
Selective Memoization∗

Umut A. Acar Guy E. Blelloch Robert Harper

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{umut,blelloch,rwh}@cs.cmu.edu

Abstract

We present a framework for applying memoization selectively. The
framework provides programmer control over equality, space us-
age, and identification of precise dependences so that memoiza-
tion can be applied according to the needs of an application. Two
key properties of the framework are that it is efficient and yields
programs whose performance can be analyzed using standard tech-
niques.

We describe the framework in the context of a functional language
and an implementation as an SML library. The language is based
on a modal type system and allows the programmer to express pro-
grams that reveal their true data dependences when executed. The
SML implementation cannot support this modal type system stati-
cally, but instead employs run-time checks to ensure correct usage
of primitives.
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1 Introduction

Memoization is a fundamental and powerful technique for result
re-use. It dates back a half century [7, 24, 25] and has been used
extensively in many areas such as dynamic programming [4, 9, 10,
21], incremental computation [11, 37, 12, 39, 18, 1, 40, 22, 15, 16,
2], and many others [8, 26, 19, 14, 23, 28, 29, 22]. In fact, lazy
evaluation provides a limited form of memoization [20].

Although memoization can dramatically improve performance and
can require only small changes to the code, no language or library
support for memoization has gained broad acceptance. Instead,
many successful uses of memoization rely on application-specific
support code. The underlying reason for this is one of control: since
memoization is all about performance, the user must be able to con-
trol the performance of memoization. Many subtleties of memoiza-
tion, including the cost of equality checking and the cache replace-
ment policy for memo tables, can make the difference between ex-
ponential and linear running time.

To be general and widely applicable a memoization framework
must provide control over these three areas: (1) the kind and cost
of equality tests; (2) the identification of precise dependences be-
tween the input and the output of memoized code; and (3) space
management. Control over equality tests is critical, because this
is how re-usable results are identified. Control over identification
of precise dependences is important to maximize result reuse. Be-
ing able to control when memo tables or individual their entries are
purged is critical, because otherwise the user will not know whether
or when results are re-used.

In this paper, we propose a framework for memoization that pro-
vides control over equality and identification of dependences, and
some control over space management. We study the framework
in the context of a small language called MFL and provide an im-
plementation for it in the Standard ML language. We prove the
type safety and correctness of MFL—i.e., that the semantics are pre-
served with respect to a non-memoized version. As an example, we
show how to analyze the performance of a memoized version of
Quicksort within our framework.

In the next section we describe background and related work. In
Section 3 we introduce our framework via some examples. In Sec-
tion 4 we formalize the MFL language and discuss its safety, cor-
rectness, and performance properties. In Section 5 we present a
simple implementation of the framework as a Standard ML library.
In Section 6 we discuss how the framework might be extended to
allow for better control of space usage, and discuss the relationship
of this work to our previous work on adaptive computation [2].



2 Background and Related Work

A typical memoization scheme maintains a memo table mapping
argument values to previously computed results. This table is con-
sulted before each function call to determine if the particular ar-
gument is in the table. If so, the call is skipped and the result is
returned; otherwise the call is performed and its result is added to
the table. The semantics and implementation of the memo lookup
are critical to performance. Here we review some key issues in im-
plementing memoization efficiently.

Equality. Any memoization scheme needs to search a memo ta-
ble for a match to the current arguments. Such a search will, at
minimum, require a test for equality. Typically it will also require
some form of hashing. In standard language implementations test-
ing for equality on structures, for example, can require traversing
the whole structure. The cost of such an equality test can negate
the advantage of memoizing and may even change the asymptotic
behavior of the function. A few approaches have been proposed to
alleviate this problem. The first is based on the fact that for memo-
ization equality need not be exact—it can return unequal when two
arguments are actually equal. The implementation could therefore
decide to skip the test if the equality is too expensive, or could use a
conservative equality test, such as “location” equality. The problem
with such approaches is that whether a match is found could depend
on particulars of the implementation and will surely not be evident
to the programmer.

Another approach for reducing the cost of equality tests is to en-
sure that there is only one copy of every value, via a technique
known as “hash consing” [13, 5, 38]. If there is only one copy, then
equality can be implemented by comparing locations. In fact, the
location can also be used as a key to a hash table. In theory, the
overhead of hash-consing is constant in the expected case (expecta-
tion is over internal randomization of hash functions). The reality,
however, is rather different because of large memory demands of
hash-consing and its interaction with garbage collection. In fact,
several researchers have argued that hash-consing is too expensive
for practical purposes [35, 36, 6, 27]. As an alternative to hash con-
sing, Pugh proposed lazy structure sharing [35]. In lazy structure
sharing whenever two equal values are compared, they are made to
point to the same copy to speed up subsequent comparisons. As
Pugh points out, the disadvantage of this approach is that the per-
formance depends on the order comparisons and thus it is difficult
to analyze.

We note that even with hash-consing, or any other method, it re-
mains critical to define equality on all types including reals and
functions. Claiming that functions are never equivalent, for exam-
ple, is not satisfactory because the result of a call involving some
function as a parameter will never be re-used.

Precise Dependences. To maximize result re-use, the result of a
function call must be stored with respect to its true dependences.
This issue arises when the function examines only parts or an ap-
proximation of its parameter. To enable “partial” equality checks,
the unexamined parts of the parameter should be disregarded. To
increase the likelihood of result re-use, one should be able to match
on the approximation, rather than the parameter itself. As an exam-
ple, consider the code

fun f(x,y,z) = if (x > 0) then fy(y) else fz(z)

The result of f depends on either (x,y) or (x,z). Also, it depends
on an approximation of x–whether or not it is positive–rather than

its exact value. Thus, the memo entry (7,11,20) should match
(7,11,30) or (4,11,50) since, when x is positive, the result de-
pends only on y.

Several researchers have remarked that partial matching can be very
important in some applications [31, 30, 23, 1, 16]. Abadi, Lampson,
Lévy [1], and Heydon, Levin, Yu [16] have suggested program anal-
ysis methods for tracking dependences for this purpose. Although
their technique is likely effective in catching potential matches, it
does not provide a programmer controlled mechanism for speci-
fying what dependences should be tracked. Also, their program
analysis technique can change the asymptotic performance of a pro-
gram, making it difficult to asses the effects of memoization.

Space management. Another problem with memoization is its
space requirement. As a program executes, its memo tables can
become large limiting the utility of memoization. To alleviate this
problem, memo tables or individual entries should be disposed of
under programmer control.

In some application, such as in dynamic programming, most result
re-use occurs among the recursive calls of some function. Thus, the
memo table of such a function can be disposed of whenever it ter-
minates. In other applications, where result re-use is less structured,
individual memo table entries should be purged according to a re-
placement policy [17, 36]. The problem is to determine what exact
replacement policy should be used and to analyze the performance
effects of the chosen policy. One widely used approach is to replace
the least recently used entry. Other, more sophisticated, policies
have also been suggested [36]. In general the replacement policy
must be application-specific, because, for any fixed policy, there are
programs whose performance is made worse by that choice [36].

3 A Framework for Selective Memoization

We present an overview of our framework via some examples. The
framework extends a purely functional language with several con-
structs to support selective memoization. In this section, we use an
extension to an ML-like language for the discussion. We formal-
ize the core of this language and study its safety, soundness, and
performance properties in Section 4.

The framework enables the programmer to determine precisely the
dependences between the input and the result of a function. The
main idea is to deem the parameters of a function as resources and
provide primitives to explore incrementally any value, including the
underlying value of a resource. This incremental exploration pro-
cess reveals the dependences between the parameter of the function
and its result.

The incremental exploration process is guided by types. If a value
has the modal type !τ, then the underlying value of type τ can be
bound to an ordinary, unrestricted variable by the let! construct;
this will create a dependence between the underlying value and the
result. If a value has a product type, then its two parts can be bound
to two resources using the let* construct; this creates no depen-
dences. If the value is a sum type, then it can be case analyzed
using the mcase construct, which branches according to the outer-
most form of the value and assigns the inner value to a resource;
mcase creates a dependence on the outer form of the value of the
resource. The key aspect of the let* and mcase is that they bind
resources rather than ordinary variables.

Exploring the input to a function via let!, mcase, and let* builds



Non-memoized Memoized

fun fib (n:int)=

if (n < 2) then n
else fib(n-1) +

fib(n-2)

mfun mfib (n’:!int)=
let !n = n’ in return (

if (n < 2) then n
else mfib(!(n-1)) +

mfib(!(n-2)))
end

fun f (x:int,
y:int,
z:int)=

if (x > 0) then

fy y

else

fz z

mfun mf (x’:int,
y’:!int,
z’:!int)=

mif (x’ > 0) then
let !y = y’ in

return (fy y)
end

else
let !z = z’ in

return (fz z)
end

Figure 1. Fibonacci and expressing partial dependences.

a branch recording the dependences between the input and the re-
sult of the function. The let! adds to the branch the full value,
the mcase adds the kind of the sum, and let* adds nothing. Con-
sequently, a branch contains both data dependences (from let!’s)
and control dependences (from mcase’s). When a return is en-
countered, the branch recording the revealed dependences is used
to key the memo table. If the result is found in the memo table,
then the stored value is returned, otherwise the body of the return
is evaluated and the memo table is updated to map the branch to
the result. The type system ensures that all dependences are made
explicit by precluding the use of resources within return’s body.

As an example consider the Fibonacci function fib and its memo-
ized counterpart mfib shown in Figure 1. The memoized version,
mfib, exposes the underlying value of its parameter, a resource,
before performing the two recursive calls as usual. Since the re-
sult depends on the full value of the parameter, it has a bang type.
The memoized Fibonacci function runs in linear time as opposed to
exponential time when not memoized.

Partial dependences between the input and the result of a function
can be captured by using the incremental exploration technique. As
an example consider the function f shown in Figure 1. The function
checks whether x is positive or not and returns fy(y) or fz(z).
Thus the result of the function depends on an approximation of x
(its sign) and on either y or z. The memoized version mf captures
this by first checking if x’ is positive or not and then exposing the
underlying value of y’ or z’ accordingly. Consequently, the result
will depend on the sign of x’ and on either y’ or z’. Thus if mf is
called with parameters (1,5,7) first and then (2,5,3), the result will
be found in the memo the second time, because when x’ is positive
the result depends only on y’. Note that mif construct used in this
example is just a special case of the more general mcase construct.

A critical issue for efficient memoization is the implementation of
memo tables along with lookup and update operations on them.
In our framework we support expected constant time memo table
lookup and update operations by representing memo tables using
hashing. To do this, we require that the underlying type τ of a
modal type !τ be an indexable type. An indexable type is associ-
ated with an injective function, called an index function, that maps
each value of that type to a unique integer; this integer is called
the index of the value. The uniqueness property of the indices for
a given type ensures that two values are equal if and only if their
indices are equal. In our framework, equality is only defined for
indexable types. This enables us to implement memo tables as hash

Non-memoized Memoized

type irl=(int*real) list

fun ks (c:int,l:irl) =

case l of
nil => 0

|(w,v)::t =>
if (c < w) then
ks (c,t)

else let
v1 = ks(c,t)
v2 = v+ks(c-w,t)

in
if (v1>v2) then v1
else v2

end

type irl=(int*real) blist

mfun mks (c’:!int,l’:!irl)
let !c = c’ in
let !l = l’ in return (

case (unbox l) of
NIL => 0

| CONS((w,v),t) =>
if (c < w) then

mks(!c,!t)
else let

v1 = mks(!c,!t)
v2 = v+mks(!(c-w),!t)

in
if (v1>v2) then v1
else v2

end)
end end

Figure 2. Memo-tables for memoized Knapsack can be dis-
carded at completion.

tables keyed by branches consisting of indices.

We assume that each primitive type comes with an index function.
For examples, for integers, the identity function can be chosen as
the index function. Composite types such as lists or functions must
be boxed to obtain an indexable type. A boxed value of type τ has
type τbox. When a box is created, it is assigned a unique locations
(or tag), and this location is used as the unique index of that boxed
value. For example, we can define boxed lists as follows.
datatype α blist’ = NIL

| CONS of α * ((α blist’) box)

type α blist = (α blist’) box

Based on boxes we implement hash-consing as a form of memoiza-
tion. For example, hash-consing for boxed lists can be implemented
as follows.
mfun hCons (h’:!α), t’:!(α blist)) =

let !h = h’ in let !t = t’ in

return (box (CONS(h,t)))
end end

The function takes an item and a boxed list and returns the boxed
list formed by consing them. Since the function is memoized, if it
is ever called with two values that are already hash-consed, then the
same result will be returned. The advantage of being able to de-
fine hash-consing as a memoized function is that it can be applied
selectively.

To control space usage of memo tables, our framework gives the
programmer a way to dispose of memo tables by conventional scop-
ing. In our framework, each memoized function is allocated its
own memo table. Thus, when the function goes out of scope,
its memo table can be garbage collected. For example, in many
dynamic-programming algorithms result re-use occurs between re-
cursive calls of the same function. In this case, the programmer can
scope the memoized function inside an auxiliary function so that its
memo table is discarded as soon as the auxiliary function returns.
As an example, consider the standard algorithm for the Knapsack
Problem ks and its memoized version mks Figure 2. Since result
sharing mostly occurs among the recursive calls of mks, it can be
scoped in some other function that calls mks; once mks returns its
memo-table will go out of scope and can be discarded.

We note that this technique gives only partial control over space
usage. In particular it does not give control over when individual
memo table entries are purged. In Section 6, we discuss how the



Non-memoized Memoized

fun fil (g:int->bool,
l:int list) =

case l of
nil => nil

| h::t =>
let

tt = fil(g,t)
in

case (g h) of
true => h::tt
|false => tt

end

empty = box NIL

fun mfil (g:int->bool,
l:int blist)=

case (unbox l) of
NIL => empty

| CONS(h,t) =>
let

tt = mfil(g,t)
in

case (g h) of
true => hCons(h,tt)
|false => tt

end

fun qs (l:int list) =

case l of
nil => nil

| cons(h,t) =>
let

s = fil(fn x=>x<h,t)
g = fil(fn x=>x>=h,t)

in
(qs s)@(h::(qs g))

end

mfun mqs (l’:int blist) =
let

!l = l’
in return (

case (unbox l) of
NIL => nil

| CONS(h,t) =>
let

s = mfil(fn x=>x<h,t)
g = mfil(fn x=>x>=h,t)

in
(mqs s)@(h::(mqs g))

end)
end

Figure 3. The Quicksort algorithm.

framework might be extended so that each memo table is managed
according to a programmer specified caching scheme. The basic
idea is to require the programmer to supply a caching scheme as a
parameter to the mfun and maintain the memo table according to
the chosen caching scheme.

Memoized Quicksort. As a more sophisticated example, we con-
sider Quicksort. Figure 3 show an implementation of the Quicksort
algorithm and its memoized counterpart. The algorithm first di-
vides its input into two lists containing the keys less than the pivot,
and greater than the pivot by using the filter function fil. It then
sorts the two sublists, and returns the concatenation of the results.
The memoized filter function mfil uses hash-consing to ensure that
there is only one copy of each result list. The memoized Quicksort
algorithm mqs exposes the underlying value of its parameter and is
otherwise similar to qs. Note that mqs does not build its result via
hash-consing—it can output two copies of the same result. Since in
this example the output of mqs is not consumed by any other func-
tion, there is no need to do so. Even if the result were consumed
by some other function, one could opt not to use hash-consing be-
cause operations such as insertions to and deletions from the input
list will surely change the result of Quicksort.

When the memoized Quicksort algorithm is called on “similar” in-
puts, one would expect that some of the results would be re-used.
Indeed, we show that the memoized Quicksort algorithm computes
its result in expected linear time when its input is obtained from a
previous input by inserting a new key at the beginning. Here the
expectation is over all permutations of the input list and also the
internal randomization of the hash functions used to implement the
memo tables. For the analysis, we assume, without loss of general-
ity, that all keys in the list are unique.

Theorem 1
Let L be a list and let L′ = [a,L]. Consider running memoized
Quicksort on L and then on L′. The running time of Quicksort on
the modified list L′ is expected O(n) where n is the length of L′.
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Figure 4. The recursion tree for Quicksort with in-
puts L = [15,30,26,1,3,16,27,9,35,4,46,23,11,42,19] (left) and
L′ = [20,L] (right).

Proof: Consider the recursion tree of Quicksort with input L, de-
noted Q(L), and label each node with the pivot of the correspond-
ing recursive call (see Figure 4 for an example). Consider any pivot
(key) p from L and let Lp denote the keys that precede p in L. It is
easy to see that a key k is in the subtree rooted at p if and only if
the following two properties are satisfied for any key k′ ∈ Lp.

1. If k′ < p then k > k′, and

2. if k′ > p then k < k′.

Of the keys that are in the subtree of p, those that are less than p are
in its left subtree and those greater than p are in its right subtree.

Now consider the recursion tree Q(L′) for L′ = [a,L] and let p be
any pivot in Q(L′). Suppose p < a and let k be any key in the left
subtree of p in Q(L). Since k < p, by the two properties k is in
the left subtree of p in Q(L′). Similarly if p > a then any k in the
right subtree of p in Q(L) is also in the right subtree of p in Q(L′).
Since filtering preserves the respective order of keys in the input
list, for any p, p < a, the input to the recursive call corresponding
to its left child will be the same. Similarly, for p > a, the input to
the recursive call corresponding to its right child will be the same.
Thus, when sorting L′ these recursive calls will find their results in
the memo. Therefore only recursive calls corresponding to the root,
to the children of the nodes in the rightmost spine of the left subtree
of the root, and the children of the nodes in the leftmost spine of the
right subtree of the root may be executed (the two spines are shown
with thick lines in Figure 4). Furthermore, the results for the calls
adjacent to the spines will be found in the memo.

Consider the calls whose results are not found in the memo. In the
worst case, these will be all the calls along the two spines. Consider
the sizes of inputs for the nodes on a spine and define the random
variables X1 . . .Xk such that Xi is the least number of recursive calls
(nodes) performed for the input size to become

( 3
4
)i

n or less after

it first becomes
( 3

4
)(i−1)

n or less. We have k ≤ dlog4/3 ne and the
total number of operations along a spine is

C(n) ≤

dlog4/3 ne

∑
i=1

Xi

(
3
4

)i−1
n.

Since the probability that the pivot lies in the middle half of the list



is 1
2 , E[Xi]≤ 2 for i≥ 1.

E[C(n)] ≤

dlog4/3 ne

∑
i=1

E[Xi]

(
3
4

)i−1
n

≤

dlog4/3 ne

∑
i=1

2
(

3
4

)i−1
n.

Thus, E[C(n)] = O(n). This argument holds for both spines, thus
the number of operations due to calls whose results are not found in
the memo is O(n). Since each operation, including hash-consing,
takes an expected constant time, it follows that the total time of the
calls whose results are not in the memo is O(n). Now, consider
the calls whose results are found in the memo, each such call will
be on a spine or adjacent to it, thus there are an expected O(logn)
such calls. Since, the memo table lookup overhead is expected
constant time the total cost for these is O(logn). We conclude that
Quicksort will take expected O(n) time for sorting the modified list
L′. ¥

It is easy to extend the theorem to show that the O(n) bound holds
for an insertion anywhere in the list. Although, this bound is better
than a complete rerun, which would take O(n logn), we would like
to achieve O(logn). In Section 6 we discuss how a combination of
memoization and adaptivity [2] may reduce the expected cost of a
random insertion to O(logn).

4 MFL

In this section we study a small functional language, called MFL,
that supports selective memoization. MFL distinguishes memo-
ized from non-memoized code, and is equipped with a modality
for tracking dependences on data structures within memoized code.
This modality is central to our approach to selective memoization,
and is the focus of our attention here. The main result is a soundness
theorem stating that memoization does not affect the outcome of
a computation compared to a standard, non-memoizing semantics.
We also show that the memoization mechanism of MFL causes a
constant factor slowdown compared to a standard, non-memoizing
semantics.

4.1 Abstract Syntax

The abstract syntax of MFL is given in Figure 5. The meta-variables
x and y range over a countable set of variables. The meta-variables
a and b range over a countable set of resources. (The distinction
will be made clear below.) The meta-variable l ranges over a count-
able set of locations. We assume that variables, resources, and lo-
cations are mutually disjoint. The binding and scope conventions
for variables and resources are as would be expected from the syn-
tactic forms. As usual we identify pieces of syntax that differ only
in their choice of bound variable or resource names. A term or ex-
pression is resource-free if and only if it contains no free resources,
and is variable-free if and only if it contains no free variables. A
closed term or expression is both resource-free and variable-free;
otherwise it is open.

The types of MFL include the types 1 (unit), int, product and
sum types, recursive data types µu.τ, memoized function type, and
bang types !η. MFL distinguishes indexable types, denoted η, as
those that accept an injective function, called an index function,
whose co-domain is integers. For integers, the identity function

Ix. Types η : : = 1 | int | . . .

Types τ : : = η | !η | τ1× τ2 | τ1 + τ2 | µu.τ | τ1→ τ2

Op’s o : : = + | - | . . .

Expr’s e : : = return(t) | let!x:ηbe t ineend |
leta1:τ1×a2:τ2 be t ineend |
mcase t ofinl(a1:τ1) ⇒ e1

| inr(a2:τ2) ⇒ e2

Terms t : : = v | o(t1, . . . , tn) | 〈t1, t2〉 |
mfun f (a:τ1):τ2 iseend |
t1 t2 | ! t | inlτ1+τ2 t | inrτ1+τ2 t |
roll(t) | unroll(t)

Values v : : = x | a | ? | n | !v | 〈v1,v2〉 |
mfunl f(a:τ1):τ2 iseend

Figure 5. The abstract syntax of MFL.

serves as an index; for unit any constant function can be chosen
as an index. The underlying type of a bang type !η is restricted
to be an indexable type. For non-primitive types such as products
and recursive types, an index can be supplied by boxing values of
these types. Boxed values would be allocated in a store and the
unique label of each value would serve as a unique index for that
value. With this extension the indexable types would be defined as
η : : = 1 | int | τ box. Although supporting boxed types is critical
for practical purposes, we do not formalize this here to focus on the
basic ideas.

The syntax is structured into terms and expressions, in the terminol-
ogy of Pfenning and Davies [33]. Roughly speaking, terms evaluate
independently of their context, as in ordinary functional program-
ming, whereas expressions are evaluated relative to a memo table.
Thus, the body of a memoized function is an expression, whereas
the function itself is a term. In a more complete language we would
include case analysis and projection forms among the terms, but for
the sake of simplicity we include these only as expressions. We
would also include a plain function for which the body is a term.
Note that every term is trivially an expression; the return expres-
sion is the inclusion.

4.2 Static Semantics

The type structure of MFL extends the framework of Pfenning and
Davies [33] with a “necessitation” modality, !η, which is used
to track data dependences for selective memoization. This modal-
ity does not correspond to a monadic interpretation of memoiza-
tion effects (©τ in the notation of Pfenning and Davies), though
one could readily imagine adding such a modality to the language.
The introductory and eliminatory forms for necessity are standard,
namely ! t for introduction, and let!x:ηbe t ineend for elimina-
tion.

Our modality demands that we distinguish variables from re-
sources. Variables in MFL correspond to the “validity”, or “unre-
stricted”, context in modal logic, whereas resources in MFL corre-
spond to the “truth”, or “restricted” context. An analogy may also
be made to the judgmental presentation of linear logic [32, 34]:
variables correspond to the intuitionistic context, resources to the



linear context.1

The inclusion, return(t), of terms into expressions has no ana-
logue in pure modal logic, but is specific to our interpretation
of memoization as a computational effect. The typing rule for
return(t) requires that t be resource-free to ensure that any de-
pendence on the argument to a memoized function is made explicit
in the code before computing the return value of the function. In the
first instance, resources arise as parameters to memoized functions,
with further resources introduced by their incremental decomposi-
tion using let× and mcase. These additional resources track the
usage of as-yet-unexplored parts of a data structure. Ultimately,
the complete value of a resource may be accessed using the let!
construct, which binds its value to a variable, which may be used
without restriction. In practice this means that those parts of an
argument to a memoized function on whose value the function de-
pends will be given modal type. However, it is not essential that all
resources have modal type, nor that the computation depend upon
every resource that does have modal type.

The static semantics of MFL consists of a set of rules for deriving
typing judgments of the form Γ;∆ ` t : τ, for terms, and Γ;∆ ` e : τ,
for expressions. In these judgments Γ is a variable type assignment,
a finite function assigning types to variables, and ∆ is a resource
type assignment, a finite function assigning types to resources. The
rules for deriving these judgments are given in Figures 6 and 7.

4.3 Dynamic Semantics

The dynamic semantics of MFL formalizes selective memoization.
Evaluation is parameterized by a store containing memo tables that
track the behavior of functions in the program. Evaluation of a
function expression causes an empty memo table to be allocated and
associated with that function. Application of a memoized function
is affected by, and may affect, its associated memo table. Should the
function value become inaccessible, so also is its associated memo
table, and hence the storage required for both can be reclaimed.

Unlike conventional memoization, however, the memo table is
keyed by control flow information rather than by the values of ar-
guments to memoized functions. This is the key to supporting se-
lective memoization. Expression evaluation is essentially an explo-
ration of the available resources culminating in a resource-free term
that determines its value. Since the exploration is data-sensitive,
only certain aspects of the resources may be relevant to a particular
outcome. For example, a memoized function may take a pair of
integers as argument, with the outcome determined independently
of the second component in the case that the first is positive. By
recording control-flow information during evaluation, we may use
it to provide selective memoization.

For example, in the situation just described, all pairs of the form
〈0,v〉 should map to the same result value, irrespective of the value
v. In conventional memoization the memo table would be keyed by
the pair, with the result that redundant computation is performed in
the case that the function has not previously been called with v, even
though the value of v is irrelevant to the result! In our framework
we instead key the memo table by a “branch” that records sufficient
control flow information to capture the general case. Whenever we
encounter a return statement, we query the memo table with the
current branch to determine whether this result has been computed
before. If so, we return the stored value; if not, we evaluate the

1Note, however, that we impose no linearity constraints in our
type system!

Var, Res (Γ(x) = τ)
Γ;∆ ` x:τ

(∆(a) = τ)
Γ;∆ ` a:τ

Unit & Nums
Γ;∆ ` n : int Γ;∆ ` ? : 1

Prim Γ;∆ ` ti : τi (1≤ i≤ n) `o o : (τ1, . . . ,τn) τ
Γ;∆ ` o(t1, . . . , tn) : τ

Pairs Γ;∆ ` t1 : τ1 Γ;∆ ` t2 : τ2

Γ;∆ ` 〈t1, t2〉 : τ1× τ2

Fun Γ, f :τ1→ τ2;∆,a:τ1 ` e : τ2

Γ;∆ ` mfun f (a:τ1):τ2 iseend : τ1→ τ2

FunVal Γ, f :τ1→ τ2;∆,a:τ1 ` e : τ2

Γ;∆ ` mfunl f(a:τ1):τ2 iseend : τ1→ τ2

Apply Γ;∆ ` t1 : τ1→ τ2 Γ;∆ ` t2 : τ1

Γ;∆ ` t1 t2 : τ2

Bang Γ; /0 ` t : η
Γ;∆ ` ! t : !η

Inl, Inr
Γ;∆ ` t : τ1

Γ;∆ ` inlτ1+τ2 t : τ1 + τ2

Γ;∆ ` t : τ2

Γ;∆ ` inrτ1+τ2 t : τ1 + τ2

(Un)Roll
Γ;∆ ` t : [µu.τ/u]τ

Γ;∆ ` roll(t) : µu.τ

Γ;∆ ` t : µu.τ
Γ;∆ ` unroll(t) : [µu.τ/u]τ

Figure 6. Typing judgments for terms.

Return Γ; /0 ` t : τ
Γ;∆ ` return(t) : τ

Let! Γ;∆ ` t : !η Γ,x:η;∆ ` e : τ
Γ;∆ ` let!x:ηbe t ineend : τ

Let× Γ;∆ ` t : τ1× τ2 Γ;∆,a1:τ1,a2:τ2 ` e : τ
Γ;∆ ` leta1:τ1×a2:τ2 be t ineend : τ

Case

Γ;∆ ` t : τ1 + τ2
Γ;∆,a1:τ1 ` e1 : τ
Γ;∆,a2:τ2 ` e2 : τ

Γ;∆ ` mcase t ofinl(a1:τ1) ⇒ e1
| inr(a2:τ2) ⇒ e2

: τ

Figure 7. Typing judgments for expressions.

return statement, and associate that value with that branch in the
memo table for future use. It is crucial that the returned term not
contain any resources so that we are assured that its value does not
change across calls to the function.

The dynamic semantics of MFL is given by a set of rules for deriving



judgments of the form σ, t ⇓t v,σ′ (for terms) and σ, l:β,e ⇓e v,σ′

(for expressions). The rules for deriving these judgments are given
in Figures 8 and 9. These rules make use of branches, memo tables,
and stores, whose precise definitions are as follows.

A simple branch is a list of simple events corresponding to “choice
points” in the evaluation of an expression.

Simple Event ε : : = !v | inl | inr
Simple Branch β : : = • | ε ·β

We write β̂ε to stand for the extension of β with the event ε at the
end.

A memo table, θ, is a finite function mapping simple branches to
values. We write θ[β 7→ v], where β /∈ dom(θ), to stand for the
extension of θ with the given binding for β. We write θ(β) ↑ to
mean that β /∈ dom(θ).

A store, σ, is a finite function mapping locations, l, to memo tables.
We write σ[l 7→ θ], where l /∈ dom(σ), to stand for the extension of
σ with the given binding for l. When l ∈ dom(σ), we write σ[l← θ]
for the store σ that maps l to θ and l ′ 6= l to σ(l′).

Term evaluation is largely standard, except for the evaluation of
(memoizing) functions and applications of these to arguments.
Evaluation of a memoizing function term allocates a fresh memo ta-
ble, which is then associated with the function’s value. Expression
evaluation is initiated by an application of a memoizing function to
an argument. The function value determines the memo table to be
used for that call. Evaluation of the body is performed relative to
that table, initiating with the null branch.

Expression evaluation is performed relative to a “current” memo
table and branch. When a return statement is encountered, the
current memo table is consulted to determine whether or not that
branch has previously been taken. If so, the stored value is re-
turned; otherwise, the argument term is evaluated, stored in the
current memo table at that branch, and the value is returned. The
let! and mcase expressions extend the current branch to reflect
control flow. Since let! signals dependence on a complete value,
that value is added to the branch. Case analysis, however, merely
extends the branch with an indication of which case was taken. The
let× construct does not extend the branch, because no additional
information is gleaned by splitting a pair.

4.4 Soundness of MFL

We will prove the soundness of MFL relative to a non-memoizing
semantics for the language. It is straightforward to give a purely
functional semantics to the pure fragment of MFL by an inductive
definition of the relations t ⇓t

p v and e ⇓e
p v. Here t, e, and v are

“pure” in the sense that they may not involve subscripted function
values. The underlying term, t−, of an MFL term, t, is obtained by
erasing all location subscripts on function values occurring within
t.

The soundness of MFL consists of showing that evaluation with
memoization yields the same outcome as evaluation without mem-
oization.

Theorem 2 (Soundness)
If /0, t ⇓t v,σ, where /0; /0 ` t : τ, then t− ⇓t

p v−.

The full proof is given in [3]. The statement of the theorem must

Unit σ,? ⇓t ?,σ

Number σ,n ⇓t n,σ

PrimOp

σ, t1 ⇓t v1,σ1
...

σn−1, tn ⇓t vn,σn
v = app(o,(v1, . . . ,vn))

σ,o(t1, . . . , tn) ⇓t v,σn

Pair

σ, t1 ⇓t v1,σ′
σ′, t2 ⇓t v2,σ′′

σ,〈t1, t2〉 ⇓t 〈v1,v2〉,σ′′

Fun

(e = mfun f (a:τ1):τ2 ise′ end)
(v = mfunl f(a:τ1):τ2 ise′ end)

(l 6∈ dom(σ), σ′ = σ[l 7→ /0])

σ,e ⇓t v,σ′

FunVal
(v = mfunl f(a:τ1):τ2 ise′ end, l ∈ dom(σ))

σ,v ⇓t v,σ

Apply

σ, t1 ⇓t v1,σ1
σ1, t2 ⇓t v2,σ2

σ2, l:•, [v1,v2/ f ,a] e ⇓e v,σ′
(v1 = mfunl f(a:τ1):τ2 iseend)

σ, t1 t2 ⇓t v,σ′

Bang
σ, t ⇓t v,σ′

σ,! t ⇓t !v,σ′

Inject
σ, t ⇓t v,σ′

σ,inlτ1+τ2 t ⇓t inlτ1+τ2 v,σ′

σ, t ⇓t v,σ′

σ,inrτ1+τ2 t ⇓t inrτ1+τ2 v,σ′

(Un)Roll
σ, t ⇓t v,σ′

σ,roll(t) ⇓t roll(v),σ′

σ, t ⇓t roll(v),σ′

σ,unroll(t) ⇓t v,σ′

Figure 8. Evaluation of terms.

be strengthened considerably to account for both terms and expres-
sions, and to take account of non-empty memoization contexts. The
proof then proceeds by induction on evaluation.

It is easy to show that the non-memoizing semantics of MFL is type
safe, using completely conventional techniques. It follows that the
memoizing semantics is also type-safe, for if not, there would be a
closed value of a type τ that is not canonical for that type. How-
ever, erasure preserves and reflects canonical forms, hence, by the
Soundness Theorem, MFL must also be type safe.



Ret

σ(l)(β) = v

σ, l:β,return(t) ⇓e v,σ
(Found)

σ(l) = θ θ(β) ↑
σ, t ⇓t v,σ′
σ′(l) = θ′

σ, l:β,return(t) ⇓e v,σ′[l← θ′[β 7→ v]]
(Not Found)

Let!

σ, t ⇓t !v,σ′
σ′, l:!v ·β, [v/x]e ⇓t v′,σ′′

σ, l:β,let!x : ηbe t ineend ⇓e v′,σ′′

Let×

σ, t ⇓t v1× v2,σ′
σ′, l:β, [v1/a1,v2/a2]e ⇓e v,σ′′

σ, l:β,leta1×a2 be t ineend ⇓t v,σ′′

Case

σ, t ⇓t inlτ1+τ2 v,σ′
σ′, l:inl ·β, [v/a1]e1 ⇓e v1,σ′′

σ, l:β, mcase t ofinl(a1:τ1) ⇒ e1
| inr(a2:τ2) ⇒ e2

⇓t v1,σ′′

σ, t ⇓t inrτ1+τ2 v,σ′
σ′, l:inr ·β, [v/a2]e2 ⇓e v2,σ′′

σ, l:β, mcase t ofinl(a1:τ1) ⇒ e1
| inr(a2:τ2) ⇒ e2

⇓t v2,σ′′

Figure 9. Evaluation of expressions.

4.5 Performance

We show that memoization slows down an MFL program by a con-
stant factor (expected) with respect to a standard, non-memoizing
semantics even when no results are re-used.

Consider a non-memoizing semantics, where the return rule al-
ways evaluates its body and neither looks up nor updates memo
tables (stores). Consider an MFL program and let T denote the time
it takes (the number of evaluation steps) to evaluate the program
with respect to this non-memoizing semantics. Let T ′ denote the
time it takes to evaluate the same program with respect to the mem-
oizing semantics. In the worst case, no results are re-used, thus
the difference between T and T ′ is due to memo-table lookups and
updates done by the memoizing semantics. To bound the time for
these, consider a memo table lookup or update with a branch β and
let |β| be the length of the branch. Since a branch is a sequence of
integers, a lookup or update can be performed in expected O(|β|)
time using nested hash tables to represent memo tables. Now note
that the non-memoizing semantics takes |β| time to build the branch
thus, the cost of a lookup or update can be charged to the evalua-
tions that build the branch β, i.e., evaluations of let! and mcase.
Furthermore, each evaluation of let! and mcase can be charged
by exactly one return. Thus, we conclude that T ′ = O(T ) in the
expected case.

5 Implementation

We describe an implementation of our framework as a Standard ML
library. The aspects of the MFL language that relies on the syntac-
tic distinction between resources and variables cannot be enforced
statically in Standard ML. Therefore, we use a separate type for re-
sources and employ run-time checks to detect violations of correct
usage.

signature MEMO =
sig

(* Expressions *)
type ’a expr
val return: (unit -> ’a) -> ’a expr

(* Resources *)
type ’a res
val expose: ’a res -> ’a

(* Bangs *)
type ’a bang
val bang : (’a -> int) -> ’a -> ’a bang
val letBang: (’a bang) -> (’a -> ’b expr) -> ’b expr

(* Products *)
type (’a,’b) prod
val pair: ’a -> ’b -> (’a,’b) prod
val letx: (’a,’b) prod ->

((’a res * ’b res) -> ’c expr) -> ’c expr
val split: (’a,’b) prod -> ((’a * ’b) -> ’c) -> ’c

(* Sums *)
type (’a,’b) sum
val inl: ’a -> (’a,’b) sum
val inr: ’b -> (’a,’b) sum
val mcase: (’a,’b) sum -> (’a res -> ’c expr) ->

(’b res -> ’c expr) -> ’c expr
val choose: (’a,’b) sum -> (’a -> ’c) ->

(’b -> ’c) -> ’c

(* Memoized arrow *)
type (’a,’b) marrow
val mfun: (’a res -> ’b expr) -> (’a,’b) marrow
val mfun rec: ((’a, ’b) marrow ->

’a res -> ’b expr) -> (’a,’b) marrow
val mapply: (’a,’b) marrow -> ’a -> ’b

end

signature BOX = sig
type ’a box
val init: unit->unit
val box: ’a->’a box
val unbox: ’a box->’a
val getKey: ’a box->int

end

Figure 10. The signatures for the memo library and boxes.

The interface for the library (shown in Figure 10) provides types for
expressions, resources, bangs, products, sums, memoized functions
along with their introduction and elimination forms. All expres-
sions have type ’a expr, which is a monad with return as the
inclusion and various forms of “bind” induced by the elimination
forms letBang, letx, and mcase. A resource has type ’a res
and expose is its elimination form. Resources are only created
by the library, thus no introduction form for resources is available
to the user. The introduction and elimination form for bang types
are bang and letBang. The introduction and elimination form for
product types are pair, and letx and split respectively. The
letx is a form of “bind” for the monad expr; split is the elimi-
nation form for the term context. The treatment of sums is similar
to product types. The introduction forms are inl and inr, and the
elimination forms are mcase and choose; mcase is a form of bind
for the expr monad and choose is the elimination for the term
context.

Memoized functions are introduced by mfun and mfun rec; mfun
takes a function of type ’a res -> ’b expr and returns the
memoized function of type (’a,’b) marrow; mfun rec is similar
to mfun but it also takes as a parameter its memoized version. Note
that the result type does not contain the “effect” expr—we encap-
sulate memoization effects, which are benign, within the function.
The elimination form for the marrow is the memoized apply func-
tion mapply.



functor BuildMemo (structure Box: BOX
structure Memopad:MEMOPAD):MEMO =

struct

type ’a expr = int list * (unit -> ’a)
fun return f = (nil,f)

type ’a res = ’a
fun res v = v
fun expose r = r

type ’a bang = ’a * (’a -> int)
fun bang h t = (t,h)
fun letBang b f = let

val (v,h) = b
val (branch,susp) = f v

in
((h v)::branch, susp)

end

type (’a,’b) prod = ’a * ’b
fun pair x y = (x,y)
fun split p f = f p
fun letx p f= let

val (x1,x2) = p
in

f (res x1, res x2)
end

datatype (’a,’b) sum = INL of ’a | INR of ’b
fun inl v = INL(v)
fun inr v = INR(v)
fun mcase s f g = let

val (lr,(branch,susp)) =
case s of

INL v => (0,f (res v))
| INR v => (1,g (res v))

in
(lr::branch,susp)

end
fun choose s f g = case s of INL v => f v

| INR v => g v

type (’a,’b) marrow = ’a -> ’b
fun mfun rec f = let

val mpad = Memopad.empty ()
fun mf rf x = let

val (branch,susp) = f rf (res x)
val result =

case Memopad.extend mpad branch of
(NONE,SOME mpad’) => let (* Not found *)

val v = susp ()
val = Memopad.add v mpad’

in
v

end
| (SOME v,NONE) => v (* Found *)

in
result

end
fun mf’ x = mf mf’ x

in
mf’

end

fun mfun f = ... (* Similar to mfun rec *)

fun mapply f v = f v
end

Figure 11. The implementation of the memoization library.

Figure 11 shows an implementation of the library without the run-
time checks for correct usage. To incorporate the run-time checks,
one needs a more sophisticated definition of resources in order to
detect when a resource is exposed out of its context (i.e., function
instance). In addition, the interface must be updated so that the
first parameter of letBang, letx, and mcase, occurs in suspended
form. This is necessary to update the state consisting of certain
flags before forcing a term.

The implementation extends the operational semantics of the MFL

structure Examples =
struct
type ’a box = ’a Box.box

(** Some utilities **)
fun iBang v = bang (fn i => i) v
fun bBang b = bang (fn b => Box.key b) b

(** Fibonacci **)
fun mfib’ f (n’) =

letBang (expose n’) (fn n => return (fn()=>
if n < 2 then

n
else

mapply f (iBang(n-1))+
mapply f (iBang(n-2))))

fun mfib n = mapply (mfun rec mfib’) n

(** Boxed lists **)
datatype ’a blist’ = NIL

| CONS of (’a * ((’a blist’) box))
type ’a blist = (’a blist’) box

(** Hash Cons **)
fun hCons’ (x’) =

letx (expose x’) (fn (h’,t’) =>
letBang (expose h’) (fn h =>
letBang (expose t’) (fn t =>
return (fn()=> box (CONS(h,t))))))

val hCons = mfun hCons’

(** Knapsack **)
fun mks’ mks (arg) =

letx (expose arg) (fn (c’,l’) =>
letBang (expose c’) (fn c =>
letBang (expose l’) (fn l => return (fn () =>

case (unbox l) of
NIL => 0
| CONS((w,v),t) =>

if (c < w) then
mapply mks (pair (iBang c) (bBang t))

else
let

val arg1 = pair (iBang c) (bBang t)
val v1 = mapply mks arg1
val arg2 = pair (iBang (c-w)) (bBang t)
val v2 = v + mapply mks arg2

in
if (v1 > v2) then v1
else v2

end))))
fun mks x = mapply (mfun rec mks’) x

(** Quicksort **)
fun mqs () = let

val empty = box NIL
val hCons = mfun hCons’
fun fil f l =

case (unbox l) of
NIL => empty

| CONS(h,t) =>
if (f h) then

mapply hCons (pair (iBang h) (bBang (fil f t)))
else

fil f t
fun qs’ qs (l’) =
letBang (expose l’) (fn l => return (fn () =>

case (unbox l) of
NIL => nil

| CONS(h,t) =>
let

val ll = fil (fn x=>x<h) t
val gg = fil (fn x=>x>=h) t
val sll = mapply qs (bBang ll)
val sgg = mapply qs (bBang gg)

in
sll@(h::sgg)

end))
in

mfun rec qs’
end
end

Figure 12. Examples from Section 3 in the SML library.



language (Section 4.3) with boxes. The bang primitive takes a
value and an injective function, called the index function, that maps
the value to an integer, called the index. The index of a value is
used to key memo tables. The restriction that the indices be unique,
enables us to implement memo tables as nested hash tables, which
support the memo table operations in expected constant time. The
primitive letBang takes a value b of bang type and a body. It ap-
plies the body to the underlying value of b, and extends the branch
with the index of b. The function letx takes a pair p and a body. It
binds the parts of the pair to two resources and and applies the body
to the resources; as with the operational semantics, letx does not
extend the branch. The function mcase takes value s of sum type
and a body. It branches on the outer form of s and binds its inner
value to a resource. It then applies the body to the resource and
extends the branch with 0 or 1 depending on the outer form of s.
The elimination forms of sums and products for the term context,
split and choose are standard.

The return primitive finalizes the branch and returns its body as a
suspension. The branch is used by mfun rec or mfun, to key the
memo table; if the result is found in the memo table, then the sus-
pension is disregarded and the result is re-used; otherwise the sus-
pension is executed and the result is stored in the memo table keyed
by the branch. The mfun rec primitive takes a recursive function
f as a parameter and “memoizes” f by associating it with a memo
pad. A subtle issue is that f must calls its memoized version recur-
sively. Therefore f must take its memoized version as a parameter.
Note also that the memoized function internally converts its param-
eter to a resource before applying f to it.

The interface of the library provides no introduction form for re-
sources. Indeed, all resources are created by the library inside the
letx, mcase, mfun rec, and mfun. The function expose is the
elimination form for resources. If, for example, one would like
to apply letBang to a resource, then he must first expose the re-
source, which “exposes” the underlying value.

Figure 12 show the examples from Section 3 written in the SML
library. Note that the memoized Fibonacci function mfib creates a
memo table every time it is called. When mfib finishes, this table
can be garbage collected. For Quicksort, we provide a function mqs
that returns an instance of memoized Quicksort when applied. Each
such instance has its own memo table. Note also that mqs creates
a local instance of the hash-cons function so that each instance of
memoized Quicksort has its own memo table for hash-consing.

In the examples, we do not use the sum types provided by the
library to represent boxed lists, because we do not need to. In
general, one will use the provided sum types instead of their ML
counterparts (for example if an mcase is needed). The examples
in Figure 12 can be implemented using the following definition of
boxed lists.
datatype ’a boxlist’ =

ROLL of (unit, ((’a, ’a boxlist’ box) prod)) sum
type ’a boxlist = (’a boxlist’) box

Changing the code in Figure 12 to work with the above definition
of boxed lists requires several straightforward modifications.

6 Discussion

Space and Cache Management. Our framework associates a sep-
arate memo table with each memoized function. This allows the
programmer to control the life-span of memo tables by conven-
tional scoping. This somewhat coarse degree of control is sufficient

in certain applications such as in dynamic programming, but finer
level of control may be desirable for applications where result re-
use is less regular. Such an application can benefit from specifying
a caching scheme for individual memo tables so as to determine the
size of the memo table and the replacement policy. We discuss how
the framework can be extended to associate a cache scheme with
each memo table and maintain the memo table accordingly.

The caching scheme should be specified in the form of a parameter
to the mfun construct. When evaluated, this construct will bind
the caching scheme to the memo table and the memo table will
be maintained accordingly. Changes to the operational semantics
to accommodate this extension is small. The store σ will now
map a label to a pair consisting of a memo table and its caching
scheme. The handling of the return will be changed so that
the stores do not merely expand but are updated according to
the caching scheme before adding a new entry. The following
shows the updated return rule. Here S denotes a caching scheme
and θ denotes a memo table. The update function denotes a
function that updates the memo table to accommodate a new
entry by possibly purging an existing entry. The programmer
must ensure that the caching scheme does not violate the in-
tegrity of the memo table by tampering with stored values.

σ(l) = (θ,S) θ(β) = v
σ, l:β,return(t) ⇓e v,σ

(Found)

σ(l) = (θ,S) θ(β) ↑
σ, t ⇓t v,σ′

σ′(l) = (θ′,S) θ′′ = update(θ′,S ,(β,v))

σ, l:β,return(t) ⇓e v,σ′[l← θ′′]
(Not Found)

For example, we can specify that the memo table for the Fibonacci
function, shown in Figure 1, can contain at most two entries and
be managed using the least-recently-used replacement policy. This
is sufficient to ensure that the memoized Fibonacci runs in linear
time. This extension can also be incorporated into the type system
described in Section 4. This would require that we associate types
with memo stores and also require that we develop a type system
for “safe” update functions if we are to enforce that the caching
schemes are safe.

Local vs. Non-local Dependences. Our dependence tracking
mechanism only captures “local” dependences between the input
and the result of a function. A local dependence of a function
f is one that is created inside the static scope of f. A non-local
dependence of f is created when f passes its input to some other
function g, which examines f’s input indirectly. In previous work,
Abadi et. al. [1] and Heydon et. al. [16] showed a program anal-
ysis technique for tracking non-local dependences by propagating
dependences of a function to its caller. They do not, however, make
clear the performance implications of their technique.

Our framework can be extended to track non-local dependences by
introducing an application form for memoized functions in the ex-
pression context. This extension would, for example, allow for de-
pendences of non-constant length. We chose not to support non-
local dependences because it is not clear if its utility exceeds its
performance effects.

Memoization and Adaptivity. The work we present in this paper
was motivated by our previous work on adaptive computation [2].
We briefly discuss the relationship between memoization and adap-
tivity and how they can be combined to obtain efficient dynamic or



incremental algorithms.

An adaptive computation maintains a dynamic dependence graph
representing data and control dependences. When the input is
modified, a change propagation algorithm updates the output and
the dependence graph. The adaptivity mechanism handles “deep”
changes efficiently. We say that a change is deep if it affects calls
that occur at leaves of the call tree for the computation. In contrast,
a change is shallow if it affects by a calls that occur at the roots of
the call tree.

As an example consider the Quicksort algorithm that picks the first
key of its input as pivot. Inserting a new key at the end of the in-
put list is a deep change because this change will affect the last
recursive calls of some filter functions and will become pivot only
at the end of some sequence of recursive calls to Quicksort. In
contrast, inserting a new key at the beginning of the list is a shal-
low change for Quicksort, because the new key will be selected as
a pivot immediately by the first call to Quicksort. The adaptivity
mechanism based on dynamic dependence graphs handles an in-
sertion at the end of the input, a deep change, in expected O(logn)
time [2], whereas the insertion at the beginning of the list, a shallow
change, will cause a complete rerun, which takes O(n logn) time.
Using memoization, however, an insertion at the beginning of the
list can be handled in O(n) time as showed in Section 3.

Any change can be thought of a combination of shallow and deep
changes. Since memoization and adaptivity complement each other
in their handling of deep and shallow changes, we would expect
that a combination of these two techniques would handle general
changes efficiently. For example, in Quicksort, we expect that an
insertion in a random position in the list would be handled in ex-
pected O(logn) time by a combination of these two techniques.

7 Conclusion

We presented a framework for selective memoization under pro-
grammer control. The framework makes explicit the performance
effects of memoization and yields programs whose running times
can be analyzed using standard techniques. A key aspect of the
framework is that it can capture both control and data dependences
between input and the result of a memoized function. The main
contributions of the paper are the particular set of primitives we
suggest and the semantics along with the proofs that it is sound.
We gave a simple implementation of the framework in the Standard
ML language. We expect that this framework can be implemented
in any purely-functional language.
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