
Arct ic: A Funct ional Language for Real -T ime Control

Roger B. Dannenberg

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract
Arctic is a langu-~ge for tile specification and imp!ementation of

real-time control systems. Unlike more conventional languages
for real-time control, which emphasize concurrency, Arctic is a
stateless language in which the relationships between system
inputs, outputs and intermediate terms are expressed as
operation.~ on time-varying functions. Arctic allows discrete
events or conditions to invoke and modify responses
asynchronously, but because programs have no state,
synchronization problems are greatly simplified. Furthermore,
Arctic programs are non-sequential, and the timing of system
responses is notated explicitly. This eliminates the need for the
programmer to be concerned with the execution sequence, which
accounts for much of the difficulty in real-time programming.

1. Introduction
Real-time computer systems are generally regarded to be the

most difficult to program [9]. We are especially interested in the
class of real-time systems that must respond to inputs quickly (on
the order of 1ms) but require a considerable amount of logic or
decision-making. We can characterize this class roughly as falling
between two extremes in the spectrum of response times. For
systems Ihat must respond much faster, special-purpose
hardware is required, and programming is not the limiting factor.
Signal 0roce.~sing falls into this category. At the other extreme are
"soft" real-time systems that need not respond so quickly.
Conventiona! multi-tasking system~ or even general-purpose
operatin 9 ~ystems are adequate for the implementation of these
systems. A=} inventory control system falls into this category.

Permission to copy without fee all or part of dais material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. Tocopy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-142-3,84/008/0096 $00.75

Between these extremes lie a number of applications, including
industrial automation, transportation systems, robe!s, consumer
products, enimation, and computer music. The present work was
motivated directly by the demand for a flexible yet powerful
language that could meet the real time constraints of computer
music applications. I am currently looking at other possibilities,
such as the control and instrumentation of physical experiments,
animation and, job control. Typically, these systems must deal
with many concurrent and interacting tasks, and the programmer
is faced with several problems, including concurrency,
synchronization, and timing.

The first of these problems is concurrency: the programmer
must multiplex the processor(s) among a number of tasks. Often,
the overhead of context switching between processes would be
too high, so the programmer must coalesce his tasks into a loop
within a single process. (See Figure 1). This transformation, of
course, is not necessarily straightforward.

cobeg in w h i l e t rue do
Task1; beg in
Task2; > do_par t of Task l ;
Task3 save Task1 s t a t e ;

coend do_par t of Tas-k2;
save_Task2_s ta te ;
do pa r t of Task3;
save Task3 s t a t e

end

Figure ! : Transformation of three paralleltasks
to eliminate multiple processes.

In any case, the programmer must formu!ate his concurrent tasks
to produce real-time responses in tiny steps so that the tasks can
be multiplexed at a fine granularity.

The second problem is synchronization. Whether the
programmer uses multiple processes, or simply performs tasks in
sequence, he must make sure that dat~. is available before it is
used. For programs that sample inputs, perform operation~, and
produce sampled outputs, the appropriate model of computation
is a data-flow graph rather than a collection of processes.
Synchronization mechanisms are also needed so that tasks can
be started and stopped by various events and conditions.

96

Roger Dannenberg
Originally published as: Roger B. Dannenberg, "Arctic: A Functional Language for Real-Time Control."

Roger Dannenberg
In

Roger Dannenberg
Proceedings of the 1984 Symposium on LISP and Functional Programming.

Roger Dannenberg

Roger Dannenberg
ACM, New York, NY. 1984. pp. 96-103.

Roger Dannenberg

The third problem is timing. The real-time system program does
more than merely compute values; it must also read and write
them at the proper time. Proper timing is usually achieved as a
side-effect of sequential execution. For example, if a program
discovers it must do operation X at some future time t, it can either
wait until t, or it can schedule X and do other things until time t.
Either way, it is the sequential combination of a wait (or doing
other things) followed by X that convinces us X will happen at time
t. Often, the execution sequence with which a program could
most directly compute values bears little relationship to the time
sequence in which the values are needed. I conjecture that this is
the largest single source of complexity in real.time programs.

The development of the programming language Arctic is
motivated by all three of these problems. In Arctic, values have a
time dimension; that is, an Arctic value can be viewed as a real-
valued function of time. t Thus, Arctic allows us to manage
concurrently varying values as succinctly as conventional
languages allow us to deal with several variables. Concurrency is
a natural by-product of the functional properties of the language,
rather than a language control construct.

Arctic also simplifies the problem of synchronization for the
programmer. Since Arctic programs have no state or imperative
commands [3], synchronization is unnecessary to govern the
order of execution. With regard to synchronization, Arctic has
properties similar to those of data.flow languages [14].

The problems of timing are addressed in Arctic by a complete
and fairly explicit specification of exactly when things happen. If
we want an event X to take place at time t, we write X@t, meaning
"do X at time t". The formal meaning of this expression will be
explained further below.

So far, I have described some problems of real-time control and
hinted at a language, Arctic, that offers some solutions to them.
Below, I will discuss the principle components of Arctic, including
how responses are defined, the specification of timing
relationships, and asynchronous event handling. I conclude with
a discussion of some properties of Arctic.

2. Previous Work
Arctic synthesizes ideas from functional programming

languages and several languages and systems for computer
music. The principal advantage of fimctional languages for real-
time control is the simplicity of concurrent evaluation due to the
absence of side-effects. Data-flow languages, which allow a
restricted form of assignment operation, are also amenable to
concurrent execution [14, 5]. These languages are interesting in
that all parallelism and synchronization are implicit, as opposed to
imperative languages, which introduce explicit processes and
synchronization constructs for concurrency.

1Arctic values have some additional attributes, but we can safely ignore them for
the time being.

However, functional and data-flow languages achieve their nice
properties in part by suppressing the notions of time and
sequence. Arctic regains the ability to deal with time by virtue of
its primitive values, which are themselves functions of time. This
is reminiscent of streams in data-flow languages[6], and
sequences in Lucid [2]. However, there is a fundamental
difference between Arctic values and these streams or sequences.
While Arctic values are conceptually continuous and are
"indexed" or referenced by global time, streams and sequences
are indexed and aligned by position relative to the beginning of
the particular stream or sequence.

Arctic also borrows heavily from several previous music-oriented
languages, including Music V [11], the GROOVE system [12], and
4CED [1]. Music V is not a real-time control language, but it does
allow one to write programs whose output is a time-varying signal.
Music V uses data flow-like programs to describe instruments and
separate event lists (scores} to invoke instances of instruments at
specified times. Instruments cannot invoke other instruments,
however. The GROOVE system introduced the idea of function
manipulation for real-time control, but had no notion of
responding to discrete events. On the other hand, 4CED includes
events (attach points), and the response to an event can in turn
cause another event, but 4CED does not provide function
manipulation as a primitive operation. The 4CED language allows
the time of execution of statements to be notated explicitly;
however, the language is largely sequential to simplify its
implementation.

Several researchers have adopted the object-oriented
programming style for the real-time control of music [16, 17] and
animation [10, 15]. These systems typically build a structure at
run-time containing a set of objects which respond to "t ick"
messages. The objects serve to encapsulate tasks, and each
"tick" message causes a task to update its state to reflect the
passage of one quantum of time. Thus, the concurrency problem
illustrated in Figure 1 is still present, although it is mediated by the
abstraction facilities of object-oriented languages. The
programmer must be concerned with synchronization. For
example, if one object uses data produced by another, then the
order of "t ick" messages is important.

The OWL language [8] falls somewhere between the functional
approach of Arctic and the more traditional process-oriented
languages[19,7, 13]. OWL programs manipulate state like
procedural languages, but OWL has implicit looping and
processes that facilitate a non-sequential, event, and condition-
driven style of programming.

3. Pre l iminar ies
Before describing Arctic, it is helpful to consider the formal

model of real-time systems on which Arctic is based. For any
application, a real-Lime system is modeled as a "black box" that
has a set of inputs and a set of outputs. (See Figure 3.) These
may be continuous (representing, say, a temperature reading or a

97

voltage output), in which case the input or output is modeled by a
real-valued function of time. An input or output may also be a
discrete event (perhaps representing a contact closure), in which
case the model is a set of times at which the event occurs.

I I

II

R e a l - l i m e
System > I

; I I I

Figure 3 : Schematic of a real-time system having continuous
and discrete event inputs and outputs.

An Arctic program is a description of the real-time response of a
system to its continuous and discrete event inputs. Formally, an
Arctic program denotes a higher-order function from the set of
inputs to the set of outputs. Because it is impossible to measure
or represent real input values or times with infinite precision, any
Arctic implementation will only approximate the ideal, just as
floating-point numbers and operations are only an approximation
to real arithmetic.

4. Pro to t ypes
The primary structuring mechanism in Arctic is the prototype,

which is roughly analogous to a process, procedure, or function in
other languages. A prototype is more properly regarded as a
specification for a response to a class of events. An event causes
an instnntiation of the corresponding prototype, and the specified
response ensues. The nature of this response can be a function
of the time of instantiation (the time of the event) and the duration
of the instantiation. If events happen at times t I and t 2, then we
get two (possibly concurrent) responses, one parameterized by t 1
and the other by t~. (The duration parameter, and a third
parameter, terminate will be discussed later.)

Let us consider an example. Suppose we want to implement a
doorbell that does not ring between the hours of midnight and 8
AM. The system will have one event input called Push which
OCCURS whenever the button for the doorbell is pushed. The
output of tile system is an event, RingBell, which is interfaced to
an electrical bell (see Figure 4).

Push

Figure 4
t

: The doorbell system.

> RingBell

The Arctic program that describes the response of this system is
as follows:

Push causes [
if (time rood 24 hours) > 8 hours
then RingBell
]

The first line declares Push to be a prototype. Since Push is a
system input, the Push prototype will be instantiated whenever a
Push event occurs. The parameters time and dur are implicitly
declared for every prototype. Within the body of Push, time
denotes the real-valued time of instantiation of the Push prototype.
Similarly. dur denotes the st;etch factor, which is unity by default.

/

The next line of the example is simply a test to see if the time is
after 8 AM. If so, the then part says to instantiate RingBell. Since
RingBell is a system output, this causes an output event which, in
this system, rings the doorbell.

Although the syntactic constructs of Arctic look like expressions
and statements of more conventional languages, they actually
denote prototypes, which yield Arctic values when instantiated.
Thus, a Push event causes an instance of the Push prototype,
which is defined to be an instance of the prototype enclosed in
brackets ([...]). This happens to be an if prototype, which denotes
an instance of either its then part or its e lse part, depending upon
the value yielded by an instance of the prototype between if and
then.

5. Shi f t and S t re tch
By now, the reader is probably wondering about the purpose of

the implicit time and dur parameters. These are used to specify
when prototypes are instantiated, that is, when things happen. In
the previous example, everything happens at the time of the Push
event. I purposely glossed over the aspects of Arctic semantics
that determine this. But now, suppose we want to implement a
system where the response may involve a sequence of carefully
timed outputs. To illustrate this. we will extend our doorbell to
play a familiar tune. As with the previous example, we will first
write the program, and then peek at the underlying semantics to
see why it works.

To extend the doorbell, we need a set of four event outputs
interfaced to four electrically operated tubular bells (chimes) as
shown in Figure 5.

Push

-> Gbell
> Cbell
-> Dbell
> Ebell

Figure 5 : The extended doorbell system.

98

The program is as follows:
Push causes [

if (time mod 24 hours) > 8 hours
then BigBen
]

BigBen causes [
Ebefl @ O;
Cbefl @ 1;
Dbefl @ 2;
Gbefl @ 3;
Gbefl @ 8;
Dhell @ 9;
Ebefl @ 10;
Cbefl @ 11
]

In this program, we have replaced the instantiation of RingBell
within Push by an instantiation of BigBen, which is not an output
event, but a program-defined prototype. When instantiated,
BigBen plays a melody by generating a sequence of output events.
An Ebell event will occur at 0 seconds, relative to the instantiation
of BigBen. This is followed by a Cbell bvent at 1 second, a Dbell
event at 2 seconds and so on. Because the timing is given
explicitly, the lexical ordering of events is arbitrary.

Now let us look at why this sequence of outputs will occur. As
mentioned above, all prototypes have an implicit time and duration
parameter. Thus, the symbol BigBen within the Push prototype is
really a syntactic shorthand for BigBen(time, dur), where time and
dur are the parameters of Push. Therefore. an instantiation
ordinarily "inherits" the time and duration of its instantiator.
However, the programmer can modify the time of instantiation in a
straightforward way using the shift ("@") and stretch ("~")
operators.

The shift operator is used to alter the instantiation time. If we
write out the time and duration parameters explicitly, the following
expression holds for any prototype P:

(P @X)(time, dur) = P(time + X.dur, dur)
Notice that the time of instantiation is increased by the product of
X and the duration factor. The rationale for this definition should
become clear later.

Similarly, the stretch operator can be used to alter the duration
parameter:

(P ~ X)(time, dur) = P(time, X.dur)
Notice t h a t P @ 0 = P ~ 1 = P. Also; shift and stretch can be
nested.

Returning to our example, observe that the form of the BigBen
prototype is [A;B;C;...], where A,B,C,... are prototypes. This is a
collection construct, and is instantiated by instantiating each of
the component prototypes in parallel. The time and dur attributes
for each component are the same as for the collection prototype.
Thus, instantiation time and duration factors are "inherited". We
can now see that the time of the bell events output by the BigBen

prototype will be the sum of tile time parameter of the instance of
BigBen and the constants indicated after each bell event, which
serve to shift the time parameter. Thus, the last Cbell event will
occur 11 seconds after the instantiation of BigBen.

To illustrate the stretch operation, suppose we decide that an
11-second doorbell is a bit too long and we want to speed things
up. We could modify the BigBen prototype by decreasing all of
the shift values proportionally. Alternatively, we could replace the
instantiation of BigBen in Push by BigBen-O.5 which would have
the effect of playing the melody in half the time. To convince
yourself of this, notice that in the definition of P@X the time is
shifted by Xodur, where dur is the duration factor (0.5 in this case).

Thus, protot~/pes like BigBen not only encapsulate behaviors,
they also create a scope subject to time tran;formations. The
temporal specification of events is very flexible and economic in
Arctic because time and dur attributes are inherited by
components of collections, and because shift (@) and stretch (~)
compose.

6. Sequences and At t r ibu tes
Although I argued earlier against sequential programming, it is

still important to be able to produce sequential va/ues or to define
responses as sequences of more primitive ones. In Arctic,
prototypes can be instantiated sequentially using the sequence
construct:

[AIBIC...]
which means "instantiate A, then B, then C, and so on." The
question is: how long after the instantiation of A do we instantiate
B? To answer this, we must learn about attributes. Every
instantiation yields a (possibly void) value and two attributes, start
and stop. The start attribute is ordinarily equal to time and
represents the starting time of the response produced by a
prototype. The stop attribute indicates the time at which the
response finishes. The stop attribute is defined for all primitive
prototypes, some of which will be described later. For the
co//ection construct described in the previous section, the stop
attribute is the maximum stop attribute of any component
prototype; however, this default can be overridden with the use of
the end construct. For example, if X is some expression, and the
following collection is instantiated at time time with duration factor
dur:

[A; B; end @ X]
then the stop attribute is (by definition) time + X.dur.

Now we are prepared to specify the semantics of the sequence
construct: In a sequence, the time of instantiation of the (lexically)
first prototype is the instantiation time of the sequence. The time
of instantiation for each successive prototype is the stop attribute
of the instantiation of the previous prototype in the sequence. The
stop attribute of the sequence is the stop attribute of the
instantiation of the (lexically) final prototype in the sequence. The
duration factor for each prototype in the sequence is the duration
factor of the sequence itself.

99

7. Values
Thus far, only discrete inputs and outputs have been described.

Arctic also allows the specification of roaHime systems with
continuous, time-varying values. Formally, a value is a triple
<f, s, e>, where f is eithor void or a function from a half-open
interval of the reals (a time interval) into the reals, s is the start
attribute, and e is the stop attribute. These values may be used in
arithmetic expressions, assigned to variables (under the single
assignment rule [14]), or passed as parameters to prototypes. For
example, a simple linear amplifier may be implemented by the
following:

[output : = input " gain],
where input is a signal input, gain is the gain control input, and
output is the system output.

A set of simple prototypes are predefined and serve as building
blocks for defining more complex ones. For example, ramp yields
a function defined on the interval (time, time + dur] and whose
value at t is (t - t ime)/dur. The sin prototype takes two
arguments, f and p, returning

sin(21"/t,Jttime f(x)dx + p(t))
for t in (time, time + dur]. Thus, sin returns a sin function whose
instantaneous frequency and phase are given by functions f and p.
The extract prototype takes three arguments, f, a, and b, and
returns a function which is equal to f(t) for t in (a,b] and zero
otherv,ise.

8. Condi t iona ls
Arctic has three types of boolean expressions corresponding to

three conditional constructs in the language. The type of
expression is easily determined by context. The first type was
seen in the Push prototype in connection with the i f - then-e lse
construct. This type returns a boolean constant and corresponds
closely to conditionals in conventional programming languages.

The second type returns a boolean function of time, which can
be used in the conditional prototype, which has the form:

(C ? A : B) .
An instance of the conditional prototype is a function on the
interval (time, time + dur] that is equal to A(I) if C(t) is true, and
B(t) if C(t) is false. An example using this form of conditional will
be given in Section 10.

The third type of boolean expression is the conditional event,
which can used with the until construct described in the next
section. In this context, a boolean function is evaluated to find the
first moment after time at which the function is true. This is then
taken as the event time. In this way, conditions can give rise to
events and prototype instantiations, making demons trivial to
implement.

9. Asynchronous Events
An asynchronous event is one that occurs at an arbitrary time

and has some effect on a response already in progress. Arctic
uses a special construct to define prototypes that depend upon
events or conditions. Suppose we want a function that increases
smoothly from 0 to 1 and then holds constant until the quit event
occurs. This could be written:

Go causes [ramp I (1 un t i iqu i t then 0)].
Instances of Go are illustrated in Figure (9). The unt i l construct is
defined as follows: consider the prototype P unt i l C then Q,
where P and Q are prototypes, C is an event, and let P.stop be the
stop attribute of an .,~stance of P. Now, if C occurs at time t, and t
is between time and P.stop, then P unti l C then Q is equivalent to:

extract(P, -~o, t) + Q @ ((t - t ime)/dur).
Thus, the effect is to combine (by addition) ttle value of an
instance of P up to time t with an instance of Q at time t. In the
definition, extract refers to the prototype defined at the end of
Section 7, and the expression ((t - time) / dur) is used to
instantiate Q at abso/ute time t (substitute (t - time) / dur for X in
the definition of " @ " in Section 5). On the other hand, if C does
not occur before P.stop, the unt i l construct is equivalent to P, and
Q is not instantiated.

Go qu i t Go qu i t (t ime)

Figure 9 : Instances of the Go prototype, illustrating
asynchronous responses.

This informal definition of unti l can be formalized and extended
to cover cases where P in turn causes many instantiations. This is
accomplished by attaching yet another implicit parameter, or
inherited attribute, to each instance to specify a termination time.
Primitives are then defined to end at the termination time if it
occurs earlier than time + dur. For example, the ramp primitive is
now defined in terms of three (implicit) parameters: time, dur, and
terminate. If time < terminate < time + dur then ramp is.defined on
the interval (time, terminate], and its value at t is (as before) (t -
time) / dur. Otherwise, ramp is defined by the same expression,
but on the interval (time, time + dur].

Other primitives are defined in a similar manner, and the
collection and sequence constructs are defined to pass this
terminate attribute on to their component prototypes.

100

10. Example
The following program implements the "musical sieve" of Cointe

and Rodet [4[, whose original pro0ram is presented in the object-
oriented language Formes. The task is to produce a time-varying
pattern in parallel with time-varying data. The output of the
program is f l , a function of time. We will use a sequence of
prototypes to implement the pattern and data:

out ft;
value data;

C is [100 * unit ~ 0.2]
E is [130 * unit ~ 0.2]

noC is [(data = 100? 140:data) ~ 0.3]

hoe is [(data = 130? 140 :data) ~ 0.3]

Go causes [data := [E IE IC] ;
t l : = [noC I noE I noC]];

The main prototype, Go, assigns data to the sequence of
prototypes E, E, and C, which in turn are defined to be rectangular
pulses of two different heights, and 0.2 seo in duration. In parallel,
a sequence of pattern prototypes is instantiated to compute the
output t l . The pattern noC examines data, returning 140 if data is
equal to 100 (the height of the pulse made by the prototype C),
and otherwise returning the current value of data. The noC
prototype operates on an interval that is 0.3 seconds in duration,
achieved by instantiating the conditional expression with duration
factor 0.3. The neE prototype is similar to noC except that it
rejects values of 130 (the height of the E pulse) rather than 100.
Figure 10 illustrates data and the intervals of time during which E
and C prototypes are instantiated. The lower half of the figure
illustrates the output f l and the intervals during which noC and
hoE prototypes are instantiated.

140
d a t a 130 (E)

100
(c)

°oc hoe °oc

140
f l 130 '

(e)

100 '

(c)
0.0 o:1 o:2 o:3 o:4 o:6 0'7 o:8 o:9 t:o

Figure 10 Graph of the intervals of E and C prototype
instantiation, data the intervals of noC

and noE instantiations, and the output f l .

10.1. Funct ions vs. Pro to types
This example illustrates the difference between Arctic values

(functions of time) such as data and f7 and Arctic prototypes such
as unit and C. Wherever the name of a value is mentioned in the
program, the name denotes a single function of time. If value
names are changed to eliminate conflicts ordinarily handled by
static scope rules, then a value name denotes the same function
everywhere in the program, independent of implicit time, dur, and
terminate parameters. In other words, shift and stretch operators
have no effect upon Arctic values.

Prototypes, on the other hand, are higher order functions of the
implicit parameters time, dur, and terminate, as well as possible
explicit parameters. Each occurrence of a prototype name in the
program denotes a new instance of the named prototype. For
example, in the sieve program above, the symbol "uni t" denotes
an instance of the unit prototype. Each occurrence of "uni t " can
denote a potentially new function since time, dur, and terminate
may be different for each. An instance may produce an Arctic
value.

11. Discussion
Arctic derives expressive power from several sources. First,

functions of time can be combined and manipulated as a whole, as
opposed to viewing functions as streams of values that must be
dealt with individually. Second~ there is an instantiation
mechanism through which discrete 9vents or conditions can give
rise to complex responses. Another source of expressive power is
the fact that the time of instantiation can be explicitly controlled.
Timing is achieved by direct specification in the program, in
contrast to languages where timing is a consequence of the
sequential execution of many instruction streams. Specification is
streamlined by the use of implicit parameters, which are
"inherited" by components of constructs and can be transformed
using shift and stretch operators. Finally, Arctic "variables" obey
the single assignment rule; thus, synchronization between
concurrent prototypes that define values and those that use them
is implicit and need not concern the programmer.

11.1. Side Effects
In some cases, however, a pure side-effect free language is

awkward. Consider the case where many instancec; of prototypes
contribute to an output, such as the first doorbell example. Here,
the RingBell output of the system must include one event for each
instance of RingBell caused by Push. Thus, we have to combine
an arbitrary number of instances to form a single output. The
problem also occurs with Arctic values and continuous outputs.
For example, in the signal processing aspects of computer music,
one often wants to synthesize several instruments independently
and add their sounds together. For efficiency, the synthesis
algorithm should instantiate instrument prototypes dynamically, so
the number of signals to sum will vary with time. A static
expression such as "A + B + C" cannot express this summation.
Restricted forms of side effects are used to solve these problems.

101

For the problem of discrete events, exemplified by RingBell , the
combination of events is implicit, and two instances of Push (after
8 AM) will ring the bell twice, just as two occurrences of C in
[C I C] denote two sequential instances of the prototype C. This
may be considered a form of side effect.

In the case of continuous functions, the problem is solved by
declaring a value or output to be a sum or product. Then, an
instance can contribute an addend or factor using a construct
like:

out + = expression.
The value of out at time t is the sum of all x(t), such that x(t) is
defined, and out + = x is instantiated. Thus, out has the same
value throughout the program, and it is not possible for a
prototype to look at out and then modify it in any way 2. This is
what one would expect from a single-assignment language. On
the other hand, the prototype [P; P] may not mean the same thing
as [P], because each instance of P may contribute to some sum
variable. Thus, several restricted forms of side effects are
possible in Arctic.

1 1 .2 . Implementat ion
Arctic programs have been hand compiled to calls on function

manipulation procedures, and a non-real-time interpreter is under
development. These initial implementations assume that the
inputs are completely known before program execution begins.
An interactive graphics program carj be used to draw and
manipulate functions of time before sending them as inputs to the
Arctic interpreter. For these programs, continuous functions are
approximated by piece-wise linear functions, which are
represented by lists of coordinates of the inflection points.

I am currently designing a true real-time implementation, in
which v sequential processor will be multiplexed rapidly among a
large number of concurrent instances. For this implementation,
Arctic values will be represented by their current value, and
primitive prototype instances will be represented by a few words of
state and parameter information. The calculations to be
performed will be represented as a linked list of primitive
operations, which will be ordered according to precedence
constraints implied by the single assignment rule. The
instantiation of a prototype will add operations to the list.
Secondary structures will be necessary to support the until
construct which has the effect of removing operations from the list
asynchronously. I believe that Arctic programs can be executed
without conventional processes or context switches, which would
be prohibitively expensive for the applications of interest. This will
make Arctic competitive with more conventional real-time program
structures.

I am also considering tt~e problems of mapping Arctic programs
onto highly parallel, reconfigurable arrays of processors, such as
the UPE (Universal Processing Element) proposed by Carver Mead
[18]. In this scheme, a small UPE processor would be allocated to

each arithmetic or logical operation that resulted from an Arctic
instantiation. Data would move synchronously through an
interconnection network from one UPE to the next. Although
many problems still need to be solved, a single bcard VLSI
implementation could perform several hundred million operations
per second and make Arctic applicable in the realm of signal
processing.

1 2. Conclusion
Arctic is a powerful language for the descr ipt ion of real-time

systems. Its development has led to a clearer understanding of
how real-time systems should be specified; for example, it is useful
to model a time-varying input as a real-valued function of time
even if the input is implemented as a stream of discrete samples.
It is my belief that Arctic will also be a powerful tool for the
imp lementa t ion of real-time systems. My colleagues and I are
currently building experimental systems to test this hypothesis.

1 3. Acknowledgments
I would like to thank Paul McAvinney, who contributed to the

formulation of Arctic and who has implemented a large part of our
experimental system. I am also happy to acknowledge the
assistance of Dean Rubine, who is writing the Arctic interpreter.

20f course, the value of out at some time greater than t may be a function of the
value of out at time t.

102

References

1. Curtis Abbott. "The 4CED Program." Computer Music
Journal 5, 1 (Spring 1981), 13-33.

2. E. A. Ashcroft and W. W. Wadge. "Lucid, a Nonprocedural
Language with Iteration." Communications of the ACM 20, 7 (July
1977), 519-526.

3. John Backus. "Can Programming Be Liberated from the von
Neumann Style?" Communications of the ACM 2 I, 8 (August
1978), 613-641.

4. Pierre Cointe and Xavier Rodet. Formes: an Object & Time
Oriented System for Music Composition and Synthesis. 1984
Symposium on LISP and Functional Programming, ACM, 1984.

5. Jack B. Dennis. "Data flow supercomputers." Computer 13,
11 (November 1980), 48-56.

6. Jack B. Dennis and Ken K.-S. Weng. An Abstract
Implementation For Concurrent Computation With Streams.
Proceedings of the 1979 International Conference on Parallel
Processing, IEEE Computer Society, 1979.

7. Reference Manual for the Ada Programming Language.
United States Department of Defense, 1980.

8. Marc Donner. The Design of OWL - A Language for Walking.
Sigplan Symposium on Prog. Lang. Issues In Software Systems,
Sigplan, 1983.

9. Robert L. Glass. "Real-Time: The "Lost World" Of Software
Debugging and Testing." Communications of the ACM 23, 5 (May
1980), 264-271.

IO. K. Kahn. DIRECTOR Guide. Tech. Rept. MIT AI Laboratory
Memo 482B, MIT, December, 1979.

11. Max V. Mathews. The Technology of Computer Music. MIT
Press, Boston, 1969.

12. Max V.Mathews and F. R. Moore. "A Program to Compose,
Store, and Edit Functions of Time." Communications of the ACM
13, 12 (December 1970), 715-721.

13. David May. "OCCAM." Sigplan Notices 18, 4 (April 1983),
69-79.

14. James R. McGraw. "The VAL Language: Description and
Analysis." ACM Transactions on Programming Languages and
Systems 4, 1 (January 1982), 44-82.

15. C. U. Reynolds. Computer Animation with Scripts and Actors.
Proceedings of ACM SIGGRAPH Conference, ACM, July, 1982.

16. X. Rodet, P. Cointe, J. B. Barriere, Y. Potard, B. Serpette, and
J. P. Briot. Applications and Developments of the FORMES
programming environment. Proceedings of the 1983 International
Computer Music Conference, Computer Music Association, 1983.

17. Bill Schottstaedt. "Pla: A Composer's Idea of a Language."
Computer Music Journal 7, 1 (Spring 19&3), 11-20.

18. John Wawrzynek and Tzu-Mu Lin. A Bit Serial Architecture
for Multiplication and Interpolation. Tech. Rept. 5067:DF:83,
California Institute of Technology, January, 1983.

19. N. Wirth. "Modula: A programming language for modular
multiprogramming." Software, Practice and Experience 7, 1
(1977), 3-35.

103

