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Abstract  
Arctic is a langu-~ge for tile specification and imp!ementation of 

real-time control systems. Unlike more conventional languages 
for real-time control, which emphasize concurrency, Arctic is a 
stateless language in which the relationships between system 
inputs, outputs and intermediate terms are expressed as 
operation.~ on time-varying functions. Arctic allows discrete 
events or conditions to invoke and modify responses 
asynchronously, but because programs have no state, 
synchronization problems are greatly simplified. Furthermore, 
Arctic programs are non-sequential, and the timing of system 
responses is notated explicitly. This eliminates the need for the 
programmer to be concerned with the execution sequence, which 
accounts for much of the difficulty in real-time programming. 

1. Introduction 
Real-time computer systems are generally regarded to be the 

most difficult to program [9]. We are especially interested in the 
class of real-time systems that must respond to inputs quickly (on 
the order of 1ms) but require a considerable amount of logic or 
decision-making. We can characterize this class roughly as falling 
between two extremes in the spectrum of response times. For 
systems Ihat must respond much faster, special-purpose 
hardware is required, and programming is not the limiting factor. 
Signal 0roce.~sing falls into this category. At the other extreme are 
"soft" real-time systems that need not respond so quickly. 
Conventiona! multi-tasking system~ or even general-purpose 
operatin 9 ~ystems are adequate for the implementation of these 
systems. A=} inventory control system falls into this category. 
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Between these extremes lie a number of applications, including 
industrial automation, transportation systems, robe!s, consumer 
products, enimation, and computer music. The present work was 
motivated directly by the demand for a flexible yet powerful 
language that could meet the real time constraints of computer 
music applications. I am currently looking at other possibilities, 
such as the control and instrumentation of physical experiments, 
animation and, job control. Typically, these systems must deal 
with many concurrent and interacting tasks, and the programmer 
is faced with several problems, including concurrency, 
synchronization, and timing. 

The first of these problems is concurrency: the programmer 
must multiplex the processor(s) among a number of tasks. Often, 
the overhead of context switching between processes would be 
too high, so the programmer must coalesce his tasks into a loop 
within a single process. (See Figure 1). This transformation, of 
course, is not necessarily straightforward. 

cobeg in  w h i l e  t rue  do 
Task1; beg in  
Task2; > do_par t  of  Task l ;  
Task3 save Task1 s t a t e ;  

coend do_par t  of  Tas-k2; 
save_Task2_s ta te ;  
do pa r t  of  Task3; 
save Task3 s t a t e  

end 

Figure ! : Transformation of three paralleltasks 
to eliminate multiple processes. 

In any case, the programmer must formu!ate his concurrent tasks 
to produce real-time responses in tiny steps so that the tasks can 
be multiplexed at a fine granularity. 

The second problem is synchronization. Whether the 
programmer uses multiple processes, or simply performs tasks in 
sequence, he must make sure that dat~. is available before it is 
used. For programs that sample inputs, perform operation~, and 
produce sampled outputs, the appropriate model of computation 
is a data-flow graph rather than a collection of processes. 
Synchronization mechanisms are also needed so that tasks can 
be started and stopped by various events and conditions. 
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The third problem is timing. The real-time system program does 
more than merely compute values; it must also read and write 
them at the proper time. Proper timing is usually achieved as a 
side-effect of sequential execution. For example, if a program 
discovers it must do operation X at some future time t, it can either 
wait until t, or it can schedule X and do other things until time t. 
Either way, it is the sequential combination of a wait (or doing 
other things) followed by X that convinces us X will happen at time 
t. Often, the execution sequence with which a program could 
most directly compute values bears little relationship to the time 
sequence in which the values are needed. I conjecture that this is 
the largest single source of complexity in real.time programs. 

The development of the programming language Arctic is 
motivated by all three of these problems. In Arctic, values have a 
time dimension; that is, an Arctic value can be viewed as a real- 
valued function of time. t Thus, Arctic allows us to manage 
concurrently varying values as succinctly as conventional 
languages allow us to deal with several variables. Concurrency is 
a natural by-product of the functional properties of the language, 
rather than a language control construct. 

Arctic also simplifies the problem of synchronization for the 
programmer. Since Arctic programs have no state or imperative 
commands [3], synchronization is unnecessary to govern the 
order of execution. With regard to synchronization, Arctic has 
properties similar to those of data.flow languages [14]. 

The problems of timing are addressed in Arctic by a complete 
and fairly explicit specification of exactly when things happen. If 
we want an event X to take place at time t, we write X@t, meaning 
"do X at time t". The formal meaning of this expression will be 
explained further below. 

So far, I have described some problems of real-time control and 
hinted at a language, Arctic, that offers some solutions to them. 
Below, I will discuss the principle components of Arctic, including 
how responses are defined, the specification of timing 
relationships, and asynchronous event handling. I conclude with 
a discussion of some properties of Arctic. 

2. Previous Work 
Arctic synthesizes ideas from functional programming 

languages and several languages and systems for computer 
music. The principal advantage of fimctional languages for real- 
time control is the simplicity of concurrent evaluation due to the 
absence of side-effects. Data-flow languages, which allow a 
restricted form of assignment operation, are also amenable to 
concurrent execution [14, 5]. These languages are interesting in 
that all parallelism and synchronization are implicit, as opposed to 
imperative languages, which introduce explicit processes and 
synchronization constructs for concurrency. 

1Arctic values have some additional attributes, but we can safely ignore them for 
the time being. 

However, functional and data-flow languages achieve their nice 
properties in part by suppressing the notions of time and 
sequence. Arctic regains the ability to deal with time by virtue of 
its primitive values, which are themselves functions of time. This 
is reminiscent of streams in data-flow languages[6], and 
sequences in Lucid [2]. However, there is a fundamental 
difference between Arctic values and these streams or sequences. 
While Arctic values are conceptually continuous and are 
"indexed" or referenced by global time, streams and sequences 
are indexed and aligned by position relative to the beginning of 
the particular stream or sequence. 

Arctic also borrows heavily from several previous music-oriented 
languages, including Music V [11], the GROOVE system [12], and 
4CED [1]. Music V is not a real-time control language, but it does 
allow one to write programs whose output is a time-varying signal. 
Music V uses data flow-like programs to describe instruments and 
separate event lists (scores} to invoke instances of instruments at 
specified times. Instruments cannot invoke other instruments, 
however. The GROOVE system introduced the idea of function 
manipulation for real-time control, but had no notion of 
responding to discrete events. On the other hand, 4CED includes 
events (attach points), and the response to an event can in turn 
cause another event, but 4CED does not provide function 
manipulation as a primitive operation. The 4CED language allows 
the time of execution of statements to be notated explicitly; 
however, the language is largely sequential to simplify its 
implementation. 

Several researchers have adopted the object-oriented 
programming style for the real-time control of music [16, 17] and 
animation [10, 15]. These systems typically build a structure at 
run-time containing a set of objects which respond to "t ick" 
messages. The objects serve to encapsulate tasks, and each 
"tick" message causes a task to update its state to reflect the 
passage of one quantum of time. Thus, the concurrency problem 
illustrated in Figure 1 is still present, although it is mediated by the 
abstraction facilities of object-oriented languages. The 
programmer must be concerned with synchronization. For 
example, if one object uses data produced by another, then the 
order of "t ick" messages is important. 

The OWL language [8] falls somewhere between the functional 
approach of Arctic and the more traditional process-oriented 
languages[19,7, 13]. OWL programs manipulate state like 
procedural languages, but OWL has implicit looping and 
processes that facilitate a non-sequential, event, and condition- 
driven style of programming. 

3. Pre l iminar ies  
Before describing Arctic, it is helpful to consider the formal 

model of real-time systems on which Arctic is based. For any 
application, a real-Lime system is modeled as a "black box" that 
has a set of inputs and a set of outputs. (See Figure 3.) These 
may be continuous (representing, say, a temperature reading or a 
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voltage output), in which case the input or output is modeled by a 
real-valued function of time. An input or output may also be a 
discrete event (perhaps representing a contact closure), in which 
case the model is a set of times at which the event occurs. 

I I 

II 

R e a l - l i m e  
System > I 

; I I I  

Figure 3 : Schematic of a real-time system having continuous 
and discrete event inputs and outputs. 

An Arctic program is a description of the real-time response of a 
system to its continuous and discrete event inputs. Formally, an 
Arctic program denotes a higher-order function from the set of 
inputs to the set of outputs. Because it is impossible to measure 
or represent real input values or times with infinite precision, any 
Arctic implementation will only approximate the ideal, just as 
floating-point numbers and operations are only an approximation 
to real arithmetic. 

4.  Pro to t ypes  
The primary structuring mechanism in Arctic is the prototype, 

which is roughly analogous to a process, procedure, or function in 
other languages. A prototype is more properly regarded as a 
specification for a response to a class of events. An event causes 
an instnntiation of the corresponding prototype, and the specified 
response ensues. The nature of this response can be a function 
of the time of instantiation (the time of the event) and the duration 
of the instantiation. If events happen at times t I and t 2, then we 
get two (possibly concurrent) responses, one parameterized by t 1 
and the other by t~. (The duration parameter, and a third 
parameter, terminate will be discussed later.) 

Let us consider an example. Suppose we want to implement a 
doorbell that does not ring between the hours of midnight and 8 
AM. The system will have one event input called Push which 
OCCURS whenever the button for the doorbell is pushed. The 
output of tile system is an event, RingBell, which is interfaced to 
an electrical bell (see Figure 4). 

Push 

Figure 4 
t 

: The doorbell system. 

> RingBell 

The Arctic program that describes the response of this system is 
as follows: 

Push causes [ 
if (time rood 24 hours) > 8 hours 
then RingBell 
] 

The first line declares Push to be a prototype. Since Push is a 
system input, the Push prototype will be instantiated whenever a 
Push event occurs. The parameters time and dur are implicitly 
declared for every prototype. Within the body of Push, time 
denotes the real-valued time of instantiation of the Push prototype. 
Similarly. dur denotes the st;etch factor, which is unity by default. 

/ 

The next line of the example is simply a test to see if the time is 
after 8 AM. If so, the then part says to instantiate RingBell. Since 
RingBell is a system output, this causes an output event which, in 
this system, rings the doorbell. 

Although the syntactic constructs of Arctic look like expressions 
and statements of more conventional languages, they actually 
denote prototypes, which yield Arctic values when instantiated. 
Thus, a Push event causes an instance of the Push prototype, 
which is defined to be an instance of the prototype enclosed in 
brackets ([...]). This happens to be an if prototype, which denotes 
an instance of either its then part or its e lse part, depending upon 
the value yielded by an instance of the prototype between if and 
then. 

5.  Shi f t  and S t re tch  
By now, the reader is probably wondering about the purpose of 

the implicit time and dur parameters. These are used to specify 
when prototypes are instantiated, that is, when things happen. In 
the previous example, everything happens at the time of the Push 
event. I purposely glossed over the aspects of Arctic semantics 
that determine this. But now, suppose we want to implement a 
system where the response may involve a sequence of carefully 
timed outputs. To illustrate this. we will extend our doorbell to 
play a familiar tune. As with the previous example, we will first 
write the program, and then peek at the underlying semantics to 
see why it works. 

To extend the doorbell, we need a set of four event outputs 
interfaced to four electrically operated tubular bells (chimes) as 
shown in Figure 5. 

Push 

-> Gbell 
> Cbell 
-> Dbell 
> Ebell 

Figure 5 : The extended doorbell system. 
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The program is as follows: 
Push causes [ 

if (time mod 24 hours) > 8 hours 
then BigBen 
] 

BigBen causes [ 
Ebefl @ O; 
Cbefl @ 1; 
Dbefl @ 2; 
Gbefl @ 3; 
Gbefl @ 8; 
Dhell @ 9; 
Ebefl @ 10; 
Cbefl @ 11 
] 

In this program, we have replaced the instantiation of RingBell 
within Push by an instantiation of BigBen, which is not an output 
event, but a program-defined prototype. When instantiated, 
BigBen plays a melody by generating a sequence of output events. 
An Ebell event will occur at 0 seconds, relative to the instantiation 
of BigBen. This is followed by a Cbell bvent at 1 second, a Dbell 
event at 2 seconds and so on. Because the timing is given 
explicitly, the lexical ordering of events is arbitrary. 

Now let us look at why this sequence of outputs will occur. As 
mentioned above, all prototypes have an implicit time and duration 
parameter. Thus, the symbol BigBen within the Push prototype is 
really a syntactic shorthand for BigBen(time, dur), where time and 
dur are the parameters of Push. Therefore. an instantiation 
ordinarily "inherits" the time and duration of its instantiator. 
However, the programmer can modify the time of instantiation in a 
straightforward way using the shift ( "@")  and stretch ( "~" )  
operators. 

The shift operator is used to alter the instantiation time. If we 
write out the time and duration parameters explicitly, the following 
expression holds for any prototype P: 

(P @X)(time, dur) = P(time + X.dur, dur) 
Notice that the time of instantiation is increased by the product of 
X and the duration factor. The rationale for this definition should 
become clear later. 

Similarly, the stretch operator can be used to alter the duration 
parameter: 

(P ~ X)(time, dur) = P(time, X.dur) 
Notice t h a t P @  0 = P ~ 1 = P. Also; shift and stretch can be 
nested. 

Returning to our example, observe that the form of the BigBen 
prototype is [A;B;C;...], where A,B,C,... are prototypes. This is a 
collection construct, and is instantiated by instantiating each of 
the component prototypes in parallel. The time and dur attributes 
for each component are the same as for the collection prototype. 
Thus, instantiation time and duration factors are "inherited". We 
can now see that the time of the bell events output by the BigBen 

prototype will be the sum of tile time parameter of the instance of 
BigBen and the constants indicated after each bell event, which 
serve to shift the time parameter. Thus, the last Cbell event will 
occur 11 seconds after the instantiation of BigBen. 

To illustrate the stretch operation, suppose we decide that an 
11-second doorbell is a bit too long and we want to speed things 
up. We could modify the BigBen prototype by decreasing all of 
the shift values proportionally. Alternatively, we could replace the 
instantiation of BigBen in Push by BigBen-O.5 which would have 
the effect of playing the melody in half the time. To convince 
yourself of this, notice that in the definition of P@X the time is 
shifted by Xodur, where dur is the duration factor (0.5 in this case). 

Thus, protot~/pes like BigBen not only encapsulate behaviors, 
they also create a scope subject to time tran;formations. The 
temporal specification of events is very flexible and economic in 
Arctic because time and dur attributes are inherited by 
components of collections, and because shift (@) and stretch (~) 
compose. 

6.  Sequences  and At t r ibu tes  
Although I argued earlier against sequential programming, it is 

still important to be able to produce sequential va/ues or to define 
responses as sequences of more primitive ones. In Arctic, 
prototypes can be instantiated sequentially using the sequence 
construct: 

[AIBIC...] 
which means "instantiate A, then B, then C, and so on." The 
question is: how long after the instantiation of A do we instantiate 
B? To answer this, we must learn about attributes. Every 
instantiation yields a (possibly void) value and two attributes, start 
and stop. The start attribute is ordinarily equal to time and 
represents the starting time of the response produced by a 
prototype. The stop attribute indicates the time at which the 
response finishes. The stop attribute is defined for all primitive 
prototypes, some of which will be described later. For the 
co//ection construct described in the previous section, the stop 
attribute is the maximum stop attribute of any component 
prototype; however, this default can be overridden with the use of 
the end construct. For example, if X is some expression, and the 
following collection is instantiated at time time with duration factor 
dur: 

[A; B; end @ X] 
then the stop attribute is (by definition) time + X.dur. 

Now we are prepared to specify the semantics of the sequence 
construct: In a sequence, the time of instantiation of the (lexically) 
first prototype is the instantiation time of the sequence. The time 
of instantiation for each successive prototype is the stop attribute 
of the instantiation of the previous prototype in the sequence. The 
stop attribute of the sequence is the stop attribute of the 
instantiation of the (lexically) final prototype in the sequence. The 
duration factor for each prototype in the sequence is the duration 
factor of the sequence itself. 
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7. Values 
Thus far, only discrete inputs and outputs have been described. 

Arctic also allows the specification of roaHime systems with 
continuous, time-varying values. Formally, a value is a triple 
<f, s, e>, where f is eithor void or a function from a half-open 
interval of the reals (a time interval) into the  reals, s is the start 
attribute, and e is the stop attribute. These values may be used in 
arithmetic expressions, assigned to variables (under the single 
assignment rule [14]), or passed as parameters to prototypes. For 
example, a simple linear amplifier may be implemented by the 
following: 

[output : = input " gain], 
where input is a signal input, gain is the gain control input, and 
output is the system output. 

A set of simple prototypes are predefined and serve as building 
blocks for defining more complex ones. For example, ramp yields 
a function defined on the interval (time, time + dur] and whose 
value at t is (t - t ime)/dur. The sin prototype takes two 
arguments, f and p, returning 

sin(21"/t,Jttime f(x)dx + p(t)) 
for t in (time, time + dur]. Thus, sin returns a sin function whose 
instantaneous frequency and phase are given by functions f and p. 
The extract prototype takes three arguments, f, a, and b, and 
returns a function which is equal to f(t) for t in (a,b] and zero 
otherv,ise. 

8. Condi t iona ls  
Arctic has three types of boolean expressions corresponding to 

three conditional constructs in the language. The type of 
expression is easily determined by context. The first type was 
seen in the Push prototype in connection with the i f - then-e lse 
construct. This type returns a boolean constant and corresponds 
closely to conditionals in conventional programming languages. 

The second type returns a boolean function of time, which can 
be used in the conditional prototype, which has the form: 

( C ? A : B ) .  
An instance of the conditional prototype is a function on the 
interval (time, time + dur] that is equal to A(I) if C(t) is true, and 
B(t) if C(t) is false. An example using this form of conditional will 
be given in Section 10. 

The third type of boolean expression is the conditional event, 
which can used with the until construct described in the next 
section. In this context, a boolean function is evaluated to find the 
first moment after time at which the function is true. This is then 
taken as the event time. In this way, conditions can give rise to 
events and prototype instantiations, making demons trivial to 
implement. 

9. Asynchronous Events 
An asynchronous event is one that occurs at an arbitrary time 

and has some effect on a response already in progress. Arctic 
uses a special construct to define prototypes that depend upon 
events or conditions. Suppose we want a function that increases 
smoothly from 0 to 1 and then holds constant until the quit event 
occurs. This could be written: 

Go causes [ramp I (1 un t i iqu i t  then 0)]. 
Instances of Go are illustrated in Figure (9). The unt i l  construct is 
defined as follows: consider the prototype P unt i l  C then Q, 
where P and Q are prototypes, C is an event, and let P.stop be the 
stop attribute of an .,~stance of P. Now, if C occurs at time t, and t 
is between time and P.stop, then P unti l  C then Q is equivalent to: 

extract(P, -~o, t) + Q @ ((t - t ime)/dur). 
Thus, the effect is to combine (by addition) ttle value of an 
instance of P up to time t with an instance of Q at time t. In the 
definition, extract refers to the prototype defined at the end of 
Section 7, and the expression ((t - time) / dur) is used to 
instantiate Q at abso/ute time t (substitute (t - time) / dur for X in 
the definition of " @ "  in Section 5). On the other hand, if C does 
not occur before P.stop, the unt i l  construct is equivalent to P, and 
Q is not instantiated. 

Go qu i t  Go qu i t  ( t ime)  

Figure 9 : Instances of the Go prototype, illustrating 
asynchronous responses. 

This informal definition of unti l  can be formalized and extended 
to cover cases where P in turn causes many instantiations. This is 
accomplished by attaching yet another implicit parameter, or 
inherited attribute, to each instance to specify a termination time. 
Primitives are then defined to end at the termination time if it 
occurs earlier than time + dur. For example, the ramp primitive is 
now defined in terms of three (implicit) parameters: time, dur, and 
terminate. If time < terminate < time + dur then ramp is.defined on 
the interval (time, terminate], and its value at t is (as before) (t - 
time) / dur. Otherwise, ramp is defined by the same expression, 
but on the interval (time, time + dur]. 

Other primitives are defined in a similar manner, and the 
collection and sequence constructs are defined to pass this 
terminate attribute on to their component prototypes. 
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10.  Example 
The following program implements the "musical sieve" of Cointe 

and Rodet [4[, whose original pro0ram is presented in the object- 
oriented language Formes. The task is to produce a time-varying 
pattern in parallel with time-varying data. The output of the 
program is f l ,  a function of time. We will use a sequence of 
prototypes to implement the pattern and data: 

out  ft; 
value data; 

C is [100 * unit ~ 0.2] 
E is [130 * unit ~ 0.2] 

noC is [(data = 100? 140:data) ~ 0.3] 

hoe is [(data = 130? 140 :data) ~ 0.3] 

Go causes [data := [E IE IC] ;  
t l  : = [noC I noE I noC]]; 

The main prototype, Go, assigns data to the sequence of 
prototypes E, E, and C, which in turn are defined to be rectangular 
pulses of two different heights, and 0.2 seo in duration. In parallel, 
a sequence of pattern prototypes is instantiated to compute the 
output t l .  The pattern noC examines data, returning 140 if data is 
equal to 100 (the height of the pulse made by the prototype C), 
and otherwise returning the current value of data. The noC 
prototype operates on an interval that is 0.3 seconds in duration, 
achieved by instantiating the conditional expression with duration 
factor 0.3. The neE prototype is similar to noC except that it 
rejects values of 130 (the height of the E pulse) rather than 100. 
Figure 10 illustrates data and the intervals of time during which E 
and C prototypes are instantiated. The lower half of the figure 
illustrates the output f l  and the intervals during which noC and 
hoE prototypes are instantiated. 

140 
d a t a  130 (E) 

100 
(c) 

°oc hoe °oc 

140 
f l  130 ' 

(e) 

100 ' 

(c) 
0.0 o:1 o:2 o:3 o:4 o:6 0'7 o:8 o:9 t:o 

Figure 10 Graph of the intervals of E and C prototype 
instantiation, data the intervals of noC 

and noE instantiations, and the output f l .  

10.1. Funct ions vs. Pro to types  
This example illustrates the difference between Arctic values 

(functions of time) such as data and f7 and Arctic prototypes such 
as unit and C. Wherever the name of a value is mentioned in the 
program, the name denotes a single function of time. If value 
names are changed to eliminate conflicts ordinarily handled by 
static scope rules, then a value name denotes the same function 
everywhere in the program, independent of implicit time, dur, and 
terminate parameters. In other words, shift and stretch operators 
have no effect upon Arctic values. 

Prototypes, on the other hand, are higher order functions of the 
implicit parameters time, dur, and terminate, as well as possible 
explicit parameters. Each occurrence of a prototype name in the 
program denotes a new instance of the named prototype. For 
example, in the sieve program above, the symbol "uni t"  denotes 
an instance of the unit prototype. Each occurrence of "uni t "  can 
denote a potentially new function since time, dur, and terminate 
may be different for each. An instance may produce an Arctic 
value. 

11.  Discussion 
Arctic derives expressive power from several sources. First, 

functions of time can be combined and manipulated as a whole, as 
opposed to viewing functions as streams of values that must be 
dealt with individually. Second~ there is an instantiation 
mechanism through which discrete 9vents or conditions can give 
rise to complex responses. Another source of expressive power is 
the fact that the time of instantiation can be explicitly controlled. 
Timing is achieved by direct specification in the program, in 
contrast to languages where timing is a consequence of the 
sequential execution of many instruction streams. Specification is 
streamlined by the use of implicit parameters, which are 
"inherited" by components of constructs and can be transformed 
using shift and stretch operators. Finally, Arctic "variables" obey 
the single assignment rule; thus, synchronization between 
concurrent prototypes that define values and those that use them 
is implicit and need not concern the programmer. 

11.1. Side Effects 
In some cases, however, a pure side-effect free language is 

awkward. Consider the case where many instancec; of prototypes 
contribute to an output, such as the first doorbell example. Here, 
the RingBell output of the system must include one event for each 
instance of RingBell caused by Push. Thus, we have to combine 
an arbitrary number of instances to form a single output. The 
problem also occurs with Arctic values and continuous outputs. 
For example, in the signal processing aspects of computer music, 
one often wants to synthesize several instruments independently 
and add their sounds together. For efficiency, the synthesis 
algorithm should instantiate instrument prototypes dynamically, so 
the number of signals to sum will vary with time. A static 
expression such as "A + B + C" cannot express this summation. 
Restricted forms of side effects are used to solve these problems. 
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For the problem of discrete events, exemplified by RingBell ,  the 
combination of events is implicit, and two instances of Push (after 
8 AM) will ring the bell twice, just as two occurrences of C in 
[C I C] denote two sequential instances of the prototype C. This 
may be considered a form of side effect. 

In the case of continuous functions, the problem is solved by 
declaring a value or output to be a sum or product.  Then, an 
instance can contribute an addend or factor using a construct 
like: 

out + = expression. 
The value of out at time t is the sum of all x(t), such that x(t) is 
defined, and out + = x is instantiated. Thus, out has the same 
value throughout the program, and it is not possible for a 
prototype to look at out and then modify it in any way 2. This is 
what one would expect from a single-assignment language. On 
the other hand, the prototype [P; P] may not mean the same thing 
as [P], because each instance of P may contribute to some sum 
variable. Thus, several restricted forms of side effects are 
possible in Arctic. 

1 1 .2 .  Implementat ion 
Arctic programs have been hand compiled to calls on function 

manipulation procedures, and a non-real-time interpreter is under 
development. These initial implementations assume that the 
inputs are completely known before program execution begins. 
An interactive graphics program carj be used to draw and 
manipulate functions of time before sending them as inputs to the 
Arctic interpreter. For these programs, continuous functions are 
approximated by piece-wise linear functions, which are 
represented by lists of coordinates of the inflection points. 

I am currently designing a true real-time implementation, in 
which v sequential processor will be multiplexed rapidly among a 
large number of concurrent instances. For this implementation, 
Arctic values will be represented by their current value, and 
primitive prototype instances will be represented by a few words of 
state and parameter information. The calculations to be 
performed will be represented as a linked list of primitive 
operations, which will be ordered according to precedence 
constraints implied by the single assignment rule. The 
instantiation of a prototype will add operations to the list. 
Secondary structures will be necessary to support the until 
construct which has the effect of removing operations from the list 
asynchronously. I believe that Arctic programs can be executed 
without conventional processes or context switches, which would 
be prohibitively expensive for the applications of interest. This will 
make Arctic competitive with more conventional real-time program 
structures. 

I am also considering tt~e problems of mapping Arctic programs 
onto highly parallel, reconfigurable arrays of processors, such as 
the UPE (Universal Processing Element) proposed by Carver Mead 
[18]. In this scheme, a small UPE processor would be allocated to 

each arithmetic or logical operation that resulted from an Arctic 
instantiation. Data would move synchronously through an 
interconnection network from one UPE to the next. Although 
many problems still need to be solved, a single bcard VLSI 
implementation could perform several hundred million operations 
per second and make Arctic applicable in the realm of signal 
processing. 

1 2. Conclusion 
Arctic is a powerful language for the descr ipt ion of real-time 

systems. Its development has led to a clearer understanding of 
how real-time systems should be specified; for example, it is useful 
to model a time-varying input as a real-valued function of time 
even if the input is implemented as a stream of discrete samples. 
It is my belief that Arctic will also be a powerful tool for the 
imp lementa t ion  of real-time systems. My colleagues and I are 
currently building experimental systems to test this hypothesis. 
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20f course, the value of out at some time greater than t may be a function of the 
value of out at time t. 
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