specified, this overrides the flag in the
list node.

4

[Dannenberg 92a] Dannenberg, R. B., C. L. Fraley, and
P. Velikonja. A Functional Language for Sound Synthesis
with Behavioral Abstraction and Lazy Evaluation.
Readings in Computer-Generated Music. In Denis Baggi,
IEEE Computer Society Press, Los Alamitos, CA, 1992.

[Dannenberg 92b] Dannenberg, R. B. Real-Time Software
Synthesis on Superscalar Architectures. In Proceedings of
the 1992 ICMC, pages 174-177. International Computer
Music Association, San Francisco, 1992.

[Pope 93] Pope, S. T. Machine Tongues XV:
Three Packages for Software Sound Synthesis. Computer
Music Journal 17(2):23-54, Summer, 1993.

[Puckette 91] Puckette, M. Combining Event and
Signal Processing in the MAX Graphical Programming
Environment. Computer Music Journal 15(3):68-77, Fall,
1991.

5

