
New Techniques for Enhanced Quality of Computer Accompaniment
�

Roger B. Dannenberg

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213 USA

Hirofumi Mukaino

The Yamaha Corporation

Hamamatsu, JAPAN

Abstract

A computer accompaniment system has been ex-

tended with several techniques to solve problems as-

sociated with reliably recognizing and following a

real-time performance. One technique is the use of

an additional matcher to consider alternatives when

the performance could be interpreted in two ways.

Another is to delay corrective action when data from

the matcher is suspect. Methods for handling grace

notes, trills, and glissandi are also presented. The

implementation of these and other techniques to pro-

duce an enhanced computer accompaniment system

is discussed.

1. Introduction

The basic technology for real-time computer

accompaniment1 of live musicians was �rst presented

in 1984 [1, 2], however the �rst systems left a lot of

room for improvement. We have been developing new

computer accompaniment systems for two years in an

e�ort to obtain higher reliability in the accompanist

and also to deal with a more complete musical vocab-

ulary. Like the �rst systems, the task is to accept a

score describing music to be performed by a human

and machine. The machine listens to the human per-

formance and synchronizes to it in real time.

A variety of techniques have been developed to in-

0Published as: DannenbergandMukaino, \New Techniques
for Enhanced Quality of Computer Accompaniment," in Pro-

ceedings of the International Computer Music Conference,

Computer Music Association, (September 1988), pp 243-249.
P.S. If you know how to properly attach a footnote to a title,
please let me know. -rbd@cs.cmu.edu

1Computer accompaniment is the subject of a U.S. patent.

crease accompaniment reliability. An important im-

provement has been the use of a limited amount of

non-determinism or parallelism to allow the system

to follow two competing hypotheses until one is seen

to be superior. A second technique is to delay out-

put from the matcher in order to create a short time

window during which decisions can be reversed. Even

traditional scores are not completely speci�ed and we

have incorporated several extensions to our matcher

to deal with grace notes, trills, and glissandi. We

indicate the ornamentation in the score so that the

system can have an expectation before the ornament

is performed. The input is processed according to

expectations.

In this paper, we will describe the structure and im-

plementation details of an advanced polyphonic com-

puter accompaniment system. To begin with, in Sec-

tion 2, we will show the reader the basic structure

of this accompaniment system and introduce some

terminology. In Section 3, we describe how we im-

plement non-deterministic matching. Then in Sec-

tion 4, we show how ornamentations such as trills

or glissandi are handled. In Section 5, we explain the

idea of delayed decision making. Finally, in Section 6,

we will describe miscellaneous improvements we have

done.

2. Basic Structure

In this section, we present the basic structure of our

accompaniment system. We will describe only the

fundamental ideas of accompaniment systems here.

For more details, see the previous papers [1, 3].

For convenience, we will �rst de�ne some terms.

Before starting a performance, a score is read into

the system. The score has two parts, the solo score

1

which is to be played by the human and the accompa-

niment score which is to be played by the system. To

distinguish what the composer wrote (the solo score)

from what is actually played, we will call the latter

the solo performance or simply performance. Time in

the score is called virtual time to acknowledge the dif-

ference between the notated time and actual or real

time. The score consists of a set of events in time.

In our work, the solo score consists of note-on events

corresponding to pressing a key on a keyboard or de-

tecting a pitch from an acoustic instrument. A com-

pound event is a group of events, which are played

at the nearly same time. Since our events are note

beginnings, a chord is the most common compound

event.

Our accompaniment system has three important

parts.

Preprocessor This module processes input from

MIDI-IN and makes compound events by using

timing information. If this preprocessor gets two

or more events within a short time period, it

will put them together and make one compound

event. Also, it detects and processes trills and

glissandi.

Matcher The matcher compares the performance to

a stored solo score. The Matcher reports cor-

respondences between the performance and the

solo score to the Accompanist part. To �n-

ish the matching computation within reasonable

amount of time, it uses only a small portion of

score at any given time. We call this section of

the score a window.

Accompanist The accompanist module plays the

accompaniment part given in the score. It

changes its position and tempo in real time based

on information from the matcher.

Because we use MIDI for input and output, com-

mercial keyboard controllers and pitch detectors can

be used for input, and synthesizers can be used for

output. Although necessary for performance, we do

not consider these to be part of the system.

3. Multiple Matchers

Motivation. The matcher considers only a subset of

the score, called the window, at any given moment.

If the solo player is not playing inside of the window,

the matcher will not be able to track the solo player.

This problem can be reduced by making the window

larger, but since computation is proportional to the

window size, the problem cannot be eliminated. One

particular problem arises when the soloist temporar-

ily stops playing. The accompaniment continues in-

dependently until the soloist reenters. Where should

we expect the soloist to start playing? Reasonable

guesses are that the soloist will either reenter where

he stopped or he will reenter in synchrony with the

accompaniment. Unfortunately, it may not be possi-

ble for the window to span both of these locations.

Our solution is to allow multiple matchers strategi-

cally placed at places likely to match.

Matchers as Objects. We �rst conceived of the

matcher as an algorithm which �nds a match be-

tween the performance and the stored score. We have

changed our point of view and implementation from

procedure to object so that we can create as many

matcher instances as we want. By that change, we

can create a new matcher whenever we need it, and

we can dispose of it whenever we do not need it.

Creating Matchers. The matcher is a time con-

suming module, so we do not want to have many

matchers running all the time. Only when we are

particularly uncertain about the soloist's position will

we invoke another matcher and center its window on

an alternate location. We will create a new matcher

when we have more than one reasonable guess about

the position of the soloist. Typically, this happens

when the solo player stops his performance or when he

plays many extra notes. In our system, we check the

\virtual time" of the accompaniment and the \vir-

tual time" range of the matcher's window. If current

\virtual time" is not in that range, we will create a

new matcher at the position whose \virtual time" is

equal to the current accompaniment virtual time (see

Figure 1).

Terminating a matcher. When one of the

matchers �nds a match, we terminate the other one.

We keep the object in an inactive state until it is

needed again.

4. Trills and Glissandi

In our previous systems, all notes were de�ned in ad-

vance. If we think of a compound event as one event,

Score Time

matcher1

matcher2

� Soloist

stopped here.

� Accompanist

is playing here.

1000

1050

1070

1100

1150

1200

....

....

1485

1500

1550

1610

1630

virtual time = 1550

Figure 1: The two matchers' di�erent behavior.

performance score

a a-
b b-
c c-

Figure 2: One-to-One Mapping.

the matcher's job is fundamentally to �nd a one-to-

one mapping between \performance" and \score" (see

Figure 2).

But this is not true in case of trills or glissandi, be-

cause these ornamentations depend on the player and

are not precisely speci�ed in the score. For instance,

a trill does not specify how many notes to play, nor

does a glissando always specify what pitch to begin

from or exactly what notes to play. This is deter-

mined by the player and may vary from performance

to performance. For example, we cannot rewrite the

score, from trill[a,b] into [a,b,a,b,a,b,a,b,a,b] because

we do not know how many iterations there will be. In

order to cope with this kind of unpredictability, we

need to prepare some mechanism to �nd a \many-to-

one mapping" (see Figure 3).

Although we could change the matcher, we are hes-

itant to increase its complexity and decrease its per-

formance. Instead, we use the preprocessor to make

one special compound event from the trill using some

help from the score. Because the preprocessor con-

verts trills into single events, the matcher does not

need to consider whether the data is special or not.

performance score

a a-
b b-
c c-
d trill[d,e]-
e ��

��:

d �
��
�*

e �
�
��>

...�
�
�
��

f f-

Figure 3: Many-to-One Mapping.

Normal Tr/Gl

-

� �

Reading Special Symbol

Short Notes

Long Note or

Time Out or

Expected Note

Figure 4: State Transition Diagram.

The Preprocessor. The preprocessor consists of

a �nite state machine. When it detects special sym-

bols like \trill" or \glissando" in the score, it changes

its internal state from \normal" to \trill/glissando".

It also gets some other information such as expected

termination time of the trill/glissando from the score.

The character of these ornamentations is that notes

are far shorter than a quarter note. Thus, the pre-

processor will not exit the trill/glissando mode until

one of the following conditions: the preprocessor gets

a long note, the termination time of that ornamenta-

tion arrives, or the next note after the trill/glissando

is performed near its expected time (see Figure 4).

When the preprocessor enters the trill/glissando

state, it sends a special symbol to the matcher. While

the preprocessor is in that state, it does not send in-

formation to the matcher (see Figure 5).

Informing the Preprocessor. Every time the

matcher gets a match, it can predict the next note. If

this is a special symbol indicating trill or glissando,

the matcher tells the preprocessor about it. That

causes a state transition in the preprocessor.

performance preprocessor score

->matcher

a a a

b b b

c c c

d Tr/Gl Tr/Gl

e

d

e

d

f f f

Figure 5: How input is processed by the preprocessor.

5. Delayed Decisions

The matcher reports its location to the accompanist

whenever a newly performed note leads to a bet-

ter overall match than any match obtained earlier.

Sometimes, this rule does not work. For instance,

the soloist may play some grace notes or a trill or a

glissando. Sometimes, the preprocessor cannot han-

dle this input correctly, and it sends some extra notes

to the matcher. In these cases, there is a small possi-

bility of �nding a wrong match. To prevent that kind

of accidental matching, we should avoid trusting all

reports from the matcher. The Accompanist can re-

liably trust the match at the nth note if a match of

the n � 1th note was reported the last time. This

consecutive match increases the accompanist's con�-

dence about where it should be playing. But, if a new

match is not consecutive to the last match, the sys-

tem should be suspicious about that match because

it indicates that the player made some mistakes re-

cently. In such a situation, the matcher delays its re-

port to the accompanist. If the soloist is playing grace

notes, a trill or a glissando, the next note will come

soon. Then the preprocessor will get a note within

the delay time, realize something is wrong (because

the matcher cannot match the note) and the delayed

report is canceled. If nothing happens to cancel the

report, it is sent to the accompanist.

We delay reporting a match only in case of a dubi-

ous match, and only for a short period of about 100

ms. Nevertheless we have to compensate for that de-

lay time. If we suspend a match N ms, and speed is

de�ned as

speed = �virtual time=�real time

` ` ` ` ` ` ` ` ` ` ` ` ` ` `

`

`

`

`

`

`

`

`

`

`

`

`

`

`

` ` ` ` ` ` ` ` ` ` `

`

`

`

`

`

`

`

`

`

`

` ` ` ` `

`

`

`

`

�
�
�
�

�
�
�
��

-

6

(1) (3)

(2)

(4)

� -� -
?

6
?
6

virtual time

real time

(1) �real time

(2) �virtual time

(3) N

(4) virtual time delay

Figure 6: Compensation for the delay.

delay in virtual time will be

virtual time delay = N � speed

We pretend as if the match, whose virtual time equals

virtual time of that match+ virtual time delay;

occurred at

real time of the event+ N

in realtime (see Figure 6).

This computation removes any �rst order e�ects of

delay from the calculation of current virtual time and

speed, which is normally recomputed by the accom-

panist on every reported match.

Implementation Details. We keep a bu�er to

save one delayed report from the matcher. When

we want to delay a report, we save the place of the

match, when it occurred, and so on, and a ag is set

to indicate the bu�er is full. We also save the time

limit of the delay, which is the sum of real time and

delay time. So, if the match occurred at 1200 ms, and

suspension time is 100 ms, then the time limit will be

1300 ms. To cancel the report, we merely reset the

ag to indicate the bu�er is now empty. We check

the bu�er frequently by polling, and if the time limit

of a full bu�er passes without getting a new note, we

send a report the accompanist, but if we get a new

note within the delay time, we will cancel the report.

6. Other enhancements

Delayed decisions, dealing with ornaments and mul-

tiple matchers make up most of our work, but there

are some other changes worth mentioning. These last

enhancements are described below.

6.1. Octave Equivalence

We decided to neglect octave di�erences in pitch. By

doing this, the soloist can play in any octave. Also,

he can play an opened chord even if it is speci�ed as

a closed chord. However, there are some drawbacks

to dropping the octave information. Since we treat

C3 the same as C4, we have a small risk of getting a

wrong match. Although the best approach depends

upon the music and the performance, we are happy

with this choice, especially in light of the optimization

described next.

6.2. Using Bit Vectors

To deal with polyphonic notes, we use bit vectors to

represent sets. The vector is a 2 byte integer, whose

LSB corresponds to `C', and whose next bit corre-

sponds `C]/D[', and so on. In this data structure, we

can express any combination of notes in 2 bytes. This

is possible because we limit the note value from 0 to

11. If we used pitch value in the full MIDI range(0

- 127), we would need 16 bytes. Because matching

calculations are time critical, it is very important to

make note data and operations as compact and fast as

possible. By taking a bitwise \exclusive or" between

the score and performance events, we get \result1",

the bitmap of the di�erence between the two. Then

we \and" result1 with the score. We then have \re-

sult2", which shows which notes in the score are not

played. See �gure 7. By the �rst operation (exclusive

or), we know the di�erence, which includes unplayed

notes and extra notes. Extra notes may be a grace

note, so we choose to ignore extra notes. This is ac-

complished by the \and" operation. After that, we

have only unplayed notes. (This can be simpli�ed

slightly: result2 = score ^ perf .) By counting the

bits, we can get the number of unplayed notes. If this

number is smaller than some constant which is associ-

ated with the number of the notes in the score event,

we will treat it as a match. Thus the accompaniment

system can allow the player to play a di�cult chord

(performance) 0010 1010 0001

(score) 0010 1001 0001

EOR

(result1) 0000 0011 0000

(score) 0010 1001 0001

AND

(result2) 0000 0001 0000

Figure 7: Bitwise operations.

X Y

1 0 => must be played

2 0

3 1 => allow one unplayed note.

4 1

5 2 => allow two unplayed note.

X --- Number of note

in the score event

Y --- Allowed unplayed notes

Figure 8: Table of allowed unplayed notes.

imperfectly, and can report a match earlier than it

would if it waited until a chord was completed.

Let's take �gure 7 as an example. The number of

unplayed notes is 1, and the number of notes in the

score event is 4, so 1 unplayed note is allowed. Thus,

we say that these two match.

The merits of these operations are that we can

avoid time consuming set operations in the matcher

which would be required if we were to use other data

structures. These operations also e�ectively elimi-

nate the grace note, and allow the performer to add

some extra notes without penalty. An interesting

consequence is that notes can be purposefully omit-

ted from score events. For example, instead of [C E

G], one can specify [C] in the score. Our matching

algorithmwill eliminate [E G] automatically from the

performance, and report a match. In this case, any

chord with a C, or just the single note C will match.

7. Evaluation

We succeeded in getting a very robust system using

the ideas described above. The techniques for han-

dling grace notes work especially well in comparison

to our earlier systems. A problem arises when the

soloist does not play correctly just before the begin-

ning of a trill or glissando. In this case, the matcher

fails to inform the preprocessor about the next note;

the preprocessor then fails to change its internal state,

and it sends the all of the ornamentation notes to the

matcher. The matcher will be confused by the un-

expected notes and will not be able to �nd a match.

Even if that happens, the second matcher, which is

located near the current virtual time, will �nd match

after soloist �nishes trill or glissando.

8. Future Work

Viewed as an expert system, this computer accom-

paniment system is still in a knowledge acquisition

phase. We have improved the system performance by

creating richer processing models based on our intu-

itive understanding of how we, as musicians, process

and understand performance information. In the fu-

ture, we are planning to improve the system further

as outlined below.

At present, we have to specify trills or glissandi

by hand. If the player wants to make the score by

giving a real-time performance, we need to provide

an automatic detector of trills and glissandi. Also, it

would be very nice if we could provide a very useful

general and integrated environment so that we could

play, record and edit music easily. For example, the

CMU Musician's Workbench Project[4] will consist of

graphic score editors that exchange data through a

common music representation used for performance

capture and synthesis. The eled facility is another

example of a score manipulation system [5].

Performers sometimes ignore repeat signs, miss the

coda, or skip a page of music. In our implementation,

the score is a one-dimensional array. Thus, we cannot

express some musical branch structure speci�ed in the

paper score such as \repeat",\D.S",etc. By adding

structures to the score to encode repeats or branches,

we can use an extra matcher to detect when the player

jumps to the wrong spot.

Once our system gets completely lost, the only

chance for recovery is if the performer starts following

the accompaniment. (Recall that we keep the window

of one matcher around the current virtual time of the

accompaniment.) To prevent catastrophes, we want

to have a last resort, that is, the capability of search-

ing the whole score when all else fails.

Improvisation is called for in contemporary art mu-

sic as well as popular music and jazz. The cur-

rent accompaniment system cannot deal with much

variation in the performance; however, small and

predictable variations like grace notes are handled

very well, and we have used the preprocessor to �l-

ter more complex sequences (trills and glissandi).

These techniques might be extended to handle impro-

visatory sections. Ultimately, an accompaniment sys-

tem should \listen" to an improvisation rather than

�lter it out. We are investigating entirely new tech-

niques toward this goal [6].

9. Summary

We have extended our earlier polyphonic accompani-

ment systems in order to handle trills, glissandi, and

grace notes. We have also made the system more

robust in the face of performance errors. The two

primary techniques are the use of multiple matchers

and the use of delays in reporting matches. Multiple

matchers allow the accompaniment system to look for

matches within disjoint intervals of the score. With

just two matchers we can make the system much bet-

ter at recovering from performance errors. By delay-

ing reports of matchers to the accompanist, we can �l-

ter out grace notes, performance \glitches", and other

short-lived mistakes. Delays allow us to avoid making

a hasty conclusion when the data is suspect.

10. Conclusions

Computer accompaniment o�ers the composer and

performer much of the exibility that was lost in the

transition from live performance to mixed live and

taped music. Before computer accompanists become

commonly accepted, they must be reliable, responsi-

ble, and capable of following the full range of standard

performance practice. We believe our contributions

have brought us close to this goal.

11. Acknowledgments

The authors wish to thank the Yamaha Corporation,

the Center for Art and Technology and the Computer

Science Department at Carnegie Mellon University

for their support.

References

References

[1] Dannenberg, R. B. 1984. \An On-Line Algo-

rithm for Real-Time Accompaniment." Proceed-

ings of the 1984 International Computer Mu-

sic Conference, 1984. San Francisco: Computer

Music Association, pp. 193-8.

[2] Vercoe, B. 1984. \The Synthetic performer in the

context of live performance." Proceedings of the

1984 International Computer Music Conference,

1984. San Francisco: Computer Music Associa-

tion, pp. 199-200.

[3] Bloch, J. J. and Dannenberg, R. B. 1985. \Real-

Time Computer Accompaniment of Keyboard

Performances." Proceedings of the 1985 Interna-

tional Computer Music Conference, 1985. San

Francisco: Computer Music Association, pp.

279-89.

[4] Dannenberg, R. B. 1986. \A Structure for Rep-

resenting, Displaying, and Editing Music." Pro-

ceedings of the 1986 International Computer

Music Conference, 1986. San Francisco: Com-

puter Music Association, pp. 153-60.

[5] Decker, S. L. and Kendall, G. S. 1985. \A Uni-

�ed Approach to the Editing of Time-Oriented

Events." Proceedings of the 1985 International

Computer Music Conference, 1985. San Fran-

cisco: Computer Music Association, pp. 69-77.

[6] Dannenberg, R. B. and Mont-Reynaud, B. 1987.

\Following an Improvisation in Real-Time."

Proceedings of the 1987 International Computer

Music Conference, 1987. San Francisco: Com-

puter Music Association, pp. 241-8.

