
1Real-Time Software Synthesis on Superscalar Architectures

Roger B. Dannenberg and Clifford W. Mercer
Carnegie Mellon University School of Computer Science

Pittsburgh, PA 15213 USA
Email: dannenberg@cs.cmu.edu, mercer@cs.cmu.edu

ABSTRACT

Advances in processor technology will make it possible to use general-purpose personal computers as real-time
signal processors. This will enable highly-integrated ‘‘all-software’’ systems for music processing. To this end,
the performance of a present generation superscalar processor running synthesis software is measured and
analyzed. A real-time reimplementation of Fugue, now called Nyquist, takes advantage of the superscalar
synthesis approach, integrating symbolic and signal processing. Performance of Nyquist is compared to Csound.

issue of multiple instructions per cycle, and multiple1. Introduction
pipelined arithmetic units. Instruction scheduling in theSuperscalar architectures are expected to compute 500 to
compiler assures that many floating point operations are1000 million instructions per second (MIPS) by the end of
computed in parallel. By the year 2000, we expectthe decade. Software synthesis on superscalars will offer
personal computers will deliver performance we nowgreater speed, flexibility, simplicity, and integration than
associate with super-computers. This means that real-timetoday’s systems based on DSP chips. We are developing a
signal processing applications may no longer requirereal-time implementation of the composition and synthesis
special-purpose hardware or digital signal processors.language Nyquist for these future processors.
These applications can be supported in a single, integrated,

Nyquist embraces a very high-level synthesis model,
high-performance programming environment.

where entire sounds are values which may be passed as
There is, however, some debate over the viability offunction parameters and returned as results. Nyquist is
superscalars for signal processing. First, these systemsattractive to composers, but difficult to implement. For
rely on a memory hierarchy with caching at various levelsexample, infinite duration sounds offer flexibility to
to provide instructions and data to the CPU. This is goodcomposers, but require special implementation support.
in that it provides the programmer with a very large flatWhen multiplied by a finite envelope, an infinite sound
address space, but caching makes performance hard tocomputation is terminated and garbage collected to avoid
predict relative to DSPs. Second, an integrated systemwasteful computation. To allow infinite signals and to run
requires real-time support from the operating system, yetin real time, signal computation must be incremental.
most operating systems provide weak support (if any) for

In this paper, we describe the advantages of the superscalar
real-time applications. Third, cost will be an important

architecture and indicate its future potential. We outline
factor until personal computers are faster than low-cost

the requirements that this architecture places on the
plug-in DSP systems.

Nyquist implementation and how these requirements are
Nevertheless, we believe that it is only a matter of timemet. And finally, we compare the performance of Nyquist
before DSPs for computer music are obsolete. The i860-with the performance of Csound and a DSP chip on
based IRCAM IMW [Lindemann 91] is a major milestoneidentical tasks.
in this progression, but even the IMW has the flavor of an
add-on DSP system. It has multiple processors, a2. Superscalar Architecture and Nyquist specialized operating system, and is hosted by a non-real-

Superscalar processors represent the state of the art in time NeXT computer. Vercoe’s Csound [Vercoe
computer architecture. Current examples include the Intel 90] running on a DEC workstation is a better illustration of
i860 and IBM RS/6000 processors. These machines the ‘‘all software’’ approach we believe will soon be the
feature single-cycle execution of common instructions, the

1Published as: Dannenberg and Mercer, ‘‘Real-Time Software Synthesis on Superscalar
Architectures,’’ in Proceedings of the 1992 International Computer Music Conference,
International Computer Music Association, (October 1992), pp. 174-177.

norm. Even without the benefits of a superscalar processor
and a real-time operating system, Csound illustrates
impressive performance. Our work in this area began in
1983 with the design of Arctic [Dannenberg 86], a very
high-level language for real-time control. Arctic showed
how a single language could integrate note-level event
processing, control-signal generation, and audio synthesis.

The language Nyquist is based on Fugue [Dannenberg
91a] which in turn is based on Arctic. Nyquist offers a
high-level and general treatment of scores, synthesis
algorithms, and temporal behavior. Superscalar processors
seem ideal to handle the mixture of symbolic and signal
processing required by Nyquist. We set out to answer the
following questions: What characteristics of superscalars
are important for music synthesis? What new techniques
are necessary to execute Nyquist in real time? What is the
overhead or benefit of the advanced features of Nyquist?

Benchmark. For our study, we used a 30MHz IBM
RS/6000 Model 530 running AIX; all code was written in
C and compiled with optimization. Our benchmark is the
generation of a sequence of 40 tones, each of which has 12
partials of constant frequency and piece-wise linear
amplitude envelopes. The tones are sampled at 44100Hz

0

5

10

15

20

25

30

35

40

45

50

R
u

n
 T

im
e

(s
ec

o
n

d
s)

1 10 100 1000 10000

Time Resolution (samples)

Csound, Control Rate
Csound, Audio Rate
Nyquist, Audio Rate

and the total sound duration is 14.4 seconds. The sound
samples are discarded as they are computed to avoid I/O, Figure 1: Performance of Nyquist and Csound as a

function of time resolution (or Csound block size).and we measured total real computation time. Our study
Csound rounds envelope breakpoints (both audioused both Csound and Nyquist.
and control rate) to the nearest block boundary.
Nyquist uses variable sized blocks, so timing

3. Optimizing for Superscalars resolution is always 1 sample. See Section 5.
We first consider several characteristics of superscalars
that might bear on implementation strategies.

control rate signal B, where B must be linearly interpolated
Are blocks important? Many DSP systems assemble unit (see Figure 2). The interpolation could be done a block at
generators into a monolithic loop, each iteration of which a time before the multiplication, or the interpolation could
generates one sample. In contrast, most software systems be merged into the inner loop of the multiplication. On
amortize the overhead of loading parameters into registers machines with slow floating point operations, we expected
and caching instructions by computing samples in blocks. and observed little difference between the two examples.
Not surprisingly, block computations give dramatic With a superscalar, we expected the integrated
speedup: Csound (which has the lower overhead per interpolation to run faster because there is less loop
block) improves by a factor of about 7 with large blocks overhead and fewer memory loads and stores.

2(see Figure 1). Surprisingly, there is only 6% speedup in the integrated
case. However, we discovered a compiler-generatedIs caching critical to performance? If so, we would
procedure call (floating point to integer conversion)expect small block sizes (relative to the cache) to be
required for interpolation. The moral is: Peak performanceimportant. Again using Csound, we do not see any
is very hard to achieve.significant speedup with small block sizes. This indicates

that any data cache improvement is offset by instruction In another experiment, we wrote two versions of a Csound
cache misses and parameter setup overhead. orchestra such that one version performed additional loads

from memory. We determined that a single load costsDoes arithmetic dominate computation time? Consider
220ns, which accounts for about 23% of the total synthesisthe problem of multiplying an audio-rate signal A by a
time. On the other hand, we split the Nyquist amplitude-
modulated sinusoid generator into a sinusoid generator
(without AM) followed by a multiply unit generator

2This is a bit misleading, however, because we did not rewrite Csound (implying an additional store and another loop iteration)
for the special case of blocksize = 1.

2

not be produced and stored in memory until they are
needed. This is in contrast to the Fugue implementation
which allocated large buffers to hold entire signals as they
were being computed. In short, the incremental evaluation
implies a block-based memory management approach for
computing signals.

Implementation. Space limitations allow only a brief
description of the Nyquist implementation. Figure 3

A

B Interpolate

A

B

A =

B =

illustrates that a sound consists of a list of blocks of
Separate Integrated Time samples. The list terminates at a suspension object, which

Interpolation Interpolation Ratio can be requested to extend the list, computing a new block.
68000 720 710 1.01 Suspensions typically store pointers to other sounds as
68040 5.6 4.9 1.14 shown. Sounds are accessed via headers which store the
Sparc 2.12 1.81 1.17

sample rate, scale factor, and various other parameters. ARS/6K 1.68 1.59 1.06
sound can be shared, e.g. in Figure 3, variables A and B

Figure 2: When multiplying signals with different reference the same sound via separate headers. Sounds
sample rates, the interpolation can be performed can only be accessed sequentially; here, B has read more
before the multiplication (left) or as part of a more samples than A. Sound list nodes and sample blocks are
complex multiplication operation (right). Times for reference counted. When the head of a list has no more
68000 (software floating point, 8MHz), Sun Sparc

references from sound headers, it is freed for reuse. SoundIPX (RISC with floating point, 40MHz), NeXT
headers are garbage collected as part of the normal Lisp68040 (CISC, 25MHz), and IBM RS/6000
memory management system.(superscalar, 30MHz) processors are shown in

microseconds per output sample.

and the cost was only 170ns, or 16%. Thus, merging unit
generators to eliminate loads, stores, and other overhead
has the potential to provide at least moderate speedup.
Because of parallel and pipelined execution, however, the
effect of restructuring a computation is hard to predict.

4. Real-Time Nyquist
We now turn to new implementation techniques.
Originally, Fugue computed signals by allocating a single
block of memory and computing samples for the entire
duration of each signal. Real-time computation, however,

A B

Sound
Header

Sound
Header

Sample
Block

Sample
Block

Suspension

Sound
Header

... ...

Sound
Header

Sound List Nodes

dictates that signals be computed incrementally instead of
in toto. The new implementation (Nyquist) computes only Figure 3: Run-time data structures for Nyquist.
the signals and combining operations that are necessary to
produce the sound for the next interval in time. This

The most interesting operators in Nyquist are seq andamounts to a restructuring of the schedule of sound
s-add. The s-add operator adds two sounds, and iscomputation. If we consider the whole composition as a
optimized to deal with the case where the sounds do nottree, we now schedule the computation of sounds in a
start and stop concurrently.breadth-first manner instead of scheduling the computation
Consider the expression (s-add A B), where A startsin depth-first order. The requirement for real-time
before B. By definition, sounds are zero before their startsynthesis is that the time to compute each interval of sound
times, but it would be inefficient to add A to zero until Bis less than the duration of the interval itself.
starts. Even copying samples from A to the result could beThis rescheduling of the computation of sounds has other
inefficient. The s-add operator solves the problem byimplications in addition to the incremental availability of
copying only pointers to sample blocks. This is the reasonthe final output sound. The memory usage of Nyquist is
sound list nodes are separate from sample blocks: Asmooth instead of bursty. Since Nyquist computes the
sample block can be referenced from many sound lists.signals incrementally, only the next interval of sound need
The s-add operator allows us to efficiently add abe extant in memory. The memory that was used earlier in
sequence of thousands of notes, but this requires thousandsthe signal may be reclaimed, and the future samples need

3

of sounds to be created at the beginning. An alternative is 6. Conclusions
to use seq, which defers creation of the second sound Superscalar processors show great promise for music audio
until the first one stops. The subsequent sound is processing. We found that a RS/6000 programmed in C
represented as a Lisp expression (usually a closure), which performs floating point DSP about a third as fast as an
is not evaluated until the sound is needed. This provides a M56001 chip running hand-microcoded integer DSP.
representation that is both time- and space-efficient. Superscalar performance will increase rapidly and our

code will be easy to port.

5. Performance Evaluation Given the high degree of pipelining, a cache, and very fast
Nyquist is surprisingly efficient. With a block size of floating point on the RS/6000, we expected to see the sort
1024, Nyquist spends about 92% of its time in inner loops. of performance unpredictability that drives people to
Optimization outside of the loops should be possible, program DSPs. The effects we observed are surprisingly
allowing shorter blocks for low-latency real-time small.
applications. Since the inner loops are identical to those of Nyquist is a high-level language that illustrates the
Csound, Nyquist has nearly the performance of Csound as advantages of integrated symbolic and signal processing
long as block sizes are large. (Csound is about 20% made possible by superscalar processors. We are quite
faster.) pleased to see that Nyquist can offer greater flexibility and
However, large block sizes in Csound produce audible precision than conventional sound synthesis systems
distortion when control rate signals are used. Even when without any significant loss in performance.
audio rate signals are used throughout, notes must always In the future, we plan to extend Nyquist’s set of unit
start on block boundaries. Thus, with a block size of 100, generators to make it more generally useful as a non-real-
Csound at 44.1KHz quantizes times to about 2ms. time system. We need to study interpolation strategies for
Nyquist, on the other hand, uses variable length blocks and efficient mixed-sample-rate computations. For real-time
quantizes times to the audio sample rate, i.e. about 23us, applications, we need to address the garbage collection
corresponding to a Csound block size of 1. If quantization issue, perhaps by replacing our Lisp interpreter. We also
is to be avoided, Nyquist is about 6 times faster than plan to explore the resource-instance model [Dannenberg
Csound. 91b] in this context.
Instead of looking at extremes, let us consider typical
parameters. A typical use of Csound might be to run with 7. Acknowledgments
a control rate that is one tenth (0.1) of the audio rate in

This work was supported in part by MicroMed Systems as
order to limit distortion. Nyquist can perform the same

part of NSF grant SBIR ISI 9000272 and by an NSF
benchmark computation entirely at the audio rate and still

Graduate Fellowship. The authors would also like to thank3be 20% faster .
Barry Vercoe for making Csound available. We learned

Comparison with DSP’s is difficult due to the difference in from his excellent and efficient code, and it also turned out
program structure and functionality, but after adjusting for to be a very useful tool for testing various performance
clock rate differences, the hand-microcoded Kyma system hypotheses. The authors also wish to thank Carla Scaletti
[Scaletti 91] and NeXT sound kit [Jaffe 89] run our and Julius Smith for M56001 performance measurements,
particular benchmark on a single M56001 at most 3 times Dean Rubine for many insights, Joe Newcomer for helping
faster than Nyquist running on an RS/6000. It would be with Nyquist implementation, and Peter Velikonja for
interesting to determine how much of this difference is due Csound consultation.
to machine architecture, to floating-point, to hand
optimization, and to the structure of Nyquist. References

[Dannenberg 86] Dannenberg, R. B., P. McAvinney, and
D. Rubine. Arctic: A Functional Language for Real-Time
Systems. Computer Music Journal 10(4):67-78, Winter, 1986.

[Dannenberg 91a] Dannenberg, R. B., C. L. Fraley, and
P. Velikonja. Fugue: A Functional Language for Sound
Synthesis. Computer 24(7):36-42, July, 1991.

[Dannenberg 91b] Dannenberg, R. B., D. Rubine,
3One might argue that the benchmark penalizes Csound by having only T. Neuendorffer. The Resource-Instance Model of Music

a few simple control-rate envelopes: with enough control rate signals, Representation. In B. Alphonse and B. Pennycook (editor),
Csound would probably win out, but if Nyquist is also allowed to ICMC Montreal 1991 Proceedings, pages 428-432. International
compute at control rates (a feature of Nyquist), Nyquist’s advantage will

Computer Music Association, San Francisco, 1991.actually widen because even Nyquist’s control-rate signals are processed
in blocks.

4

[Jaffe 89] Jaffe, D., and L. Boynton. An Overview of the
Sound and Music Kit for the NeXT Computer. Computer Music
Journal 13(2):48-55, 1989.

[Lindemann 91] Lindemann, E., F. Dechelle, B. Smith, and
M. Starkier. The Architecture of the IRCAM Musical
Workstation. Computer Music Journal 15(3):41-49, Fall, 1991.

[Scaletti 91] Scaletti, C., and K. Hebel. An Object-based
Representation for Digital Audio Signals. Representations of
Musical Signals. In G. De Poli, A. Piccialli, and C. Roads, MIT
Press, Cambridge, Mass., 1991, pages 371-389, Chapter 11.

[Vercoe 90] Vercoe, B. and D. Ellis. Real-Time
CSOUND: Software Synthesis with Sensing and Control. In
S. Arnold and G. Hair (editor), ICMC Glasgow 1990
Proceedings, pages 209-211. International Computer Music
Association, 1990.

5

