
Homework 1: Abstract Syntax and Rule Definitions
15-814: Types and Programming Languages

Fall 2015
TA: Evan Cavallo (ecavallo@cs.cmu.edu)

Out: 9/10/15
Due: 9/24/15

Notes:

• Correction 9/15/15: Fixed the treatment of contexts and added ∆ ` e vale requirement
to canonical forms lemma.

• Welcome to 15-814’s first homework assignment!

• Please submit your work as a PDF file to ecavallo@cs.cmu.edu and include the phrase
“15-814 Homework 1” in the subject line of your email.

• We will be using Piazza to answer questions as well as make clarifications, corrections
and announcements. Please sign up for the class on Piazza to make sure you don’t miss
anything: piazza.com/cmu/fall2015/15814

In this homework, we will examine a simple C-like language from the perspective of abstract
syntax and type theory.

1 Arithmetic

We’ll start with a simple expression language similar to that covered in class. There are two
types, integers int and booleans bool. The language consists of literals, a few arithmetic and
comparison operators, and a conditional expression.

τ ::= int | bool
e ::= x | n | true | false | e+ e | e ∗ e | e ≤ e | if e then e else e

Since this language has no variable-binding constructs, translating the concrete presentation
into abstract syntax is quite simple.

concrete abstract
n num[n]
true true

false false

e1 + e2 plus(e1; e2)
e1 ∗ e2 times(e1; e2)
e1 ≤ e2 leq(e1; e2)
if e1 then e2 else e3 if(e1; e2; e3)

We define the typing judgment Γ ` e :e τ and operational semantics judgments ∆ ` e valee′
and ∆ ` e 7→e e

′ in Appendix A. Type contexts Γ and evaluation contexts ∆ are defined with
with the following grammar:

Γ ::= · | Γ, x : τ
∆ ::= ·

For the moment, the only evaluation context is the empty context ·, but we will change this as
we build on the language.

Before we add anything new, however, let’s check some properties to make sure you’re
comfortable with rule induction. For the proofs in this assignment, you may condense similar
cases in arguments by induction, but be clear and rigorous in your reasoning.
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Task 1 Prove the following inversion lemma:

(If Inversion) If Γ ` if(e1; e2; e3) :e τ , then Γ ` e1 :e bool, Γ ` e2 :e τ , and
Γ ` e3 :e τ .

This seems immediate, but really follows from the induction principle for the typing judgment.
(Tip: Prove that for all Γ, e, τ such that Γ ` e :e τ , if e = if(e1; e2; e3) for some e1, e2, e3,
then Γ ` e1 :e bool, Γ ` e2 :e τ , and Γ ` e3 :e τ .)

In general, an inversion lemma is one which recovers the premises of a rule from its conclusion.
In the rest of the assignment, you may use these without proof, but be sure to note explicitly
when you apply them and check for yourself that they hold.

Task 2 Prove unicity of typing for this language.

(Unicity of Typing) For any Γ, e, τ , τ ′ such that Γ ` e :e τ and Γ ` e :e τ
′, we have

τ = τ ′. You may assume that any variable appears at most once in a given context.

2 Functions

2.1 Function Blocks

On top of the expression language, we now add a syntax for programs p, which consist of a
series of one-argument function definitions and a final expression computation. (In such a small
language, it would be useful to have multi-argument functions, but we will restrict ourselves for
the sake of simplicity.) In order to make use of these definitions, we add syntax for function
calls to the expression language. The sort of functions consists only of function variables, which
we denote here with the letter u.

f ::= u
e ::= · · · | f(e)
p ::= fun u (x : τ) {e}; p | result e

We allow calls to previously defined functions to appear in the definitions of later functions
as well as in the result expression. As an example, the program

fun not (b : bool) {if b then false else true};
fun abs (x : int) {if not(0 ≤ x) then − 1 ∗ x else x};
fun square (z : int) {z ∗ z};
fun cube (z : int) {square(z) ∗ z};
result cube(abs(3)) + cube(abs(−2))

should compute to 35.

Task 3 Give a definition in abstract syntax for the language constructs described above. Include
the arities (with sorts) of the operators, per Section 1.2 of PFPL.

Before giving the precise operational semantics of this language, we have an ambiguity to
settle. Consider the following program.

fun u (x : int) {x};
fun v (y : int) {u(y)};
fun u (z : int) {z + 1};
result v(1)
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The result expression v(1) will be computed in an environment of function definitions. Exe-
cuting the call v(1) looks up the definition of v, which then leads to a call to u. But which of
the two functions named u does this call refer to? Depending on how the environment behaves,
it may be the first or the second, and so this program might compute either 1 or 2. The first
evaluation strategy, in which the u that v calls remains the u available when v was defined, is
called static scoping (sometimes lexical scoping). The second, wherein the call to u in v refers
to whichever u was most recently added to the environment, is called dynamic scoping.

Task 4 We want to respect the identification convention:

Abstract binding trees are always identified up to α-equivalence.

With this in mind, which of the two strategies is correct? Explain.

Now, let’s move on to defining the statics and dynamics of this language precisely. We will
need thwo typing judgments to determine if programs are well-typed. Besides the judgment
Γ ` e :e τ for typing expressions we have already mentioned, there should be a judgment
Γ ` p :p τ which states that a program has result of type τ . We also need to add a new kind of
hypothesis to our type contexts:

Γ ::= · · · | u :f τ1 ⇒ τ2

The assumption u :f τ1 ⇒ τ2 is used to denote that u is a function variable in scope which takes
an argument of type τ1 and returns a result of type τ2.

Task 5 Starting with the rules in Appendix A, complete the definition of the typing judgment
Γ ` e :e τ , and define the judgement Γ ` p :p τ .

Task 6 Give a structural operational semantics for this language by completing the definition of
∆ ` e 7→e e

′ and defining a judgment ∆ ` p 7→p p
′. Assume that the value judgment ∆ ` p valp

is defined by the single rule
∆ ` e vale

∆ ` (result e) valp
(Res-V)

In order to track the environment of function definitions, we will add a new kind of assump-
tion to our evaluation context:

∆ ::= · · · | u def
= x.e

The assumption u
def
= x.e expresses that the function variable u is currently in scope and that it

takes an argument x and computes the expression e.
Your definition should of the semantics should satisfy the properties of progress and preser-

vation.

(Progress) If ` p :p τ , then either ` p valp or there exists p′ such that ` p 7→p p
′.

(Preservation) If ` p :p τ and ` p 7→p p
′, then ` p′ :p τ .

Task 7 Prove progress for the rules you have specified. You will want to state and prove an
analogous theorem for expressions first. For programs, it may be helpful to prove the following
more general theorem:

If ∆ ::f Γ and Γ ` p :p τ , then either ∆ ` p valp or there exists p′ such that
∆ ` p 7→p p

′.
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Here ∆ ::f Γ is a judgment on contexts defined by the following rules:

· ::f · (Env-Nil)

∆ ::f Γ

(∆, f
def
= x.e) ::f (Γ, f :f τ1 ⇒ τ2)

(Env-Cons)

This judgment expresses that the environment ∆ and type context Γ reference the same function
variables, i.e. that they agree on what is in scope. This condition is enough to guarantee a
canonical forms lemma, which you will need for your proof:

(Canonical Forms Lemma) Let contexts ∆ ::f Γ and an expression e be given. Assume
that ∆ ` e vale. If Γ ` e :e int, then e = num[n] for some n ∈ Z. If Γ ` e :e bool,
then either e = true or e = false.

This lemma enumerates the forms that well-typed values can take (the eponymous canonical
forms). You are not required to prove this lemma.

We can make this language a bit more useful by allowing function definitions to refer recur-
sively to the functions they define. We can then write, for example, the factorial function:

fun fact (x : int) {if x ≤ 0 then 1 else x ∗ fact(x+ (−1))};
result fact(5)

Task 8 How does this extension change your answers to Tasks 3, 5, and 6? Give the syntax and

rules where different. (You should also make a change to the form of the assumption u
def
= x.e.)

2.2 Functions as Expressions

While we can write programs with a predefined list of functions in this language, there is no way
of manipulating functions within expressions. For example, we cannot write a function which
takes a function as an argument or one which returns a function. One way of solving this is by
adding an operator which makes an expression of a function name, in the style of C’s function
pointers.

e := · · · | fn(f) | ∗e(e)

We add a corresponding type of functions which has expressions fn(f) as its canonical forms.

τ := · · · | τ ⇒ τ

Now it is possible to write functions which act on functions. For example, the following
program should return 9.

fun fact (x : int) {if x ≤ 0 then 1 else x ∗ fact(x+ (−1))};
fun onetothree (y : int⇒ int) {∗y(1) + ∗y(2) + ∗y(3)};
result onetothree(fn(fact))

Naively, we might extend our language to accommodate these new constructs by adding new
statics and dynamics rules for the fn(f) and ∗e(e). However, simply doing this will break either
progress or preservation.

Task 9 Which property (progress or preservation) fails? Why? Describe two solutions to the
problem, one by changing the rules for the judgments ∆ ` p valp and ∆ ` p 7→p p

′ and one by
changing the rules for the judgment ∆ ` p :p τ .
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These issues, as well as the ambiguity discussed in Task 4, arise essentially because we have
separated functions and expressions into distinct sorts. Because of this, we cannot substitute
function definitions for function names until we evaluate a particular function call. As such,
we have to maintain an environment of function definitions to substitute at time-of-call. If we
instead have first-class functions, constructible within the expression language, the situation is
much simpler.

Task 10 Return to the core expression language. We add a new, distinct function type which
contains recursive function expressions.

τ ::= · · · | τ → τ

Define abstract syntax for operators for constructing and applying recursive function terms. (In
other words, define a version of λ-abstraction and application which allows for self-reference.)
Give statics and dynamics rules for these operators, assuming that we have only the expression
language and no outer layer of function definitions.

3 Structs

In this section, we will add C-style structs to our language. As an example, take the following
C definition of a type of binary trees, which are intended to be labeled with integers at the
leaves. (If you are not familiar with C syntax, you can find simple tutorials online or ask Evan
to clarify.)

typedef struct tree_data tree;

struct tree_data {

int leaf_value;

tree *left;

tree *right;

};

By convention, either both left and right are null, in which case the tree is a leaf tagged
with the value in leaf_value, or neither is null, in which case the tree is a node and leaf_value

is ignored.
To add these sort of data structures to our language, we’ll decompose the problem into three

parts. First, we need a way to build types with multiple fields. Second, we need types that have
a “null” value. Finally, we need types that can refer to themselves recursively.

The first two are fairly easily solved by adding product and sum types to the language.

τ ::= · · · | τ × τ | unit | τ + τ
e ::= · · · | 〈e, e〉 | 〈〉 | fst e | snd e | in[l](e) | in[r](e) | case e {x.e;x.e}

A canonical element of the product type τ1 × τ2 is a pair 〈e1, e2〉 where e1 :e τ1 and e2 :e τ2;
we can represent a struct type with multiple fields by chaining products. The unit type unit

has a single canonical element 〈〉, and can be used to represent an empty struct. We think of
unit as a nullary product, a tuple with zero fields. The canonical elements of the sum type
τ1 + τ2 are either of the form in[l](e1) with e1 :e τ1 or in[r](e2) with e2 :e τ2. We may therefore
represent a possibly-null field of type τ with the type τ + unit.

Adding recursively defined types is more complicated, but we can approach it in much the
same way that we approached recursive function blocks in the previous section. We add type
variables to the type grammar, and type declarations to the program grammar:
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τ ::= · · · | t
p ::= · · · | type t = τ ; p

In the type declaration above, t may appear in τ . Much as we track an environment of
function definitions for evaluation, we can use a context of type definitions for typechecking in
the presence of these declarations. We won’t go into the details in this homework, as we’ll be
covering recursively-defined types later in the course.

Task 11 Give a type declaration in this language which corresponds to the C type tree defined
above. This definition should match the C struct’s behavior exactly.

Task 12 The C struct definition of tree assumes that the programmer follows the conventions
described above, and it is possible to construct a tree which is well-typed but corresponds to
no legal tree. Give an alternate definition of tree in our language which statically enforces the
conventions.

A Base Expression Language

A.1 Statics

Γ, x :e τ ` x :e τ
(Hyp)

Γ ` num[n] :e int
(Num)

Γ ` true :e bool
(True)

Γ ` false :e bool
(False)

Γ ` e1 :e int Γ ` e2 :e int

Γ ` plus(e1; e2) :e int
(Plus)

Γ ` e1 :e int Γ ` e2 :e int

Γ ` times(e1; e2) :e int
(Times)

Γ ` e1 :e int Γ ` e2 :e int

Γ ` leq(e1; e2) :e bool
(Leq)

Γ ` e1 :e bool Γ ` e2 :e τ Γ ` e3 :e τ

Γ ` if(e1; e2; e3) :e τ
(If)

A.2 Dynamics

∆ ` num[n] vale
(Num-V)

∆ ` true vale
(True-V)

∆ ` false vale
(False-V)

∆ ` e1 7→e e
′
1

∆ ` plus(e1; e2) 7→e plus(e′1; e2)
(Plus-S1)

∆ ` e1 vale ∆ ` e2 7→e e
′
2

∆ ` plus(e1; e2) 7→e plus(e1; e′2)
(Plus-S2)

∆ ` plus(num[n]; num[m]) 7→e num[n+m]
(Plus-I)

∆ ` e1 7→e e
′
1

∆ ` times(e1; e2) 7→e times(e′1; e2)
(Times-S1)

∆ ` e1 vale ∆ ` e2 7→e e
′
2

∆ ` times(e1; e2) 7→e times(e1; e′2)
(Times-S2)

∆ ` times(num[n]; num[m]) 7→e num[nm]
(Times-I)

∆ ` e1 7→e e
′
1

∆ ` leq(e1; e2) 7→e leq(e′1; e2)
(Leq-S1)

∆ ` e1 vale ∆ ` e2 7→e e
′
2

∆ ` leq(e1; e2) 7→e leq(e1; e′2)
(Leq-S2)
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n ≤ m
∆ ` leq(num[n]; num[m]) 7→e true

(Leq-I1)
n > m

∆ ` leq(num[n]; num[m]) 7→e false
(Leq-I2)

∆ ` e1 7→e e
′
1

∆ ` if(e1; e2; e3) 7→e if(e′1; e2; e3)
(If-S)

∆ ` if(true; e2; e3) 7→e e2
(If-I1)

∆ ` if(false; e2; e3) 7→e e3
(If-I2)
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