

A VIRTUAL ORCHESTRA FOR HUMAN-COMPUTER

MUSIC PERFORMANCE

 Roger B. Dannenberg

 Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

A virtual orchestra was implemented to augment a
human jazz big band with the addition of violins, violas,
and cellos. In an effort to maximize musical quality, the
orchestra uses a high-quality studio recording of each
individual part, yet adapts to the tempo of the band in
real time using a custom multi-channel PSOLA
algorithm. The tempo is tracked through a foot-tapping
interface, with additional cueing that allows for
deviation from the nominal score and recovery from
counting errors. Output is through an array of 8 high-
quality studio monitors arranged to provide the illusion
of many point sources configured as an acoustic
ensemble.

1. INTRODUCTION

Human-computer music performance (HCMP) [8] refers
to a developing practice of integrating human and
computer performers. Unlike interactive systems for
experimental art music [11] that one might typically find
at ICMC performances, or even computer
accompaniment systems [6] that rely on score following
and models of tempo adjustment to play music with
expressive timing, HCMP specifically aims to address
the performance of popular music forms such as rock,
jazz, and folk, where tempo is mostly steady, but
improvisation is prominent.

While popular music is often dismissed as simple
and uninteresting, there are many technical challenges
posed by HCMP that have not been solved (even though
interactive music systems have been around for
decades). One problem is that popular music (as we will
call it for lack of a better term) is largely improvised in
the sense that chord voicings, strumming styles, and
drum patterns, and even vocal melodies are not spelled
out completely by the score and are likely to vary from
one performance to the next. Furthermore, even the
structure in terms of introductions, repetitions, order of
sections, and endings can be altered in the middle of a
performance.

In spite of this ambiguity, musicians are expected to
conform quite closely to chordal, melodic, and stylistic
structures, requiring them to be precisely synchronized
at all times. The present work explores the problem of
synchronization both at the level of beats and that of
high-level musical structure in HCMP.

2. THE VIRTUAL ORCHESTRA CONCEPT

2.1. Requirements

We set out to create a string orchestra that could play
along with a live jazz band. Our musical goal was that
the strings plus jazz band should sound as good as
possible. We decided to emphasize practical
considerations and reliability over exotic or cutting-edge
research.

One exception to this set of priorities is that we feel
that HCMP must extend the capabilities of humans
rather than replace them. We could have easily had a
human play string parts on a keyboard connected to a
string synthesizer. This would be simple and robust, and
with work might even sound good, but our objection is
that it takes the entire attention of an expert musician
who might otherwise play piano or guitar or some other
instrument. A similar problem would exist with a
conducting interface [2, 5], which would require the
conductor to simplify gestures to be reliably interpreted
by a computer. We much prefer systems that need no
extra personnel to operate, yet bring new capabilities to
the human ensemble.

2.2. Components

Our approach consists of several components. First, we
have music representation issues: How will string parts
be created, represented, and translated all the way from
score to sound? Second, synchronization is critical: How
will we keep the string parts synchronized to the band?
Third is sound generation: How will we make
convincing acoustic string sounds electronically?
Finally, there is the diffusion problem: How will we
organize and project string sounds into the hall?

The representation was solved through a design
process involving the arranger, John Wilson, who was
commissioned to write for jazz band and strings. We
decided to structure the string parts as a sequence of
sections. This allowed for interplay between the band
and the strings. It also had functional purposes: Because
the strings were silent at many times, each entrance
could be cued separately. If anything went wrong, there
would soon be an opportunity to make another entrance.
In addition, the sectional nature allowed for efficient
recording and editing.

To the computer, the string parts are just sounds that
need to be cued to begin on a particular beat and

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

185

synchronized to following beats. When each sound
ends, the system prepares to play the next.

Synchronization is handled in the simplest way
imaginable, yet it was still somewhat difficult. A foot
pedal is used to tap beats (in cut time, about 85 taps per
minute) to establish the tempo and throughout the
performance. A small keyboard is used to cue entrances.

Sound generation is based on the pitch-synchronous,
overlap-add (PSOLA) approach to time stretching. The
requirement for real-time performance, continuous
(every tap) update, latency compensation, and
synchronization across multiple (20) channels led to
some innovative implementation details.

Finally, sound diffusion is based on multiple (8)
speaker systems arranged across the stage. Each of the
20 input channels represents one close-miked string
(violin, viola, or cello). Each instrument channel is
directed to only one speaker. Rather than a
homogenized orchestra sound spread across many
speakers, we have individual instrument sounds
radiating from multiple locations and mixing in the
room as with an acoustic ensemble.

The following sections will describe these
components in greater detail along with related work,
followed by conclusions.

3. MUSIC ORGANIZATION AND

REPRESENTATION

The jazz standard “Alone Together” by Arthur Schwartz
was chosen for performance, in part for its title’s
implicit commentary on human-computer performance.
The string parts show off the system’s capabilities,
including lush counter melodies, alternations with the
live horns, chordal backups behind live soloists, and a
pizzicato interlude with a live bass soloist.

From a computational perspective, the string parts are
organized as a set of sound files. Each file has a list of
time offsets corresponding to beat times, and the task of
the computer system is to start playing the file at the
proper time (on the proper beat) as well as to vary the
playback speed so that the designated file time offsets
synchronize with beats in the live performance.

The sound files were recorded two or three tracks at a
time in a studio using close microphones to capture a
dry sound. To create a realistic performance situation
for the players, we first recorded a click track, then
recorded the actual live rhythm section (using
headphones to stay with the click track). Finally, the
string players played along while listening to the rhythm
section over headphones. We feel that this approach
gives the strings a useful rhythmic and pitch reference,
avoiding any tendency to play the parts “straight” or
mechanically as might happen playing along with a
simple click track. On the other hand, the original click
track reference makes it easy to identify beat times in
the recordings, which is necessary for their ultimate
synchronization to the live band.

The recordings were mixed to 20-track sound files
representing 12 violins, 4 violas, and 4 cellos. Each file

represents a set of contiguous measures beginning at an
entrance of the string ensemble and ending at a point
where the entire ensemble has a rest of significant
duration (at least 16 measures).

4. SYNCHRONIZATION

Synchronization requires us to begin the playback of
each sound file at the proper moment and at the proper
tempo, and to track the tempo and beat times of the band
until the end of each file.

In principle, beat tracking [3] and score following [6]
could be used for automatic synchronization. However,
beat tracking – especially in real time – is not highly
reliable, and there are practical consideration such as
how to start the strings and the band at the same time on
cue from a conductor. B-Keeper is a related system
based on beat-tracking. [10] Score following might
work sometimes, but it would require following
individual non-improvised parts played by acoustic
instruments in a dense and loud ensemble. Furthermore,
there are entrances for the strings in sections that are
entirely (except for the chord structure) improvised by
the rhythm section. We decided to use a simple foot-
tapping interface [4] to communicate beat times and use
an additional keyboard to cue some of the entrances.

The beat and tempo detection software interprets
input according to different states. In the “initial” state,
input is ignored until there are 3 successive taps at
approximately equal time intervals. This sets an initial
tempo and causes a transition to the “run” state. In the
run state, the software uses linear regression over up to
6 previous taps to predict the next tap time. A tap that
arrives within 1/3 beat period of the expected time is
added to the list of beats, and a new regression is
performed to update the estimated tempo and predict the
next beat time. If no tap arrives during the expected time
window, the system waits for a tap near the following
beat. If there is no tap near this second estimated beat
time, the system goes back to the “initial” state.

The main output of the tapping system is the linear
regression of recent beats. This provides a mapping
from time to beat number that can be used to schedule
events in the future. (See Figure 1). Because of the
latencies in tap detection, sound synthesis, and the
operating system, it would be very complicated to create
event-driven software, e.g. have the tap detection
software forward taps directly to the sound synthesis
component. The taps would inevitably arrive a little late,
the software synthesis would inevitably need the
information a bit early, and synchronization would
suffer. Instead, we send an entire mapping from time to
beat (which is linear and described by just the slope, a
beat offset, and a time offset). When it comes time to
compute audio, the future output time of the audio
(estimated by the PortAudio library) can be mapped
easily to an estimated beat time and tempo. This
approach simplifies reasoning about timing and
synchronization.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

186

Figure 1. Timing diagram. (For clarity, the 1s time

interval is not drawn to scale with tap timing.)

We have discussed beat-level synchronization, but
not higher-level cues. The idea here is that taps provide
a mapping from time to beats where beats are integers
with an arbitrary offset. Thus, we can determine the
tempo and the times that correspond to beats, but this
does not tell us global information such as measure
number. When a cue occurs, the system finds the nearest
beat number btap that is nearest in time. Using a table
containing a sequence of cues, it finds the absolute beat
number bcue for this cue. The difference, bcue – btap, can
be stored and added to the time-to-beat map to obtain an
absolute score position as a function of time.

5. SOUND GENERATION

Sound generation is coupled to the tapping component
through the time-to-beat mapping which is typically
updated in response to each new tap. The goal of sound
generation is to have the audio output correspond to the
currently estimated beat position (we treat beats as
continuous, so it makes sense to say that the current beat
position is 23.17, or 17% of the way from beat 23 to
beat 24). To accomplish this, we cannot simply jump to
the corresponding location in the audio file, which
would create obvious and unnatural audio artefacts.
Instead, we must continue a smooth playback of the
audio but modulate the stretch factor to speed up or slow
down in order to synchronize. We will next describe the
time stretching process and then return to the problem of
synchronization.

Time stretching uses the PSOLA approach. [12] Our
time stretching is mostly provided by the Elastique
library [7] from Zplane, which provides for the time
stretching of a single channel of audio by a given stretch
factor. The system works as follows (see Figure 2):
First, audio to be processed is analyzed (off-line, in our
case) to detect and label pitch periods in the original
audio. The labels provide not only locations and periods,
but some spectral properties used by the stretch
algorithm. At runtime, the complete analysis data are
provided to the time stretch module, but audio is
processed incrementally. To process audio, the audio
stream is segmented into pitch periods, and each period
is isolated by multiplication by a smoothing window,
centered on the pitch period, but overlapping with
adjacent periods. The windowing is organized so that if

the windows are summed at their original spacing, the
original waveform is recovered. To stretch the sound,
windowed periods are occasionally output twice (using
the pitch period to determine spacing, as shown in
Figure 2), thus extending the sound. To contract the
sound, windowed periods are occasionally dropped. Of
course, the rate of duplicating or dropping periods
determines the overall stretch factor, but the algorithm
has some leeway in deciding which periods to duplicate
or drop, and presumably duplicating or dropping highly
periodic portions of the signal will minimize the
artefacts. In practice, the author was unable to hear any
artefacts using small stretch factors, and the most
obvious give-away is that as the stretch factor increases,
vibrato begins to sound unnatural. (There is no attempt
to remove and restore vibrato, but in a dense collection
of 20 strings, even these artefacts will be masked.)

Figure 2. Pitch Synchronous Overlap Add (PSOLA)

Our system must modulate the stretch factor
continuously to track a continuously varying tempo.
Imagine a contrived situation where a momentary
change in stretch factor causes the duplication of a
period in track A but not track B. The stretch factor is
then returned to 1.0, so now track A is slightly behind B.
This could be repeated arbitrarily many times, causing
A to drift further and further behind B. Considering that
only 10 periods of a cello’s low C last a total of 153ms,
the potential for loss of synchronization over time is
worrisome.

To avoid any long-term drift between tracks, we use
an active servo mechanism to measure the drift and
drive it to zero. This is combined with additional servo
control to synchronize the audio playback to the beat-to-
time map. To begin with, we need to sense the sound
file position of each of the 20 instances of the time
stretch algorithm. The Zplane library operates
incrementally, issuing a request for input data before
generating each output buffer. By counting how many
samples have been read as input, we can estimate the
file position (this is only an estimate because there is an
unknown but small amount of read-ahead).

Our goal now is to update the stretch factor for each
time stretcher instance. We know that the current tempo
is, say, rc, and the recorded tempo is rr, so the stretch
factor should be rr / rc, but this ignores the fact that the
estimated tempo can jump around as new taps are
entered. This not only leads to drift as tempo errors
accumulate, but it could cause sudden and unnatural

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

187

speed changes. What we actually do is a bit more
complicated. We look ahead in time on the time-to-beat
mapping and solve the following problem (see Figure
1): Given the current estimated file position, what tempo
should we adopt now in order to synchronize with the
time-to-beat mapping in exactly 1s? Since each time
stretcher has a slightly different file position, this
calculation yields a slightly different slope and stretch
factor for each one, but in aggregate, all tracks will
converge to the same file location and that file location
will converge to the current real-time performance beat
position. Similar rate adjustment has been described [5,
9] , but this may be the first attempt at synchronizing
many independent PSOLA time-stretching processes.

Loosely coupled to all this activity is a process that
reads 20-channel sound files, de-interleaves the samples,
and inserts them into FIFO queues, one for each time
stretcher. This allows each time stretcher to manage a
slightly different file read position. We read data from
disk in large blocks for efficiency, but use a low-priority
task that can be pre-empted for low-latency audio
computation. By keeping ahead of the audio processing,
we avoid blocking the audio computation to wait for a
disk read to complete.

6. CONCLUSIONS

None of the techniques described here (tapping, time
stretching, multi-channel audio) are entirely new, but
even after decades of interactive computer music it is
not common to have high-quality multi-channel
synchronized audio used in live performance. We are
unaware of any precedent. There is even a demonstrated
need for this as seen for example in Quadraphenia
performed by the Who with extensive but troublesome
backing tapes in the 70’s and the common use of click
tracks on backing “tapes” in venues such as theme parks
and cruise ships. Some programs such as Ableton Live
[1] incorporate some support for time stretching and live
synchronization, but Live does not provide a direct or
complete solution to human-computer music
performance (HCMP).

We gave one performance with our experimental
system. By chance, there was an “extra” percussionist
with nothing else to do in this piece, so she provided the
taps. One interesting problem occurred in rehearsal
where the tapper was naturally listening to the strings
but started to tap along with them rather than the band,
causing the system to drift out of synchronization. As
soon as this became apparent, she began tapping with
the band to correct the problem, but now the taps were
falling outside of the 1/3 beat window, causing them to
be ignored. This failure illustrates the subtleties of even
a problem as simple as tapping beats in live
performance.

After learning a few lessons, the public performance
went very well, and we have begun to explore other
aspects of HCMP. In particular, we feel we “cheated” a
bit by dedicating a performer to the tapping task. We
have since been working with a smaller group where the

tapping, cueing, and control tasks are performed by
someone who is also playing an acoustic instrument.
This creates a host of human-computer interaction
problems, and we plan to address them in a series of
future systems.

7. REFERENCES

[1] Ableton AG. Ableton Reference Manual, 2010.

[2] Baba, T., Hashida, M., and Katayose, H.
“‘VirtualPhilharmony’: A Conducting System with
Heuristics of Conducting an Orchestra” in
Proceedings of the 2010 Conference on New
Interfaces for Musical Expression (NIME 2010),
ACM Press, 2010, 263-270.

[3] Brossier, P. Automatic Annotation of Musical

Audio for Interactive Applications. Ph. D. thesis,
Department of Electronic Engineering, Queen
Mary, University of London, 2006.

[4] Dannenberg, R. “New Interfaces for Popular
Music Performance,” in Seventh International
Conference on New Interfaces for Musical
Expression: NIME 2007 New York, New York,
NY: New York Univ., June 2007, pp. 130-135.

[5] Dannenberg R. and Bookstein, K., “Practical
Aspects of a Midi Conducting Program,” in
Proceedings of the 1991 International Computer
Music Conference, ICMA, (October 1991), pp.
537-540.

[6] Dannenberg, R. and Raphael, C. “Music score
alignment and computer accompaniment.”
Commun. ACM 49, 8 (Aug. 2006), pp. 38-43.

[7] Flohrer, T. Elastique 2.0 SDK Documentation,

zplane.development, 2007.

[8] Gold, N. and Dannenberg, R. “A Reference
Architecture and Score Representation for Popular
Music Human-Computer Music Performance
Systems,” in New Interfaces for Musical
Expression, 2011.

[9] Lee, E., Karrer, T. and Borchers, J. “Toward a
framework for interactive systems to conduct
digital audio and video streams.” Computer Music
Journal, 30(1) (Spring 2006), pp. 21-36.

[10] Robertson, A. and Plumbley, M., “B-Keeper: A
beat-tracker for live performance,” in New

Interfaces for Musical Expression, 2007, pp. 234-
237.

[11] Rowe, R. Interactive Music Systems. MIT Press,
Cambridge, MA (1993).

[12] Schnell, N., Peeters, G., Lemouton, S., Manoury,

P., and Rodet, X., “Synthesizing a Choir in Real-

Time Using Pitch Synchronous Overlap Add

(PSOLA),” in Proceedings of the 2000

International Computer Music Conference, 2000 ,

pp. 102-108.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

188

