Tactus: Toolkit-Level Support for Synchronized
Interactive Multimedia

Roger B. Dannenberg, Tom Neuendorffer, Joseph M. Newcomer, Dean Rubine

Information Technology Center, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213 USA

Abstract. Tactus addresses problems of synchronizing and controlling
various interactive continuous-time media. The Tactus system consists of
two main parts. The first is a server that synchronizes the presentation of
multiple media, including audio, video, graphics, and MID], at a work-
station. The second is a set of extensions to a graphical user interface
toolkit to help compute and/or control temporal streams of information
and deliver them to the Tactus Server. Temporal toolkit objects schedule
computation events that generate media. Computation is scheduled in
advance of real time to overcome system latency, and timestamps are
used to allow accurate synchronization by the server in spite of compu-
tation and transmission delays. Tactus supports precomputing branches
of media streams to minimize latency in interactive applications.

1 Introduction

Recently, many proposals have emerged for extending graphics systems to sup-
port multimedia applications with sound, animation, and video (17, 18, 16, 7].
Other research has been directed toward real-time transmission of multimedia
data over networks [13, 2] and standards for the representation and exchange
of multimedia data [14]. New capabilities for real-time interactive multimedia
interfaces [5] create new demands upon application programmers. In particular,
programmers must manage concurrent processes that output continuous media.
Timing, synchronization, and concurrency are among the new implementation
problems.

Traditionally, object-oriented graphical interface toolkits have presented a
high-level programming interface to the application programmer, hiding many
details of underlying graphics systems such as X or Display Postscript. However,
timing is usually overlooked in these systems. Programmers usually add anima-
tion effects by ad-hoc extensions, and synchronization at the level of milliseconds
needed for lip-sync, smooth animation, and sound effects is not generally possi-
ble.

We have extended an existing toolkit with new objects, abstractions, and
programming techniques for interactive multimedia. We also implemented a syn-
chronization server that supports our toolkit extensions. Intuitively, our synchro-
nization server does for time what a graphics server does for (image) space. In
our terminology, the application program is the client, which calls upon the

In Proceedings from: Third International Workshop on
Network and Operating System Support for Digital Audio

and Video, pages 264-275. 1EEE Computer and Communication
Societies, San.Diego, November 12-13, 1992.



server to synchronize and present data. We call the combined toolkit and server
the Tactus System.

The Tactus System has a number of novel and interesting features. It works
over networks with unpredictable latency, and it can maintain synchronization
even when data underflows occur. The techniques are largely toolkit-independent,
and the Tactus Server is entirely toolkit independent. Data is computed ahead
of real time to overcome latency problems, but the initial latency of a presenta-
tion is due only to computation and bandwidth limitations. Tactus is organized
so that pre-existing graphical objects acquire real-time synchronizing behavior
without changes to the existing code. The Tactus System also offers a new mech-
anism called cuts, whereby precomputed media can be selected with very low

latency.

1.1 Assumptions

Before describing Tactus, we will present some assumptions and ideas upon
which it is based. First, we are interested in distributed systems, and thus we
assume that there will be significant transmission delays between servers and
clients. Second, we assume that multimedia output will require the merging of
multiple data streams; we want more than just “canned” video in a window.
By data stream, we mean any set of timed updates to an output device. Data
streams include video, audio, animation, text, images, and MIDI.

The assumption that delays will be present imposes limitations on the level
of interaction we can expect. Network media servers may take seconds to begin
presenting video even though the presentation, once started, is continuous. We
intend to support applications where media start-up delays and latency due to
computation of 10 to 1000 ms are tolerable. This includes such things as multi-
media documents, presentations, video mail, and visualizations. It also includes
more interactive systems such as hypermedia, browsers, and instructional sys-
tems where user actions determine what to view next. Although we rule out
continuous feedback systems such as video games, teleconferencing, and arti-
ficial reality, we want to support rapidly altering the presentation at discrete

choice points.

1.2 Principles

To deal with transmission and computation delays, it is necessary to start send-
ing a data stream before it is required at the presentation site. Because of vari-
ance in computation, access, and transmission delays, it is also necessary to have
a certain amount of buffering in the Tactus Server at the presentation site. When
multiple streams are buffered, it is necessary to synchronize their output. With
Tactus (see Figure 1), all data streams are timestamped, either explicitly or im-
plicitly, so that Tactus can determine when each component of a stream should
be forwarded to a device for presentation. We assume a distributed time service
that can provide client software with an accurate absolute time, with very little



skew between machines {12], although this assumption is not critical for most
applications.

®
Message with
Timestamp Tactus
Server
i Audio/
Client Video

=]

MIDI

Fig. 1. The Tactus System. Clients send timestamped data (heavy lines) to the server
ahead of real time. Data is buffered and then delivered to various presentations devices.
Some presentation devices (e.g. MIDI as shown here) may accept data early and provide
further buffering and more accurate timing than can be provided by the Tactus Server.
The clock on the left shows logical time as seen by the client, while the clock on the
right shows real time as seen by the Tactus Server.

Multiple presentations may be buffered at the Tactus Server. At any time,
one is being presented while the others are potential responses to user choices.
This avoids the latency of transmitting a presentation over the network after
the user makes a choice. Transition points are marked so that smooth cuts are
possible (see Section 4).

Input is handled in mirror image to output. There is latency between real
input at the device level and the arrival of the input data at the application
process, so all input must be timestamped. Input events can then be related
back to the output that was taking place at the time of the input. It is up to the
application to deal with the delay between input and output, for example, by
“rewinding” to an indicated stop point or reflecting the input in future output.

The task of synchronizing output in a distributed environment is simplified
by pre-computing or pre-transmitting data streams and timestamping them.
Without additional support, however, this would complicate the work of the
application, which then must compute data streams in advance of real time.
One way to reduce this problem is to schedule application activity by a clock
that is ahead of real time. A good analogy is that if you set your watch ahead
by 5 minutes, you are more likely to show up on time for meetings.

In summary, the three most important principles of Tactus are (1) compute
data streams in advance of real (presentation) time, (2) use a server at the
presentation site to buffer and synchronize data streams, and (3) buffer responses



to user choices to minimize response times. Buffering data at the presentation
site can greatly increase the timing accuracy with which data is presented.

1.3 Previous Work

Few of these principles are original, but their integration and application are
new. Tactus was inspired by David Anderson and Ron Kuivila’s work on event
buffering for computer music systems [3, 4]. This work is in turn related to
discrete-event simulation. Later, Anderson applied these ideas to distributed
multimedia [1], but not to interface toolkits. Active objects have long been used
for animation [11] and music [6] systems, but have only recently gained atten-
tion in multimedia circles [10]. To our knowledge, we are the first to extend an
object-oriented application toolkit with support for managing latency through
precomputation and event buffering. CD-ROM based video systems have used
buffering of images at choice points to allow for seek time. Qur work focuses
more on the implications of all these techniques for application toolkits.
Recently, many commercial multimedia systems have been introduced, in-
cluding Apple’s Quicktime [17], Microsoft’s MPC [18], and Dec’s XMedia (7].
These systems emphasize storage, playback, and scalability. HyTime [14] pro-
vides a standard representation for hypermedia but no implementation is speci-
fied. These systems could benefit from the synchronization and latency manage-
ment techniques we propose, and our work suggests how a graphical interface
toolkit might be extended to take advantage of commercial muitimedia software.

2 The Tactus Toolkit Extensions

The Tactus Server could be used without the Tactus Toolkit, but this would
require the user to compute data in advance of real time, implement various pro-
tocols (described in Section 3), and interleave computation for various streams.
The toolkit simplifies these programming tasks. Our toolkit extensions include
clock objects for scheduling and dispatching messages, active objects that receive
wake-up messages and compute media, and stream objects that manage Tactus
Server connections and timestamping (see Figure 2).

2.1 Active Objects

Active objects form the base class for all objects that handle real-time events
and manage continuous time media in the Tactus extensions to ATK [15]. Each
active object uses a clock object (set via the UseClock method) to tell time
and to request wake-up calls. The RequestKick method schedules the active
object to be awakened at some future time (according to its clock), and the
Kick method is called by the system at the requested time.

Active objects are intended to take the place of light-weight processes, and
often perform tasks over extended periods of time. This is accomplished by
having each execution of the Kick method request a future Kick.



Connection to
Tactus Server

ig. 2. A Clock Tree. Objects, including clocks, request a wake-up message from their
arent in the clock tree. RealTime is at the root of the tree and interfaces with the op-
rating system timing facilities. Streamis a subclass of Clock and manages connections
> the Tactus Server. The leaves of the tree are subclasses of Active which produce
nd control multimedia data. Kick messages flow in the direction of the arrows, while
equestKick messages are sent in the opposite direction.

VidActive

Active Objects

.2 Clock Objects

locks are a subclass of Active. Each clock object keeps track of all the active
bjects (users) that have attached themselves via the UseClock method. Since
locks are active objects, they too can be attached to other clocks. Clocks are
seful not only for their wake-up service but also because they manage mappings
-om one time system to another. Mappings are linear transformations, meaning
hat a clock can shift and stretch time as seen by its users. When a change in
he mapping of time occurs, users of the clock are notified (whether or not they
re waiting for a Kick). We call the time seen by users of Clocks logical time,
s opposed to the real time. Logical time allows active objects to compute in
natural” time coordinates. Meanwhile, clocks can be adjusted to achieve “fast
srward”, “rewind”, “pause’, and “continue” effects.

.3 The RealTime Object

Jlocks form a “clock tree” whose leaves are active objects, whose internal nodes
re clocks, and whose root is a special subclass of clock called RealTime. A
ealTime object serves as the true source of time for the entire clock tree. It
hould be noted that the clock tree is entirely independent of the graphical view
ree typically found in graphical user interfaces [8].

.4 Stream Objects

tream objects are a subclass of Clock. In addition to scheduling and kicking
sers, stream objects communicate with the Tactus Server and establish times-
amps for Tactus messages. Stream objects also schedule their children ahead



Connection to
Tactus Server

Fig.2. A Clock Tree. Objects, including clocks, request a wake-up message from their
parent in the clock tree. RealTime is at the root of the tree and interfaces with the op-
erating system timing facilities. Streamis a subclass of Clock and manages connections
to the Tactus Server. The leaves of the tree are subclasses of Active which produce
and control multimedia data. Kick messages flow in the direction of the arrows, while
RequestKick messages are sent in the opposite direction.

VidActive

Active Objects

2.2 Clock Objects

Clocks are a subclass of Active. Each clock object keeps track of all the active
objects (users) that have attached themselves via the UseClock method. Since
clocks are active objects, they too can be attached to other clocks. Clocks are
useful not only for their wake-up service but also because they manage mappings
from one time system to another. Mappings are linear transformations, meaning
that a clock can shift and stretch time as seen by its users. When a change in
the mapping of time occurs, users of the clock are notified (whether or not they
are waiting for a Kick). We call the time seen by users of Clocks logical time,
as opposed to the real time. Logical time allows active objects to compute in
“natural” time coordinates. Meanwhile, clocks can be adjusted to achieve “fast
forward”, “rewind”, “pause”, and “continue” effects.

2.3 The RealTime Object

Clocks form a “clock tree” whose leaves are active objects, whose internal nodes
are clocks, and whose root is a special subclass of clock called RealTime. A
RealTime object serves as the true source of time for the entire clock tree. It
should be noted that the clock tree is entirely independent of the graphical view
tree typically found in graphical user interfaces [8].

2,4 Stream Objects

Stream objects are a subclass of Clock. In addition to scheduling and kicking
users, stream objects communicate with the Tactus Server and establish times-
tamps for Tactus messages. Stream objects also schedule their children ahead



of real time by the worst-case system delay called Latency, a number which is
presently determined empirically.

Recall that the Tactus Server expects all messages to have timestamps which
serve as the basis for synchronization of multiple media. It might seem logical to
use the kick times of active objects, but because kick times are the composition
of perhaps several mappings at different levels for the clock tree, the active object
kick time may have no simple relationship to real time or to the kick times of
other active objects.

Rather than use active object kick times, timestamps are based on the ideal-
ized real time of the kick, that is, the requested kick time mapped to real time.
Before a kick, the clock tree is inactive. When the kick time arrives, a Kick
message is propagated from the RealTime object through the tree to an active
object at a leaf of the tree. On the path from root to leaf, a stream object is
kicked. The stream sets a globally accessible timestamp and stream identifier
before propagating the Kick message. If the active object performs an output
action, the output function called accesses the timestamp and stream identifier
in order to compose a message for the Tactus Server. In this way, timestamps
are implicitly added to client output.

Together, these classes and their specializations serve to insulate the appli-
cation programmer from the detailed protocols necessary to send streams of
data to the Tactus Server. The extensions do such a fine job of hiding details
that existing programs can use Tactus without modification. (Tactus libraries
are linked dynamically.) Although this provides no benefits to existing appli-
cations, it means that eristing application components can be given real-time
synchronization capabilities. For example, objects that formerly displayed text
or images can now be called upon to deliver output synchronously with other
media.

3 The Tactus System

As described in the introduction, the Tactus System consists of a Tactus Server
as well as a set of extensions to an object oriented toolkit. In this section, we
will describe how the two work together.

3.1 Steady State Media Delivery

Steady-state on the client side consists of active objects waiting for wake-up
messages. At each wake-up, an object computes data such as a packet of audio
or a frame of animation and sends it to the Tactus Server. The wake-up message
is scheduled by a stream object that forces the computation to happen ahead of
real-time. When no more computation is pending, the stream object computes
when the next wake-up will occur and sends a null message to the Tactus Server
with that timestamp. This tells the Server not to expect more messages until
that time.



In a slight variation of the above, Tactus may choose to deliver the data to
the presentation device slightly ahead of time, relying on the hardware or device
driver to delay the presentation until a given timestamp. For example, our MIDI
driver maintains buffers of timestamped packets of MIDI data and outputs data
at the designated time. In contrast, X11 (our “graphics device driver”) has no
buffering or timestamping capability yet, so Tactus provides all timing control
for graphics. These differences are invisible to clients.

Time is used to regulate the flow of data from clients to Tactus, thus alleviat-
ing the need for explicit flow-control messages. The client simply produces “one
second of data per second” and sends it to Tactus. When the client is behind,
it computes as fast as possible in order to catch up. If the client falls too far
behind, the Tactus Server buffers will underfiow and a recovery mechanism must
be invoked. (See below.)

3.2 Stream Start-Up

We anticipate that the worst-case delay from client to device will be quite large
(perhaps seconds). This is too large to be acceptable for the normal stream start-
up time. Tactus clients typically will start streams with the goal of delivering
media to the user as soon as possible. Therefore, the stream object advances
logical time, causing the client to run compute-bound until it catches up. To
further facilitate rapid start-up, each device has a minimum amount of buffering
(measured in seconds) required before it can start, and the Tactus Server rather
than the client determines when to start a presentation.

3.3 Underflow

An underflow is caused by the stream buffer running out of data. More precisely,
underflow occurs when it is time to dispatch a data packet at time T, but there
is no packet containing data at a time greater than T. Since data arrives in
time order, a timestamp greater than T is desired because it indicates that all
data for time T has arrived. (It is the current policy of Tactus to halt all media
presentation at time T until all media for time T can be updated, but we believe
other policies should be supported as well [1}).

No immediate feedback to the client is necessary upon underflow (presum-
ably, the client is already compute-bound trying to catch up). When Tactus
resumes data output, it sends a message to the client indicating the amount by
which the presentation was delayed. This information can be used to control the
total delay between computation and presentation. The default behavior is for
the client to keep a constant presentation latency; if the Tactus Server stops the
presentation for 2 seconds, then the client holds off on computation for 2 seconds
as well.

Generally, this protocol takes place only at the stream level, and the clocks
and active objects beneath the stream remain oblivious to the time shifts. On
the other hand, active objects can attempt to avoid underflow by noticing or
predicting when computation falls too far behind real time. For example, our



animation object drops frames, maintaining a constant number of frames per
second, when the logical time rate (playback speed) is increased.

4 Cuts

Because of various latencies, multimedia systems are often unable to respond
to input without obvious “glitches” where, for example, the video image is lost,
digital audio pops, and graphics are partially redrawn. This usually happens
because there is a time delay between taking down one stream and starting up
another. These annoying artifacts could be hidden if the new stream could be
started before the the old one is stopped. Tactus supports this model, and a
switch from one stream to another is called a cut.

In Tactus terminology, a cut is made from a primary stream to a secondary
stream. To minimize latency, cuts are performed by the Tactus Server on behalf
of its client. The client requests a cut, but the request may or may not be
honored, depending upon whethér the secondary stream is ready to run.

There are two attributes that describe a cut (see Figure 3). The first deter-
mines whether a cut may be taken at any point in time or only at certain time
points, and the second describes whether the cut is made to the beginning of a
secondary stream or to the current time.

Cut Request Time

Fig. 3. There are four (4) types of cuts. The top two cuts are restricted to discrete
time points, whereas the lower two can take place at any time. The first and third cuts
here cut to a stream already in progress while the second and fourth types cut to the
beginning of a stream.

Cuts must be anticipated by the application. Since the application runs ahead



of the real presentation time, it will naturally come to choice points before the
user has a chance to make a choice. For example, the application will generate
graphics or video for an intersection before knowing whether the user will say
“turn left” or not. At this point, the application will create a cut object to arbi-
trate between the current (primary) stream and a new “turn left” (secondary)
stream.

Within the Tactus Server, the secondary stream will perform a normal stream
start-up. If the user requests “turn left”, the application! sends a cut message
with a timestamp to the Server. If the message arrives before the time indicated
by its timestamp, and if the secondary stream is ready to run, then Tactus
switches to the secondary stream at the designated time. A message is returned
to the application indicating success or failure. If the cut was a success, then the
objects generating the no-longer useful primary stream will be freed. Clients can
also specify an initial set of (initialization) commands to be issued when a cut
takes place.

5 An Example Application

It is now time to see how clocks, streams, active objects, and the Tactus server
work together to produce a synchronized multimedia presentation. We will de-
scribe an application we have actually built: a time-line editor for sequencing
video and animation.

5.1 The Editor

As far as this discussion is concerned, the function of the editor (see Figure 4)
is merely to produce a data structure consisting of a list of animations to run
and video segments to show. We will call this data structure the cue sheet. An
animation sequence represented by the editor consists of a file name, a starting
frame, an ending frame, and a duration. An object of class FadActive takes these
parameters and generates a sequence of display updates showing the sequence of
frames and some number of interpolated frames, depending upon the duration.
Similarly, a video segment is represented by a starting frame, an ending frame,
and a duration. An object of class VidActive generates control commands for
a laser videodisc player (an all digital video object has also been implemented)
to generate the appropriate sequence of video frames.

5.2 Active Objects and the Clock Tree

The structure of the application was shown in Figure 2. An editor creates three
active objects: FadActive for graphical animation control, VidActive for video

! User cut requests are processed by the application, not by the Tactus Server; this
requires a round-trip message to the application, but keeps the input-processing
model uniform.



