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INTRODUCTION 
As with many other kinds of data, the past several decades have witnessed an explosion in the 
quantity and variety of music in computer-accessible form. There are primarily two kinds of 
“music data” one encounters today: sampled audio files, such as those found on compact discs or 
scattered over the web in various formats, and symbolic music representations, which essentially 
list notes with pitch, onset time, and duration for each note. To draw an analogy, music audio is 
to symbolic music as speech audio is to text. In both cases the audio representations capture the 
colorful expressive nuances of the performances, but are difficult to “understand” by anything 
other than a human listener. On the other hand, in both text and symbolic music the high level 
“words” are parsimoniously stored and easily recognized. 
We focus here on a form of machine listening known as music score matching, score following, 
or score alignment. Here we seek a correspondence between a symbolic music representation and 
an audio performance of the same music, identifying the onset times of all relevant musical 
“events” in the audio—usually notes. There are two different versions of the problem, usually 
called “off-line” and “on-line.” 

Off-line matching uses the complete performance to estimate the correspondence between audio 
data and symbolic score. Thus, the off-line problem allows one to “look into the future” while 
establishing the correspondence. An off-line match can be viewed as an index into the 
performance allowing random access to a recording. Such an index might be used to allow a 
listener to begin at any location in a composition, such as the 2nd quarter of measure 48, to link 
visual score representations with audio, or to coordinate animation with prerecorded audio. 

We believe off-line score matching will soon enable many new and useful applications. For 
example, digital editing and post processing of music often requires the location of a particular 
note in an audio file to be tuned, balanced or “tweaked” in various ways. Score matching allows 
the automatic identification of such locations, greatly simplifying the process. Another example 
involves musical sound synthesis, which often relies heavily on audio samples under various 
conditions such as pitch, dynamic level, articulation, etc. Score matching can be used as a means 
of automating this arduous data collection process. In a different direction, score matching can 
provide quantitative information about timing and tempo, aiding the study and understanding of 
musical expression. In fact, score matching may well be the key to studying many other musical 
attributes, such as dynamics, vibrato, and tone color, by providing note-based audio 
segmentation. We anticipate that the future's synthesized music will greatly benefit from this 
inquiry. 

Off-line score matching’s real-time cousin, sometimes called score-following, processes the 
audio data on-line as the signal is acquired, thus, no “look ahead” is possible. The goal of score 
following is to identify the musical events depicted in the score with high accuracy and low 
latency. The application dearest to the hearts of both authors is the accompaniment system, 
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which generates a flexible musical accompaniment that follows a live soloist.  While there are 
many aspects to such a system, “hearing” the live player is clearly one of the necessary 
ingredients in any solution. Other applications include the automatic coordination of audio-visual 
equipment with musical performance, such as opera supertitles and lighting effects, as well as 
real-time score-based audio enhancement e.g. pitch correction, and automatic page turners. 

OFFLINE SCORE MATCHING 
Perhaps the easiest way to explain the basic challenges and ideas of score following is to begin 
with a simple example. Suppose we have a simple monophonic (one note at a time) instrument 
playing from a known score containing only a few notes, say ABCD as shown in Figure 1. Every 
50ms or so, we estimate a pitch value from the audio signal. Pitch estimates are not very reliable, 
but there are many estimates per note, resulting in something like: AAAAAAAAaABABAB 
BBCBBCBcBBBBBdBBBddCDCCCCCcCCCCDDBDdDDcDBDDDDDD, where lower-case 
letters denote a lower octave than the one notated in the score. 

The task is now to segment this sequence into regions that correspond to the note sequence 
ABCD. One approach, shown in Figure 1, uses a simple state graph, labeled “Score Model” with 
four possible states: A, B, C and D. At each step, the model can remain in the same state or 
advance to the next one. Since the input in this example has 62 pitch estimates, consider all 
possible paths of length 62 through through the graph. Each path will be scored according to how 
closely it matches the actual data sequence above. For each symbol, there is no penalty for an 
exact match, a small penalty for an octave or neighboring pitch error, and a large penalty for 
anything else. Thus every sequence has a total penalty—the sum of all penalties encountered, 
and one can define an optimal state sequence as the one that globally minimizes this penalty. 
Readers are likely familiar with the Viterbi Algorithm, which uses dynamic programming to 
solve this problem without actually enumerating every path. The result is an optimal state 
sequence—our score match—such as AAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBCC 
CCCCCCCCCCCCDDDDDDDDDDDDDDDD. 

While this example is, admittedly, a toy one, the basic ideas can be extended and generalized to 
cover most of what is encountered in a broad range of music. For instance, polyphonic music can 
be represented as a sequence of chords, where a new chord appears at every point where a note 
begins or ends. Furthermore, different note lengths can be represented by allocating several 
graph states for each note and including transition probabilities to generate a reasonable length 
distribution for each note. 

A direct extension of the state graph idea to polyphonic music might replace the pitch estimates 
with sets of pitch estimates. The note sequence of the graph would be replaced by a chord 
sequence. Unfortunately, multi-pitch estimation is unreliable and still an active research area, so 
today’s score-alignment systems use representations based on the distributions of frequencies in 
the signal, also known as the spectrum. The spectrum is used because it is easy to obtain from 
audio and because it can be reasonably predicted from the score. 

To predict spectra from chords, we can use some basic knowledge of musical acoustics. Each 
note in the chord produces a spectrum that can be approximated by a set of harmonics. A 
collection of pitches is modeled as a superposition of these one-note models. One can then base a 
penalty function on the distance between predicted and observed spectra, or on a probability 
model for the data spectrum, given the hypothesized notes of the chord. Another way to predict 
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spectra is to play the score through a music synthesizer and compute spectra from the resulting 
audio. This also opens the possibility of audio-to-audio alignment of two different performances. 

 

Figure 1. Audio is analyzed to obtain a transcription of pitch estimates. These 
correspond to a sequence of states from the score model, which is derived from the 
symbolic score. An alignment process relates the audio time position to the music 
score position. 

 
A popular technique for comparing spectra from scores to spectra in music audio is to reduce the 
detailed spectrum to a 12-element chroma vector, where each element represents all the energy 
in the spectrum associated with one of the 12 pitch classes (C, C-sharp, D, etc.). The Euclidean 
distance between chroma vectors is a robust distance metric for score alignment. [6] 
Armed with these essential ideas, we have made score matchers that handle realistic audio data, 
such as that of Figure 2, in which we have indicated the recognized measure locations with 
vertical lines. The recognition of this audio was achieved by augmenting the notion of  “state” 
discussed above to include both current note and time-varying tempo, leading to a simultaneous 
estimate of both note onset times and the tempo process. [11]  The audio file can be heard at 
http://xavier.informatics.indiana.edu/~craphael/acm with clicks added to mark the measures. 
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Figure 2. Spectrogram from the opening of Mercury from The Planets, by Gustav 

Holst.  The vertical lines indicate the positions of the bar lines in the music as 
determined by automatic score alignment. Some of the music is shown at the 
bottom. 

On-Line Matching and Computer Accompaniment 
The biggest success of on-line score following so far has been computer accompaniment. There 
are several areas in which we see a promising future for these accompaniment systems. The first 
is the traditional soloist-accompaniment scenario in which a live player wishes to play with a 
flexible, sensitive, (and tireless!) accompaniment.  While human accompanists provide stiff 
competition in this traditional domain, there are areas in which accompaniment systems beat 
their human counterparts. The accompaniment system has nearly unlimited technical facility, 
allowing the coordination of nearly arbitrarily fast notes and complex rhythms. This virtuosity 
has been exploited in recent music explicitly composed for accompaniment systems by Jan 
Beran and Nick Collins (http://xavier.informatics.indiana.edu/~craphael/music_plus_one/), and 
we hope that accompaniment systems will provide an outlet for other composers as well. Perhaps 
accompaniment systems will someday find a place in jazz and other improvisatory music. 
Most computer accompaniment systems are organized roughly along the lines of Figure 3, which 
shows four fairly independent components: audio feature extraction, score following, 
accompaniment control, and music synthesis. Note that the input includes machine-readable 
scores for both the performer and for the accompaniment, while the output is a real-time musical 
accompaniment. The feature extraction component performs signal processing on the incoming 
audio to generate a stream of data such as pitch estimates or spectral frames. The score following 
component matches this sequence to the score to derive an evolving estimate of the current 
position of the soloist. This is the real-time version of the score alignment illustrated in 0—the 
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score follower provides a running commentary on the soloist’s performance (“you are here”), 
giving estimates of solo event times, delivered with variable latency. The accompaniment 
control, is the brain of the accompaniment system. Given the commentary provided by the score 
following, this component integrates the information in the score, musical constraints, and 
perhaps knowledge distilled from past performances, to determine when to play accompaniment 
notes. The fourth, music synthesis, generates the actual accompaniment sound, either by means 
of a note-based sound synthesizer or by resynthesizing prerecorded audio on-the-fly. 

 
Figure 3. Structure of a computer accompaniment system. 

 
The importance of the “Accompaniment Control” is paramount and requires some explanation. 
An accompaniment system, (or person), that tries to achieve synchrony by waiting to hear a note, 
and then responding, will always be late, since all musical events are detected with latency. A 
better approach coordinates parts by extrapolating the future evolution based on the detected 
note onsets, as well as other information. The essential musical extrapolation challenge requires 
the fusion of several knowledge sources including the musical score, the output of the score 
follower, as well as past training examples from the soloist and human-played accompaniment. 
Early accompaniment systems used hand-coded rules to guide this extrapolation. [1, 3] More 
recently, belief networks address the challenges of automatic learning and extrapolation from 
incomplete information. [10] 
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Variations and Alternate Approaches 
Many have explored different aspects of the problems and solutions outlined above. The earliest 
computer accompaniment systems matched note sequences rather than spectral data, reducing 
data rates and computation. [1, 3, 12] Hidden Markov models have been explored for score 
following, allowing systems to be trained using rehearsals to follow more accurately and to 
respond with less latency. [2, 7, 9] Another approach avoids the problem of discrete states by 
representing score position as a continuous probability density function. [5] (See 
http://www.cs.cmu.edu/~music/video/CANGIO.MOV for a demonstration.) 
Whereas computer accompaniment emphasizes responsiveness and musical accompaniment, the 
main goal of off-line score matching is accurate alignment, which can be obtained using short 
audio frames and specialized features for matching. [8] 

Current Applications of Score Following 
Much research in computer accompaniment has been motivated by contemporary art music. 
Score following and computer accompaniment have enabled composers to exploit virtuosic 
performance capabilities of computers and to apply live digital audio signal processing to the 
sounds of live performers. Computer accompaniment is also used in music education systems, 
including the Piano Tutor and SmartMusic. 

The Piano Tutor 
Score following has formed the basis for an intelligent piano tutoring system. The Piano Tutor 
system [4] was designed to model the interactions that students have with human teachers. The 
system has a repertoire of about 100 songs that it can select for students. As the student performs 
the music, real-time score following is used to track the performance and automatically turn 
pages by updating the display. After the performance, score alignment is used to identify all 
skipped notes and extra notes. The student’s tempo is estimated, and timing errors are identified. 
Based on this analysis, an expert system gives feedback. For example, a voice may say “watch 
out, you missed a note here” while a box is drawn around the problem area in the music notation. 
Score following allows the Piano Tutor to evaluate relatively unconstrained piano performances, 
resulting in a simpler interface and (we think) a more enjoyable experience for students. (See 
http://www.cs.cmu.edu/~music/video/pianotutor.mov.) 

SmartMusic 
SmartMusic (http://smartmusic.com) is a commercial software product for ordinary personal 
computers. It uses computer accompaniment as a tool for music education and includes 
accompaniments for over 30,000 pieces of music for wind instruments, vocalists, and beginning 
string players. Traditionally, music students practice alone and often lack the skills and 
motivation to practice effectively. SmartMusic challenges students to master pieces from 
beginning to end. When practicing with accompaniment, students hear their music in the context 
of rhythm and harmony that is missing from solo parts. The accompaniment also provides a pitch 
reference so that students are better able to hear when they are out of tune and learn to take 
corrective action. Only small-scale studies have been undertaken, but they indicate that students 
who practice with accompaniment improve in performance skill and confidence, motivation, and 
practice time. 
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Music Plus One 
Music Plus One is a system primarily oriented toward Western art music. In this system, the 
accompaniment is synthesized from prerecorded audio using a phase vocoder, thus allowing 
synchronization with the soloist while retaining the rich sonic palette and much musicality from 
the original performance. This work performs score-following with an HMM and coordinates 
parts with a belief network (the brain). This latter approach predicts future accompaniment note 
onsets based on the score-follower, the musical score, and examples of past solo and human-
played accompaniment performances. These predictions create a trail of breadcrumbs for the 
phase vocoder to link. See http://xavier.informatics.indiana.edu/~craphael/music_plus_one for an 
example. 

The Future of Score Matching 
The proficiency of on-line and off-line score matching algorithms has improved to a point where 
many new applications are possible in areas such as editing of digital audio, audio database 
construction, real-time performance enhancement, accompaniment systems, as well as others 
previously mentioned or not yet thought of. While music is varied enough to violate almost any 
assumptions that one might make, these algorithms already perform reliably in some well-
established and challenging music domains. We look forward to the many new possibilities that 
are certain to result from this new technology. 
Both authors are especially optimistic about the future of accompaniment systems. While many 
musicians already use computer accompaniment to make practice more enjoyable and 
instructive, broader acceptance of this technology requires that we overcome significant 
challenges. Paramount among these is capturing a deeper understanding of musical aesthetics by 
the computer. This challenge is especially intriguing since it requires a fusion of expertise from 
areas that normally do not communicate much. 
Computer accompaniment is bound to find commercial applications that will touch the lives of 
musicians and music lovers. While some express concern that musicians will be displaced by 
these machines, we doubt that this will be the predominant effect. On the contrary, we believe 
that accompaniment systems will make music more accessible to more people, fostering a wider 
appreciation and love for music-making. We expect that the effect will be an increased demand 
for “all-human” music, both from listeners and participants. 
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