Homework 6: Algol and Classification
15-814: Types and Programming Languages
Fall 2015
TA: Evan Cavallo (ecavallo@cs.cmu.edu)

Out: 11/22/15
Due: 12/6/15

1 Modernized Algol

In this section, we’ll examine an extension to MA, the language with a modal separation between
expressions and commands described in PFPL 34. First, let’s review the general setup by looking
at some familiar data structures.

1.1 References for Mutable Data Structures

In order for mutable structures to be useful, it is better to work in the variant of MA with free
assignables and references. Recall that free assignable declarations are evaluated by extending
the signature, which, in contrast to the dynamics for scoped assignables, is tracked as part of

the state.
e vals

v¥{dcl(e;a.m) | p} = vEa~1{m| p®a— e}

(Dcr-1)

The reference type 7 ref internalizes assignable symbols as data. While the functionality of
the reference type can be encoded in MA using capabilities (PFPL 35.1), a primitive reference
type is better-behaved (and more convenient). Since the reference type cannot safely be mobile,
these are mostly useful with free assignables.

'y e:7ref
Iy getref(e) ~ 7

(REF)

GETREF
I' Fs gor refla] : 7 ref ()

Ibksep:7ref I'bxey:r

SETREF
I by setref(er;ea) ~ T ()

In the first homework, we discussed various interpretations of the following C data structure:

typedef struct tree_data tree;

struct tree_data {
int leaf_value;
tree *left;
tree *right;

};

Now that we have covered recursive types and mutable state, we can give this a proper treatment.
(Note that reference cells introduce the possibility of circular data structures, so this is different
from the inductive type of trees.)

Task 1 Give a definition of the type treex in MA with recursive types and a type int, as
presented above (without making any improvements).

Task 2 We previously concluded that trees are better encoded using sum types. For each of the
following specifications, define a type T tree of mutable trees with the described behavior. In
each case, an element of a tree type should consist either of a leaf with a value of type T or of
two subtrees.

(a) A mutable tree can be changed to a leaf (by supplying a value of type 7) or to a node (by
supplying a new pair of mutable subtrees).

(b) A mutable tree is permanently either a leaf or a node with two subtrees. Leaves cannot be
updated. However, a node can be mutated by modifying one of the two subtrees.

(¢) A mutable tree can only be updated by providing a whole new tree; its subparts cannot be
modified in isolation.

Task 3 For the encoding of T tree you defined in Task 2(a), define a function
tmap: (T — 7) — 7 tree — unit cmd

so that tmap f t applies the function f to each leaf in t in place. For the sake of convenience,
you may use £ix, as well as any derived operators (such as do(e) and my;ms) that we have
discussed in class. You don’t have to consider the behavior on tmap on circular trees.

Task 4 For each of the following alternate type specifications below, explain informally whether
it is possible to define a term of said type with the same or similar behavior as in the previous
task. If it is possible, describe any difference in functionality between the two.

(a) (1 = 7) = 7 tree — unit

(c)

(d) (t = 1) = (7 tree — unit) cmd

(

(b) (1 = 7) cmd — 7 tree — unit cmd
(1 — 7 cmd) — 7T tree — unit cmd
(

1.2 Exceptions

In this section, we’ll consider adding an exception mechanism to MA at the level of commands.
Assume we have fixed a type 7Texn and are working in MA with free assignables. In order to deal
with control flow, we will need a control stack-style dynamics, which we will specify via states
k > m, representing execution of a command, k < v, representing normal return, and k£ <« v,
representing exceptional return. Each of these states exists in the context of a signature ¥ and
memory p. We will evaluate expressions independently of the memory and control stack with
an evaluation dynamics e ||, v (the choice of evaluation dynamics is simply to save space on
rules, since expressions are not our focus). For example, we use the following rules for ret and
dcl:
els v
vi{p || k>sret(e)} —vi{u || k <v}

elsv
v{p || k>sdel(e;am)t = via~t{p®@a = v || k>sm}

(DECL-I)

Exceptions are implemented via commands raise and try.

T'kse: Ten T'tymi~7 T, :TenbFmo~T

I'Fy raise{r}(e) ~ 7

(RAISE) (TRY)

I'Fy try(my;xame) ~ 7

elswv
v3{u | k> raise{r}(e)} — vE{u | k €4 v}

vX{p || k> try(my;zme)} — vX{p || k;try(—;x.me) > mq}

v3{p || kstry(—;zme) <o} = vE{p || k< v}

vS{u || k;try(—;x.ma) v} = vE{u || k> [v/x]ma}

Task 5 Give control stack dynamics rules for bnd. (Remember to handle cases involving excep-
tions!)

Task 6 We can also add exceptions to MA with scoped assignables. In this setup, (DCL-1) is
different: rather than reducing a declaration dcl(v;a.m) by adding a < v to the memory and
deleting the declaration, we push the declaration onto the stack and continue as m. As a result,
we can do away with the memory completely and instead maintain the values of assignables on
the control stack. In this version, we’ll use states k> m, k <v, and k 4 v, each in a signature
v¥{—} (but without a memory).

elsv
v¥{k >y dcl(e;a.m)} — vE, a ~ 7{k;dcl(v;a.—) >y m}

(DECL-I)

(a) What restriction to the exception setup is necessary to ensure type safety if we use scoped
assignables? Give an example of how type safety can fail otherwise.

(b) Finish the set of dynamics rules for dcl(v;a.m) for this setup, and give rules for getla] and
setlal(e). (You may find it useful to define auziliary judgments to search for and update
assignable values in the control stack.)

(¢) For which of the rules you gave in (b) is the restriction you described in (a) necessary for
preservation? Why?

2 Exceptions from Fluid Binding

In this section, we implement exceptions in a language with continuations and fluid binding,
a restricted form of memory which is, incidentally, a principled presentation of dynamic scope.
We will work in a system with a single fluid memory cell, which is enough for our purposes; a
full treatment can be found in PFPL 32. The extension adds the expressions putf(es;es2) and
getf, with the following typing rules:

e :myig hex:7
I'F putf(es;eqg) : 7 I'- getf : Thuig

Here Tqyq is some fixed type. (If we had multiple fluid cells, there would be no reason to restrict
to a single type.) The expressions putf(e;;es) sets the value of the fluid cell to e; in the
evaluation of ey, while getf gets the current value in the fluid cell. The control stack dynamics
rules are as follows.

k> putf(er;eq) — k;putf(—;e2) > e k;putf(—;ez) <Qwvy — k;putf(vy;—) > eg

fluid(k) = v fluid(k) %
k;putf(vy; —) <wvg — k <Qvg k> getf = k< (k> getf) err

It is necessary to include an error judgment s err for the case that getf is called before the fluid
cell has been set to any value. (The dynamics must then include the obvious error propagation
rules, which we will not enumerate.) The judgments fluid(k) = v and fluid(k) #-, which are
used to search for the fluid cell’s current value in the stack, are defined by the following rules.

f#putf(v';—) fluid(k) = v
fluid(k;putf(v; —)) = v fluid(k; f) = v

f #putf(v';—) fluid(k) A v
fluid(e) A fluid(k; f) & v

Observe that the fluid cell behaves like a “dynamically-scoped variable.” For example (assuming
the necessary language constructs exist), the term

putf(10;1let f = putf(1l; \x:nat. getf + z) in f(1))

should evaluate to 11, even though the value of the fluid cell is 1 at the time the function is
defined, because at the time it is called the assignment putf(1; —) has left the control stack.

Task 7 Using fluid binding and continuations (with letcc and throw), define encodings of the
expressions raise{7}(e) and try(e;x.e2). Assume a type Texn is given; you choose Tayd. You
can also assume that the fluid cell is not being used for other purposes. If an exception reaches
the toplevel, it should result in an err state.

3 Dynamic Classification for Existentials

In this section, we will investigate the possibility of encoding existential types using dynamic
classification. (A result in the other direction, implementing clsfd using existentials and sym-
bolic references, is in PFPL 33.3.) The basis for the encoding is the following implementation
of the existential type:

3t.r £ [clsfd/t]T

In order to define the operations on the existential type, however, we will have to restrict the
form of the operator t.7.

Task 8 Define pack and open for this encoding, assuming that t.7 is a positive type operator.

Task 9 The condition that t.17 s positive is sufficient, but not necessary. Give definitions of
pack and open for the operator t.t x (t — nat), in which the first occurence of t is positive but
the second is negative.

Task 10 In class, we discussed the dual concepts of integrity and confidentiality with respect
to dynamic classification. The integrity of classified values is determined by which parties have
access to the constructor infa], while confidentiality concerns access to the destructor isin|a].
Describe the role these play in your answers to Tasks 8 and 9.

	Modernized Algol
	References for Mutable Data Structures
	Exceptions

	Exceptions from Fluid Binding
	Dynamic Classification for Existentials

