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ABSTRACT 

A virtual orchestra was implemented to augment a 
human jazz big band with the addition of violins, violas, 
and cellos. In an effort to maximize musical quality, the 
orchestra uses a high-quality studio recording of each 
individual part, yet adapts to the tempo of the band in 
real time using a custom multi-channel PSOLA 
algorithm. The tempo is tracked through a foot-tapping 
interface, with additional cueing that allows for 
deviation from the nominal score and recovery from 
counting errors. Output is through an array of 8 high-
quality studio monitors arranged to provide the illusion 
of many point sources configured as an acoustic 
ensemble. 

1. INTRODUCTION 

Human-computer music performance (HCMP) [8] refers 
to a developing practice of integrating human and 
computer performers. Unlike interactive systems for 
experimental art music [11] that one might typically find 
at ICMC performances, or even computer 
accompaniment systems [6] that rely on score following 
and models of tempo adjustment to play music with 
expressive timing, HCMP specifically aims to address 
the performance of popular music forms such as rock, 
jazz, and folk, where tempo is mostly steady, but 
improvisation is prominent. 

While popular music is often dismissed as simple 
and uninteresting, there are many technical challenges 
posed by HCMP that have not been solved (even though 
interactive music systems have been around for 
decades). One problem is that popular music (as we will 
call it for lack of a better term) is largely improvised in 
the sense that chord voicings, strumming styles, and 
drum patterns, and even vocal melodies are not spelled 
out completely by the score and are likely to vary from 
one performance to the next. Furthermore, even the 
structure in terms of introductions, repetitions, order of 
sections, and endings can be altered in the middle of a 
performance.  

In spite of this ambiguity, musicians are expected to 
conform quite closely to chordal, melodic, and stylistic 
structures, requiring them to be precisely synchronized 
at all times. The present work explores the problem of 
synchronization both at the level of beats and that of 
high-level musical structure in HCMP. 

2. THE VIRTUAL ORCHESTRA CONCEPT 

2.1. Requirements 

We set out to create a string orchestra that could play 
along with a live jazz band. Our musical goal was that 
the strings plus jazz band should sound as good as 
possible. We decided to emphasize practical 
considerations and reliability over exotic or cutting-edge 
research. 

One exception to this set of priorities is that we feel 
that HCMP must extend the capabilities of humans 
rather than replace them. We could have easily had a 
human play string parts on a keyboard connected to a 
string synthesizer. This would be simple and robust, and 
with work might even sound good, but our objection is 
that it takes the entire attention of an expert musician 
who might otherwise play piano or guitar or some other 
instrument. A similar problem would exist with a 
conducting interface [2, 5], which would require the 
conductor to simplify gestures to be reliably interpreted 
by a computer. We much prefer systems that need no 
extra personnel to operate, yet bring new capabilities to 
the human ensemble. 

2.2. Components 

Our approach consists of several components. First, we 
have music representation issues: How will string parts 
be created, represented, and translated all the way from 
score to sound? Second, synchronization is critical: How 
will we keep the string parts synchronized to the band? 
Third is sound generation: How will we make 
convincing acoustic string sounds electronically? 
Finally, there is the diffusion problem: How will we 
organize and project string sounds into the hall? 

The representation was solved through a design 
process involving the arranger, John Wilson, who was 
commissioned to write for jazz band and strings. We 
decided to structure the string parts as a sequence of 
sections. This allowed for interplay between the band 
and the strings. It also had functional purposes: Because 
the strings were silent at many times, each entrance 
could be cued separately. If anything went wrong, there 
would soon be an opportunity to make another entrance. 
In addition, the sectional nature allowed for efficient 
recording and editing. 

To the computer, the string parts are just sounds that 
need to be cued to begin on a particular beat and 
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synchronized to following beats. When each sound 
ends, the system prepares to play the next. 

Synchronization is handled in the simplest way 
imaginable, yet it was still somewhat difficult. A foot 
pedal is used to tap beats (in cut time, about 85 taps per 
minute) to establish the tempo and throughout the 
performance. A small keyboard is used to cue entrances. 

Sound generation is based on the pitch-synchronous, 
overlap-add (PSOLA) approach to time stretching. The 
requirement for real-time performance, continuous 
(every tap) update, latency compensation, and 
synchronization across multiple (20) channels led to 
some innovative implementation details. 

Finally, sound diffusion is based on multiple (8) 
speaker systems arranged across the stage. Each of the 
20 input channels represents one close-miked string 
(violin, viola, or cello). Each instrument channel is 
directed to only one speaker. Rather than a 
homogenized orchestra sound spread across many 
speakers, we have individual instrument sounds 
radiating from multiple locations and mixing in the 
room as with an acoustic ensemble. 

The following sections will describe these 
components in greater detail along with related work, 
followed by conclusions. 

3. MUSIC ORGANIZATION AND 

REPRESENTATION 

The jazz standard “Alone Together” by Arthur Schwartz 
was chosen for performance, in part for its title’s 
implicit commentary on human-computer performance. 
The string parts show off the system’s capabilities, 
including lush counter melodies, alternations with the 
live horns, chordal backups behind live soloists, and a 
pizzicato interlude with a live bass soloist. 

From a computational perspective, the string parts are 
organized as a set of sound files. Each file has a list of 
time offsets corresponding to beat times, and the task of 
the computer system is to start playing the file at the 
proper time (on the proper beat) as well as to vary the 
playback speed so that the designated file time offsets 
synchronize with beats in the live performance. 

The sound files were recorded two or three tracks at a 
time in a studio using close microphones to capture a 
dry sound. To create a realistic performance situation 
for the players, we first recorded a click track, then 
recorded the actual live rhythm section (using 
headphones to stay with the click track). Finally, the 
string players played along while listening to the rhythm 
section over headphones. We feel that this approach 
gives the strings a useful rhythmic and pitch reference, 
avoiding any tendency to play the parts “straight” or 
mechanically as might happen playing along with a 
simple click track. On the other hand, the original click 
track reference makes it easy to identify beat times in 
the recordings, which is necessary for their ultimate 
synchronization to the live band. 

The recordings were mixed to 20-track sound files 
representing 12 violins, 4 violas, and 4 cellos. Each file 

represents a set of contiguous measures beginning at an 
entrance of the string ensemble and ending at a point 
where the entire ensemble has a rest of significant 
duration (at least 16 measures). 

4. SYNCHRONIZATION 

Synchronization requires us to begin the playback of 
each sound file at the proper moment and at the proper 
tempo, and to track the tempo and beat times of the band 
until the end of each file. 

In principle, beat tracking [3] and score following [6] 
could be used for automatic synchronization. However, 
beat tracking – especially in real time – is not highly 
reliable, and there are practical consideration such as 
how to start the strings and the band at the same time on 
cue from a conductor. B-Keeper is a related system 
based on beat-tracking. [10] Score following might 
work sometimes, but it would require following 
individual non-improvised parts played by acoustic 
instruments in a dense and loud ensemble. Furthermore, 
there are entrances for the strings in sections that are 
entirely (except for the chord structure) improvised by 
the rhythm section. We decided to use a simple foot-
tapping interface [4] to communicate beat times and use 
an additional keyboard to cue some of the entrances. 

The beat and tempo detection software interprets 
input according to different states. In the “initial” state, 
input is ignored until there are 3 successive taps at 
approximately equal time intervals. This sets an initial 
tempo and causes a transition to the “run” state. In the 
run state, the software uses linear regression over up to 
6 previous taps to predict the next tap time. A tap that 
arrives within 1/3 beat period of the expected time is 
added to the list of beats, and a new regression is 
performed to update the estimated tempo and predict the 
next beat time. If no tap arrives during the expected time 
window, the system waits for a tap near the following 
beat. If there is no tap near this second estimated beat 
time, the system goes back to the “initial” state. 

The main output of the tapping system is the linear 
regression of recent beats. This provides a mapping 
from time to beat number that can be used to schedule 
events in the future. (See Figure 1). Because of the 
latencies in tap detection, sound synthesis, and the 
operating system, it would be very complicated to create 
event-driven software, e.g. have the tap detection 
software forward taps directly to the sound synthesis 
component. The taps would inevitably arrive a little late, 
the software synthesis would inevitably need the 
information a bit early, and synchronization would 
suffer. Instead, we send an entire mapping from time to 
beat (which is linear and described by just the slope, a 
beat offset, and a time offset). When it comes time to 
compute audio, the future output time of the audio 
(estimated by the PortAudio library) can be mapped 
easily to an estimated beat time and tempo. This 
approach simplifies reasoning about timing and 
synchronization. 
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Figure 1. Timing diagram. (For clarity, the 1s time 

interval is not drawn to scale with tap timing.) 

We have discussed beat-level synchronization, but 
not higher-level cues. The idea here is that taps provide 
a mapping from time to beats where beats are integers 
with an arbitrary offset. Thus, we can determine the 
tempo and the times that correspond to beats, but this 
does not tell us global information such as measure 
number. When a cue occurs, the system finds the nearest 
beat number btap that is nearest in time. Using a table 
containing a sequence of cues, it finds the absolute beat 
number bcue for this cue. The difference, bcue – btap, can 
be stored and added to the time-to-beat map to obtain an 
absolute score position as a function of time. 

5. SOUND GENERATION 

Sound generation is coupled to the tapping component 
through the time-to-beat mapping which is typically 
updated in response to each new tap. The goal of sound 
generation is to have the audio output correspond to the 
currently estimated beat position (we treat beats as 
continuous, so it makes sense to say that the current beat 
position is 23.17, or 17% of the way from beat 23 to 
beat 24). To accomplish this, we cannot simply jump to 
the corresponding location in the audio file, which 
would create obvious and unnatural audio artefacts. 
Instead, we must continue a smooth playback of the 
audio but modulate the stretch factor to speed up or slow 
down in order to synchronize. We will next describe the 
time stretching process and then return to the problem of 
synchronization. 

Time stretching uses the PSOLA approach. [12] Our 
time stretching is mostly provided by the Elastique 
library [7] from Zplane, which provides for the time 
stretching of a single channel of audio by a given stretch 
factor. The system works as follows (see Figure 2): 
First, audio to be processed is analyzed (off-line, in our 
case) to detect and label pitch periods in the original 
audio. The labels provide not only locations and periods, 
but some spectral properties used by the stretch 
algorithm. At runtime, the complete analysis data are 
provided to the time stretch module, but audio is 
processed incrementally. To process audio, the audio 
stream is segmented into pitch periods, and each period 
is isolated by multiplication by a smoothing window, 
centered on the pitch period, but overlapping with 
adjacent periods. The windowing is organized so that if 

the windows are summed at their original spacing, the 
original waveform is recovered. To stretch the sound, 
windowed periods are occasionally output twice (using 
the pitch period to determine spacing, as shown in 
Figure 2), thus extending the sound. To contract the 
sound, windowed periods are occasionally dropped. Of 
course, the rate of duplicating or dropping periods 
determines the overall stretch factor, but the algorithm 
has some leeway in deciding which periods to duplicate 
or drop, and presumably duplicating or dropping highly 
periodic portions of the signal will minimize the 
artefacts. In practice, the author was unable to hear any 
artefacts using small stretch factors, and the most 
obvious give-away is that as the stretch factor increases, 
vibrato begins to sound unnatural. (There is no attempt 
to remove and restore vibrato, but in a dense collection 
of 20 strings, even these artefacts will be masked.) 

 
Figure 2. Pitch Synchronous Overlap Add (PSOLA) 

Our system must modulate the stretch factor 
continuously to track a continuously varying tempo. 
Imagine a contrived situation where a momentary 
change in stretch factor causes the duplication of a 
period in track A but not track B. The stretch factor is 
then returned to 1.0, so now track A is slightly behind B. 
This could be repeated arbitrarily many times, causing 
A to drift further and further behind B. Considering that 
only 10 periods of a cello’s low C last a total of 153ms, 
the potential for loss of synchronization over time is 
worrisome. 

To avoid any long-term drift between tracks, we use 
an active servo mechanism to measure the drift and 
drive it to zero. This is combined with additional servo 
control to synchronize the audio playback to the beat-to-
time map. To begin with, we need to sense the sound 
file position of each of the 20 instances of the time 
stretch algorithm. The Zplane library operates 
incrementally, issuing a request for input data before 
generating each output buffer. By counting how many 
samples have been read as input, we can estimate the 
file position (this is only an estimate because there is an 
unknown but small amount of read-ahead). 

Our goal now is to update the stretch factor for each 
time stretcher instance. We know that the current tempo 
is, say, rc, and the recorded tempo is rr, so the stretch 
factor should be rr / rc, but this ignores the fact that the 
estimated tempo can jump around as new taps are 
entered. This not only leads to drift as tempo errors 
accumulate, but it could cause sudden and unnatural 
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speed changes. What we actually do is a bit more 
complicated. We look ahead in time on the time-to-beat 
mapping and solve the following problem (see Figure 
1): Given the current estimated file position, what tempo 
should we adopt now in order to synchronize with the 
time-to-beat mapping in exactly 1s? Since each time 
stretcher has a slightly different file position, this 
calculation yields a slightly different slope and stretch 
factor for each one, but in aggregate, all tracks will 
converge to the same file location and that file location 
will converge to the current real-time performance beat 
position. Similar rate adjustment has been described [5, 
9] , but this may be the first attempt at synchronizing 
many independent PSOLA time-stretching processes. 

Loosely coupled to all this activity is a process that 
reads 20-channel sound files, de-interleaves the samples, 
and inserts them into FIFO queues, one for each time 
stretcher. This allows each time stretcher to manage a 
slightly different file read position. We read data from 
disk in large blocks for efficiency, but use a low-priority 
task that can be pre-empted for low-latency audio 
computation. By keeping ahead of the audio processing, 
we avoid blocking the audio computation to wait for a 
disk read to complete. 

6. CONCLUSIONS 

None of the techniques described here (tapping, time 
stretching, multi-channel audio) are entirely new, but 
even after decades of interactive computer music it is 
not common to have high-quality multi-channel 
synchronized audio used in live performance. We are 
unaware of any precedent. There is even a demonstrated 
need for this as seen for example in Quadraphenia 
performed by the Who with extensive but troublesome 
backing tapes in the 70’s and the common use of click 
tracks on backing “tapes” in venues such as theme parks 
and cruise ships. Some programs such as Ableton Live 
[1] incorporate some support for time stretching and live 
synchronization, but Live does not provide a direct or 
complete solution to human-computer music 
performance (HCMP). 

We gave one performance with our experimental 
system. By chance, there was an “extra” percussionist 
with nothing else to do in this piece, so she provided the 
taps. One interesting problem occurred in rehearsal 
where the tapper was naturally listening to the strings 
but started to tap along with them rather than the band, 
causing the system to drift out of synchronization. As 
soon as this became apparent, she began tapping with 
the band to correct the problem, but now the taps were 
falling outside of the 1/3 beat window, causing them to 
be ignored. This failure illustrates the subtleties of even 
a problem as simple as tapping beats in live 
performance. 

After learning a few lessons, the public performance 
went very well, and we have begun to explore other 
aspects of HCMP. In particular, we feel we “cheated” a 
bit by dedicating a performer to the tapping task. We 
have since been working with a smaller group where the 

tapping, cueing, and control tasks are performed by 
someone who is also playing an acoustic instrument. 
This creates a host of human-computer interaction 
problems, and we plan to address them in a series of 
future systems. 
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