

Object-based Storage (OSD) Architecture and Systems

Erik Riedel, Seagate Technology April 2007

Object-based Storage (OSD) Architecture and Systems

The Object-based Storage Device interface standard was created to integrate chosen low-level storage, space management, and security functions into storage devices (disks, subsystems, appliances) to enable the creation of scalable, self-managed, protected and heterogeneous shared storage for storage networks.

This tutorial will describe how OSD storage devices will be integrated into today's most popular storage systems and how systems using OSD-enabled devices are being designed and built.

Outline

- Overview
 - motivation, structure, systems
 - history (see appendix)
- Interface
 - commands
 - objects, attributes, security (see 2005 tutorial)

physical view

logical view

- Architecture
 - scalable NAS enabled by OSD
 - CAS with OSD
 - objects = data + metadata
 - ILM with OSD
 - security
- Status & Next Steps
 - extension work continues today

EDUCATION

Overview

Motivation for OSD

- Improved device and data sharing
 - Platform-dependent metadata at the device
 - Systems need only agree on naming
- Improved scalability & security
 - Devices directly handle client requests
 - Object security w/ application-level granularity
- Improved performance
 - Applications can provide hints, QoS, policy
 - Data types can be differentiated at the device
- Improved storage management
 - Self-managed, policy-driven storage
 - Storage devices become more autonomous

Blocks

OSD Structure

OSD Systems – 2007

A variety of Object-based Storage Devices being built today

- Disk array/server subsystem
- E.g. LLNL units with Lustre

"Smart" disk for objects
E.g. Panasas storage blade

- Highly integrated, single disk
- E.g. prototype Seagate OSD

Orchestrates system activity

Balances objects across OSDs

Called clustered MDS in Lustre

Called Mgmt Blade by Panasas

Called ST server cluster by IBM

Scalable Network

- Connectivity among clients, managers, and devices
- Shelf-based GigE (Panasas)
- Specialized cluster-wide highperformance network (Lustre)
- Storage network (IBM)

OSD Architecture and Systems

Object-based Storage Device (OSD), CMU NASD

Interface

OSD Commands

OSD-1 r10, as ratified

EDUCATION

- Basic Protocol
 - READ
 - WRITE **J** very basic
 - CREATE
 - REMOVE
 - GET ATTR
 - SET ATTR
- space mgmt
 - attributes
 - timestamps
 - vendor-specific
- Specialized

- opaqueshared
- FORMAT OSD
- APPEND write w/o offset
- CREATE & WRITE save msg
- FLUSH force to media
- FLUSH OSD device-wide
- LIST recovery of objects

Security

- Authorization each request
- Integrity for args & data
- SET KEY **\ shared**
- SET MASTER KEY Secrets
- Groups
 - CREATE COLLECTION
 - REMOVE COLLECTION
 - LIST COLLECTION
 - FLUSH COLLECTION
- Management
 - CREATE PARTITION
 - REMOVE PARTITION
 - FLUSH PARTITION
 - PERFORM SCSI COMMAND
 - PERFORM TASK MGMT

OSD Architecture and Systems

Architecture – Physical View

Network-Attached Storage (NAS) today

NAS Heads

NAS Heads with OSD

EDUCATION

Scalable NAS with OSD

EDUCATION

Scalable NAS with OSD (2)

Scalable NAS with OSD

- EDUCATION
- Protocol to the storage devices is OSD
 - standardized by ANSI T10
 - SCSI/OSD command set on iSCSI, FC, SAS
 - used for all data transfers
- Protocol to the File Manager is FS-specific
 - could be Lustre MDS protocol
 - could be Panasas DirectFLOW
 - could be pNFS server protocol
 - could be application-specific (see next slide)
 - used for policy decisions

Scalable NAS with OSD (3)

Scalable NAS with OSD (4)

EDUCATION

Design Choices with OSD

- NAS heads with OSD controllers
 - no host-side changes, shared storage among NAS heads
- Scalable NAS with OSD controllers, block drives
 - benefit of offloading metadata, separating policy management
 - heavier controller, since it must now do space management
- Scalable NAS with OSD controllers, OSD drives
 - controller handles only virtualization and RAID, as it does today
 - benefits of logical objects & native security (more on this later)
- Scalable NAS w/ virtualizing switch, OSD drives
 - most scalable, but requires RAID done in host-side software

Different design choices apply to different system trade-offs

CAS with OSD

"bottom" of file system

CAS with OSD

- Archive applications are written to XAM API
 - XAM is a host-side library; multiple vendor-specific plug-ins
 - one of those is a mapping to T10/OSD
 - any OSD device can sit behind XAM
 - XAM metadata mapped to OSD attributes
 - metadata + data move through system together (more on this later)
- Protocol to the Catalog or Directory Service is application-specific
 - enterprise content management
 - compliance management (co-located with security manager)
 - ILM policy management for tiered storage (more on this later)

Architecture – Logical View

- OSD objects consist of User Data + Attributes
 - device tracks internal metadata (space mgmt)
 - object ID for identification (unique per device)

Scalable NAS with OSD

EDUCATION

Scalable NAS w/ OSD & RAID

EDUCATION

ILM with OSD

Policy decisions made by the Security Manager User authentication (who are you?)

Security with OSD

- User authorization (what rights do you have?)
- OSD-enabled devices
 - Request authorization (do you have rights now?)
 - [optional] Request or data integrity/confidentiality (in flight)
 - [future] Stored data integrity or confidentiality (encrypt at-rest)
- Comparison to FC-SP and iSCSI security
 - Device authentication
 - [optional] In-flight integrity or confidentiality on a session basis
 - No per-request or per-object authorization possible

Status & Next Steps

- Standard OSD-1 r10 for Project T10/1355-D (v1) ratified by ANSI in September 2004 after years of SNIA effort
- SNIA TWG working on v2 features
 - Extended exception handling and recovery [draft]
 - Richer collections multi-object operations [draft]
 - Snapshots managed on-device [proposal]
 - Mapping of XAM onto OSD [proposal w/ FCAS TWG]
 - Additional security support [discussion]
 - Quality of Service attributes [discussion]
- expect a new round of T10 standardization in mid-2007

join us – <u>www.snia.org/tech_activities/workgroups/osd/</u>

Join Us!

SNIA OSD TWG Structure

EDUCATION

- Erik Riedel, Seagate (co-Chair)
- Julian Satran, IBM (co-Chair)

Contact us to get involved!

- Error Mgmt & Recovery C. Mallikarjun, HP
- Snapshots Oleg Kiselev, Symantec
- Security Michael Factor, IBM
- Education <vacant>
- T10 & FCAS Liason Rich Ramos, Xyratex
- Research Michael Mesnier, Intel

Further Reference

- Academic research
 - www.pdl.cmu.edu
 - www.dtc.umn.edu
 - ssrc.cse.ucsc.edu/proj/ceph.html
- Standards work
 - www.snia.org/osd
 - www.t10.org/ftp/t10/drafts/osd
- Industry research & development
 - www.lustre.org & www.hp.com/techservers/products/sfs.html
 - www.panasas.com
 - www.seagate.com/docs/pdf/whitepaper/tp_536.pdf
 - www.haifa.il.ibm.com/projects/storage/objectstore
 - www.opensolaris.org/os/project/osd/

OSD Architecture and Systems

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification.
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Please send any questions or comments on this presentation to SNIA: <u>trackstorage@snia.org</u> or to <u>snia-osd@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Erik Riedel, Seagate Technology Dave Nagle, Google Dave B Anderson, Seagate Technology Sami Iren, Seagate Technology Mike Mesnier, Intel & CMU Elaine Silber, Firefly

Appendix

History

- Started with NSIC NASD research in 1995
 - Network-Attached Storage Devices (NASD)
 - Carnegie Mellon, HP, IBM, Quantum, STK, Seagate
 - Prototypes developed at Carnegie Mellon with funding from DARPA
 Distributed FS
- Draft standard brought to SNIA in 1999
- Standard ratified by ANSI in 2004

ANSI Project T10/1355-D

EDUCATION

revision	date	pages	word count	commands
1	May 2000	77	28,482	14
2	September 2000	84	31,205	15
3	October 2000	94	32,872	16
4	July 2001	111	39,633	15
5	March 2002	116	40,372	16
5t	August 2002	144	51,248	17
6	August 2002	145	51,556	18*
7	June 2003	168	58,405	18
8	September 2003	147	47,614	18
9	February 2004	174	60,736	20
10	July 2004 (ratified)	187	65,216	23

SCSI Object-Based Storage Device Commands (OSD)

OSD Architecture and Systems

- EDUCATION
- Seagate & IBM co-chair SNIA OSD Technical Work Group
- EMC, HP, Intel, Panasas, Veritas, Xyratex were the most active participants leading up to OSD-1
 - 30 companies, 6 universities/labs paying attention today
- Lustre CFS/HP open-source OSD for DoE
 - 225 TB cluster installed October 2002; 100+ active sites today
- Panasas shipping OSD-based scalable NAS
 - since October 2003; large-scale systems (300+ device demo)
- IBM, Seagate, and Emulex demo shown at SNW
 - first T10/OSD interoperability demonstration in April 2005
 - with FC/OSD drives, iSCSI/OSD controller, modified SAN file system
- Sun developing drivers and file system for OSD objects
 - OSD drivers for OpenSolaris released in December 2006
- Ongoing university work at UC Santa Cruz (UCSC), Carnegie Mellon, Univ of Minnesota (UMN), Ohio-State (OSU) and Texas A&M