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ABSTRACT Categories and Subject Descriptors

The aggregation of conflicting preferences is a central problem in F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
multiagent systems. The key difficulty is that the agents may re- lem Complexity; J.4Computer Applications]: Social and Behav-
port their preferences insincerelilechanism desigis the art of ioral Sciences-Economics

designing the rules of the game so that the agents are motivated

to report their preferences truthfully and a (socially) desirable out-

come is chosen. We propose an approach where a mechanismis au(-zen.eral Terms .

tomatically created for the preference aggregation setting at hand.AIgomth’ Economics

This has several advantages, but the downside is that the mecha-

nism design optimization problem needs to be solved anew each Keywords

time. Hence the computational complexity of mechanism design Game Theory, Automated Mechanism Design
becomes a key issue. In this paper we analyze the single-agent

mechanism design problem, whose simplicity allows for elegant

and generally applicable results. 1. INTRODUCTION

In multiagent settings, agents generally have different preferences,

We show that designing an optimal deterministic mechanism that and_it is of ce_ntral importance to be able to aggregate these, that is,
does not use paymentsA§P-complete even if there is only one 10 pick a socially deswable_utcomefrom a set of outcomes. S_uch
agent whose type is private information—even when the designer's outcomes could be potential presidents, joint plans, allocations of
objective is social welfare. We show how this hardness result ex- 9000s or resources, etc. The preference aggregator generally does
tends to settings with multiple agents with private information. We Notknow the agents’ preferencagriori. Rather, the agents report
then show that if the mechanism is allowed to use randomization, their preferences to the coordinator. Unfortunately, an agent may
the design problem is solvable by linear programming (even for have an incentive to misreport its preferences in order to mlslead
general objectives) and hence7h This generalizes to any fixed the mechanism into selecting an outcome that is more desirable to
number of agents. We then study settings where side payments ardh€ agent than the outcome that would be selected if the agent re-
possible and the agents’ preferences are quasilinear. We show thayealed its preferences truthfully. Such manipulation is undesirable

if the designer’s objective is social welfare, an optimal determinis- Pecause preference aggregation mechanisms are tailored to aggre-
tic mechanism is easy to construct; in fact, this mechanism is also 9ate preferences in a socially desirable way, and if the agents reveal
ex postoptimal. We then show that designing an optimal deter- their preferences insincerely, a socially undesirable outcome may
ministic mechanism with side paymentsN&P-complete for gen-  be chosen.

eral objectives, and this hardness extends to settings with multiple ) o ]

agents. Finally, we show that an optimal randomized mechanism Manipulability is a pervasive problem across preference aggrega-
can be designed in polynomial time using linear programming even tion mechanisms. A seminal negative result, @isbard-

for general objective functions. This again generalizes to any fixed Satterthwaite theorenshows that undeany nondictatorial prefer-
number of agents. ence aggregation scheme, if there are at least 3 possible outcomes,

there are preferences under which an agent is better off reporting
— . untruthfully [7, 16]. (A preference aggregation scheme is called
*The material in this paper is based upon work supported by the o ;
National Science Foundation under CAREER Award IRI-9703122, dictatorial if one of the agents dictates the outcome no matter how
Grant 11S-9800994, ITR 11S-0081246, and ITR 11S-0121678. the others vote.)

What the aggregator would like to do is design a preference aggre-
gation mechanism so that 1) the self-interested agents are motivated
to report their preferences truthfully, and 2) the mechanism chooses
an outcome that is desirable from the perspective of some social
objective. This is the classic setting mechanism desigim game
theory. Mechanism design provides a variety of carefully crafted
definitions of what it means for a mechanism to be nonmanipulable,
and objectives to pursue under this constraint (e.g., social welfare
maximization). It also provides some general mechanisms which,



under certain assumptions, are nonmanipulable and socially desir-The rest of this paper is organized as follows. In Section 2, we
able (among other properties). The upside of these mechanismgustify our focus on nonmanipulable mechanisms. In Section 3, we
is that they do not rely on (even probabilistic) information about define the problem. We study its complexity without payments, for
the agents’ preferences (e.g., the Vickrey-Clarke-Groves mecha-deterministic mechanisms (Section 4) and randomized mechanisms
nism [2,9,17]), or they can be easily applied to any probability dis- (Section 5). We then study its complexity with payments, for de-
tribution over the preferences (e.g., the dAGVA mechanism [1,5]). terministic mechanisms (Section 6) and randomized mechanisms
The downside is that these mechanisms only work under restrictive (Section 7).

assumptions. It is often assumed that side payments can be used

to tailor the agents’ incentives, but this is not always practical. For The next two sections mostly review the relevant well-established
example, in many voting settings, the use of side payments would definitions and results from game theory; our only contributions in
not be politically feasible. Furthermore, among software agents, it these sections are tkemputationatonsiderations and definitions.
might be more desirable to construct mechanisms that do not rely

on the ability to make payments. Another common assumption 2.  JUSTIFYING THE FOCUS ON NONMA-

is that the designer’s objective is social welfare. There are many
other measures of social desirability, such as fairness, that the clas- ¢ NIPE“?,AB:]‘E MECHA’T”SIXIS  sinal h
sical mechanisms do not maximize. Furthermore, sometimes the B€fOre We define the computational problem of single-agent mech-

designer's objective is not a measure of social desirability (e.g., anism design, we should justify our focus on nonmanipulable mech-

in many auctions, the auctioneer seeks to maximize expected rey-2nisms. After all, it IS not immediately obvious that there are no
enue) manipulable mechanisms that, even when agents report their types

strategically and hence sometimes untruthfully, still reach better

outcomes (according to whichever objective we use) than any non-

manipulable mechanism. Additionally, given our computational
b- focus, we should also be concerned that manipulable mechanisms
;that do as well as nonmanipulable ones may be easier to construct.
It turns out that we need not worry about either of these points:
given any mechanism, we can quickly construct a nonmanipula-
ble mechanism whose performance is identical. For given such a
mechanism, we can build an interface layer between the agent and

This approach has three advantages over the classical approach |s.mechan|sm. The agents report the|r preference.g/(ms) to
designing general mechanisms. First, it can be used even in setthe interface layer; subsequently, the interface layer inputs into the

tings that do not satisfy the assumptions of the classical mecha-Original mechanism the.typebat the.ager.]ts WQUId have strategi-
nisms (such as availability of side payments or that the objective cally reported_to the original mechanlsm_, if their type§ were as de-
is social welfare). Second, it may allow one to circumvent impos- clared to the |nterfe_10e Ia_yer. The_ resulting outcome is the outcome
sibility results (such as the Gibbard-Satterthwaite theorem) which of the new mecy:hamsﬂw?mce th.e interface I.ayer apts strategically
state that there is no mechanism that is desirable across all pref-on eac_h agent's behalf”, there is never an incentive to repor_t falsely
erences. When the mechanism is designed to the setting at hangt© the interface Iayer_; and hence, the types reported by the |nt<_arface
it does not matter that it would not work more generally. Third, I'aye_r are the strategic types that would have been reported without
it may yield better mechanisms (in terms of stronger nonmanipu- the interface layer, so the results are exactly as they would have

lability guarantees and/or better outcomes) than classical mecha-be.en W'.th the 0”9.'”‘?" mechanism. Th!s argument (pr at least the
nisms because the mechanism capitalizes on the particulars of theex!stentlal _part_ of it if not the cons_tructn_/e) s known n the ".‘eCh'
setting (the probabilistic information that the mechanism designer anism design literature as tkm/elgtlon prlnc:lple[ll]. Given this,

has about the agents’ types). Given the vast amount of informa- we can focus on truthful mechanisms in the rest of the paper.

tion that parties have about each other today, this approach is likely

to lead to tremendous savings over classical mechanisms, which3. DEFINITIONS

largely ignore that information. For example, imagine a company We now formally define the setting of single-agent mechanism de-
automatically creating its procurement mechanism based on its sta-Sign.

tistical knowledge about its suppliers, rather than using a classical
descending procurement auction.

In contrast, we propose that theechanism be designed automati-
cally for the specific preference aggregation problem at hang
formulate the mechanism design problem as an optimization pro
lem. The input is characterized by the number of agents, the agents
possible types (preferences), and the aggregator’s prior probability
distributions over the agents’ types. The output is a nonmanipula-
ble mechanism that is optimal with respect to some objective.

DEFINITION 1. Inasingle-agent mechanism design setting
are given a finite set of outcomés a finite set of type® for the

However, this approach requires the mechanism design optlmlza-agent together with a probability distribution over ©, a utility

“OT‘ problem to be solved anew for_each settln_g. Hence its compu- functionu : © x O — R for the agent and an objective function

tational complexity becomes a key issue. In this paper we study the O0x0 R

computational complexity of mechanism design in the single-agent g: -

setting, for the following reasons: 1There are computational considerations to this argument: for in-

stance, an agent’s optimization problem for a given type may be

: o ; hard. Thus employing this argument may shift a hard optimization

o All of the many concepts_ of nonmanlpulgblllty for multiple . problem from the agent (where the hardness may have been to the
agents coincide for the single agent setting, so all results in gesigner’s benefit because it made manipulation harder) to the de-
this setting rely only on the most fundamental properties of signer (where it is certainly not to the designer’s benefit). We study
nonmanipulability (rather than specific aspects of a particular this issue elsewhere [4]. This issue, however, does not affect the

definition of nonmanipulability); results obtained in this paper, because in the representation we use
. . . . . . here, an agent’s optimization problem is always computationally
e Itis the simplest version of the mechanism design problem; easy.

e Results here easily extend to settings with multiple agents— 2Though this follows standard game theory notation [11], the fact
as we will demonstrate. that the agent has both a utility function and types is perhaps con-



One typical objective function is thr@andard social welfare func-  one can imagine new solution concepts. For example, we could
tion which is simply the sum of the agents’ utilities. In settings require that an agent cannot manipulate unless it knows the types
where there is only one agent, standard social welfare is simply of at leastt other agents (this is the flavor of nonmanipulability in
the utility of that agent; so if our objective function is the stan- many cryptographic applications).

dard social welfare function, there is no conflict of interest and our

mechanism can simply select the outcome with the most utility for Fortunately, one of the main benefits of studying single-agent mech-
each reported type. On the other hand, it is possible that there areanism design is that in this setting, all sensible notions of nonma-
one or moresilent agents who do not report types (e.g., because nipulability coincide. This is because different nonmanipulability
their types are already known) who nevertheless have an interestdefinitions correspond to different statements about what can be
in the outcome, and whose preferences the mechanism should tak&nown about other agents’ types and behavior; but in single-agent
into account.(If the mechanism designer itelf has an interest in the mechanism design there are no other agents with types or behaviors
outcome, the mechanism designer can be considered to be such aertinent to how the agent should play the game. Thus, all sensible
silent agent.) Because these agents do not need to report their typesjotions of nonmanipulability coincide to the following definition.

we can still phrase this as a single-agent mechanism design setting

where the other agents are accounted for by the objective function.

This leads to the following definition:

DEFINITION 2. An objective functiory is a generalized social
welfare functionif it is possible to decompose it ag#, o)
u(6,0) + v(0), whereuw is the given utility function for the (type-
reporting) agent, and : O — R is any function (which represents
the interests of other agents in the outcome selection).

We now define the kinds of mechanisms that we will consider.

DEFINITION 3. A deterministic single-agent mechanism with-
out paymentsonsists of an outcome selection function® — O.
A randomized single-agent mechanism without paymeotsists
of a distribution selection functiop: © — P(O), whereP(O) is
the set of probability distributions ove&d. A deterministic single-
agent mechanism with paymertsnsists of an outcome selection
functiono : ® — O and a payment selection functian: © — R,
wherer () gives the payment made to the agent when it regorts
Arandomized single-agent mechanism with paymeaisists of a
distribution selection functiop : © — P(O x R), whereP(O) is
the set of (joint) probability distributions oveé? x R.

Next, we need a definition of what it means for a mechanism to
be nonmanipulable. Informally, a mechanism is nonmanipulable if

agents never have incentives to misreport their type; but this def-
inition is incomplete without a statement about what the agents
may know about each others’ types and behavior. Different state-

ments about this lead to different definitions of manipulability (that

is, different solution concepts from noncooperative game theory).

For example, truthful implementation @dominant strategiesieans

that agents have no incentive to manipulate even if they know what
the other agents reported. On the other hand, truthful implementa-

tion in Bayes-Nash equilibriurmeans that no agent has incentive

to manipulate as long as it does not know the other agents’ types,
and the other agents are reporting truthfully. We have studied the

computational complexity of generating mechanisms for multiple

agents for these two solution concepts (only in the setting with no
payments) [3]. However, there are numerous other solution con-
cepts in noncooperative game theory that we did not cover. Also,

DEFINITION 4. A single-agent mechanism ii®@nmanipulable
if for no type, the agent can increase its (expected) utility by re-
porting another type (instead of the true type). The formal defi-
nitions for each type of mechanism are as follows. (In these def-
initions, the symbok— means “drawn from”.) A deterministic
single-agent mechanism without payments is nonmanipulable if for
all 6,0 € ©, u(6,0(0)) > u(f,0(8)). Arandomized single-agent
mechanism without payments is nonmanipulable if fopall € ©,
Eoepoy[u(8,0)] > E,_ 4 u(6,0)]. In the settings with side
payments, we make the common [11] assumption that the agents’
utility functions are quasilinear, that is, each agent’s utility is lin-
ear in money. A deterministic single-agent mechanism with pay-
ments is nonmanipulable if for al, 0 € ©, u(0, 0(9)) + 7(6) >
u(, 0(0))+m(0). Arandomized single-agent mechanism with pay-
ments is nonmanipulable if for @l 6 € ©, E¢, ) p(o) [u(6, 0) +
7 > E, oy p@y[w(0,0) + .

The fact that all notions of nonmanipulability coincide for single-
agent mechanism design implies that all results on this topic apply
to any notion of nonmanipulability. Now we define the computa-
tional problem.

DEFINITION 5. SINGLE-AGENT-MECHANISM-
DESIGN (SAMD) We are given a single-agent mechanism design
setting? the kind of mechanism (deterministic or randomized, with
or without payments), and a threshaldl We are asked whether
there exists a nonmanipulable mechanism of the given kind such
that the expected value of the objective funcgas at leastG.

We observe that, without the nonmanipulability constraint (that is,
with an agent that always reports truthfully regardless of incen-
tives), the SAMD problem (in any of its forms) is trivial: the opti-
mal mechanism is to simply let the mechanism choose the objective-
maximizing outcome for each tydeHowever, as we will see, the
problem is harder with the nonmanipulability constraint.

In the rest of the paper, we will analyze the SAMD problem for the
four kinds of mechanism (deterministic and randomized; without
and with payments).

fusing. The types encode the various possible preferences that the’ The setting is giveexplicitly, that is, the outcome set, the type set,
agent may turn out to have, and the agent's type is not known by thethe probability distribution over the type set, the utility function,
aggregator. The utility function is common knowledge, but because and the objective function all have all their elements or values listed

the agent’s type is a parameter in the agent’s utility function, the ag-

gregator cannot know what the agent’s utility is without querying
the agent about its type.

one by one.

“In our representation, finding the objective-maximizing outcome
for a given type is straightforward.



4. COMPLEXITY OF DESIGNING DETER-
MINISTIC MECHANISMS WITHOUT PAY-

MENTS
In this section we will show that the SAMD problemA§P-complete
for deterministic single-agent mechanisms without payments. To
demonstratgéyP-hardness, we reduce from the MINSAT problem.

DEFINITION 6 (MINSAT). We are given a formula in con-
junctive normal form, represented by a set of Boolean variables
and a set of clause§, and an integek (k < |C|). We are asked
whether there exists an assignment to the variabldg such that
at mostk clauses inp are satisfied.

MINSAT was recently shown to b&/P-complete [10]. We are
now ready to present our result.

THEOREM 1. SAMD with deterministic mechanisms without pay-
ments is\VP-complete, even when the objective function is a gen-
eralized social welfare function and the probability distribution
over® is uniform.

PROOF The problem is in\P because we can nondetermin-

istically generate an outcome selection function, and subsequentIyE[g(e’ 0(0))] =

verify in polynomial time whether it is nonmanipulable, and whether
the expectation of the objective function achieves the threshold. To
show that the problem i8/P-hard, we reduce an arbitrary MIN-
SAT instance to a SAMD instance as follows.

Let the outcomes® be as follows. For every claugsec C, there is
an outcomev.. For every variabler € V, there is an outcome,
and an outcome_,. Finally, there is a single additional outcome
Op.

Let L be the set of literals, that id, = {v : v € V}U{-v :

v € V'}. Then, let the type spad® be as follows. For every clause
c € C, there is atypd.. For every variable € V, there is a type
0,. The probability distribution ove® is uniform.

Let the utility function be as follows:

e u(fy,0,) = u(by,0-,) = |C|+3forallv eV,

o u(f.,0;) = 1forallc € C'andl € c (thatis,! is a literal
that occurs irv);

o u(f.,0.) =1forallce C,

e u is0 everywhere else.

Let g(6,0) = u(0,0) + v(o), wherev(o,) = 2 andv is 0 every-
where else. (Note that is a generalized social welfare function.)
Finally, letG = IIUSHEEZICIZE (1 is the threshold of the MIN-
SAT instance). We claim that the SAMD instance has a solution if
and only if the MINSAT instance has a solution.

First suppose that the MINSAT instance has a solution, that is, an
assignment to the variables that satisfies at modauses. Then
consider the following mechanism. If € V is set totrue in

the assignment, then seff,) = o,; if it is set tofalse then set

o(6,) = o—,. If ¢ € C is satisfied by the assignment, then set
o(6.) = og; ifitis not satisfied, then set(6.) = op. First we show
that this mechanism is nonmanipulable. If the agent's type is either
any one of th&,, or one of thé).. corresponding to a satisfied clause
¢, then the mechanism gives the agent the maximum utility it can
possibly get with that type, so there is no incentive for the agent to
misreport. On the other hand, if the agent’s type is one ofjthe
corresponding to a nonsatisfied claus¢éhen any outcome; cor-
responding to a literdlin ¢, or o, would give utility 1, as opposed

to o, (which the mechanism actually chooses figy which gives

the agent utility0. It follows that the mechanism is nonmanipulable
if and only if there is no othef such thab(0) is any outcomey;
corresponding to a literdlin ¢, or o.. It is easy to see that there is
indeed n@ such thab(f) = o.. There is also né such thab(0) is

any outcomey; corresponding to a literdlin ¢: this is because the
only type that could possibly give the outcomés 6,,, wherev is

the variable corresponding tpbut because is not satisfied in the
assignment to the variables, we know that actual(y,) = o_;
(that is, the outcome corresponding to the opposite literal is cho-
sen). It follows that the mechanism is indeed nonmanipulable. All
that is left to show is that the expected valugy(#, o(9)) reaches

G. For anyd, we haveg (6., 0(0,)) = |C| + 3. For anyf. where

c is a satisfied clause, we hayé., o(6.)) = 1. Finally, for any

0. wherec is an unsatisfied clause, we hay@., o(6.)) = 2. If

s is the number of satisfied clauses, then, using the facts that the

probability distribution ove® is uniform and that < k, we have

Videi+3)+s+2(1C1=s) ~ [VIUCI+3)+2[Cl-k _
[VI+ICl = [VI+IC]

n to the SAMD instance.

G. So there is a solutio

Now suppose there is a solution to the SAMD instance, that is,
a nonmanipulable mechanism given by an outcome funeciion
© — O, which leads to an expected value g9, o(6)) of at
leastG. We observe that the maximum value that we can get for
g(0,0(9)) is|C|+3 whend is one of the,,, and2 otherwise. Thus,
if for somew it were the case that(6,) ¢ {o.,0_.} and hence
g(0,0(0)) < 2, it would follow that E[g(0, 0o(6))] can be at most
avi=vdel+d)+2(ei+y) o AVPAC]+3)+|C] - VIJCIHH+2C]—k _
[VI+IC] VI+IC| VI+IC]
G (becausé: < |C]). (Contradiction.) It follows that for alb,
0(0») € {ov,0-»}. From this we can derive an assignment to the
variables: seb to trueif o(6,) = o,, and tofalseif o(6,) =
0o_,. We claim this assignment is a solution to the MINSAT in-
stance for the following reason. If a clauges satisfied by this
assignment, there is some litedasuch thatt € ¢ ando(6,)
o; for the corresponding variable. But theno(6.) cannot be
oy, because if it were, the agent would be motivated to re@ort
when its true type i9., to get a utility of 1 as opposed to the
it would get for reporting truthfully. Hence(6., o(6.)) can be at
most1 for a satisfied clause. It follows that E[g(6, 0(0))] can
be at most‘V‘“C'*“:‘)mzf“c"s) where s is the number of sat-
isfied clauses. But becaugg{g(0,0(0))] > G, we can conclude

[VI(C]+3)+s+2(|C|—s) _VI(Cl+3)+2]C|—k o -
VITICI E_G = = el ,wh|(_:h is equiv
alent tos < k. So there is a solution to the MINSAT instancd.]

In an earlier paper we showed that designing an optimal determin-
istic mechanism for 2 agents .i§’P-complete even when the ob-
jective function is thestandardsocial welfare function [3]. We
showed this both for implementation in dominant strategies and for
implementation in Bayes-Nash equilibrium. We will conclude this
section by demonstrating the power of hardness results for single-
agent mechanism design, by showing that Theorem 1 immediately
implies (the hardness parts of) both of these earlier results.



We will not formally redefine either the 2-agent mechanism design 5 (p(6))(0)u(6, o). We seek to maximize the expected value of
roblem or implementation in dominant strategies/Bayes-Nash equi¢€® = .
I?brium. All th§ is necessary to know is that b(?th solut)ilon concep’?s g, which is 9%:@7(6) Og (p(6))(0)g(6, 0). Observing that all the
coincide to the nonmanipulability concept for the single-agent mech-constraints and the objective are linear in the variab€8)) (o),
anism design problem. we conclude that this is a linear program. Because there is a poly-
nomial number of constraints and variables, we conclude that this

COROLLARY 1. Designing a deterministic mechanism without ~Program can be solved in polynomial timef.]
payments for 2 (or more) agents AéP-hard for implementation
in dominant strategies and for implementation in Bayes-Nash equi- . ) o )
librium (and in fact for any solution concept that coincides with O @1y Specific solution concept, this linear program can easily be

nonmanipulability in the single-agent case), even when the objec- gen_eralized to multiple agents. The size of the program is exponen-
tive function is the standard social welfare function (where there tial in the number of age_ntg bl.Jt for any constant number of agents,
are no silent agents). the problem is polynomial in size.

PROOF There are two reasons why the SAMD problem we an- 6. COMPLEXITY OF DESIGNING DETER-

alyzed is not immediately a special case of 2-agent mechanism de- MINISTIC MECHANISMS WITH
sign with the standard social welfare function as an objective. First, PAYMENTS

we have one agent too few. Second, we allowed for more generalyye first show that when the objective is generalized social welfare,

social welfare functions with an outside component corresponding gjiowing for payments makes the SAMD problem easy even when
to silent agents’ interests. We solve these problems by reducing anrandomization in the mechanism is not possible.

arbitrary SAMD instance with a generalized social welfare func-

tion as objective function, to a 2-agent mechanism design instance

with the standard social welfare function, as follows. We introduce  THEOREM 3. Wheng is a generalized social welfare function

a dummy agent that has only one type; its utility (given this type) is and the agents’ preferences are quasilinear, there exists a nonma-
simply the outside component of the SAMD-instance’s generalized nipulable single-agent mechanism (with payments) that, for any
social welfare function. Because an outcome function here cannotg, selects an outcome(6) that maximizeg(6, o(9)), and hence
depend on the dummy agent's type (because it is constant), it cor-achieves the maximum possible expectation of this function. Such
responds naturally to an outcome function for the SAMD-instance. a mechanism can be constructed in polynomial time. So, SAMD
An outcome function in the 2-agent mechanism design instance with deterministic mechanisms with payments i®iwheng is a

is nonmanipulable (for any of the nonmanipulability concepts) if generalized social welfare function.

and only if the corresponding outcome function for the SAMD-

instance is nonmanipulable, because the dummy agent can never . .

manipulate, and the nonmanipulability concept coincides with the  PROOF Leto(f) = argmaxoco g(6,0) (if multiple o € O
SAMD concept for the original agent. Furthermore, the social wel- Maximize this expression, choose one arbitrarily). Becguisea

fare is the same in both cases because the outside component iigeneralized social welfare function, we know it can be decomposed

the SAMD-instance has been incorporated into the dummy agent.259(0; 0) = u(6,0) +v(0). Letn(6) = v(o(f)). Clearly, this
Thus the problem instances are equivalent. mechanism can be constructed({{|©||O|) time. All we need

to show is that it is indeed nonmanipulable. If the agent has type
For the case of more than two agents, we simply add more dummy?. it will report 6 to maximizew(0, o(0)) + m(0) = u(6, 0(9)) +

agents that have one type each, and utility zero for all outcorfgs.  v(o(6)) = g(6,0(0)). Buto() is chosen to maximizg(é, o) over
all o € O, and hence reportingis optimal for the agent. (]

5. COMPLEXITY OF DESIGNING
RANDOMIZED MECHANISMS The mechanism constructed in the proof belongs to the more gen-
WITHOUT PAYMENTS eral class ofGroves mechanisni8], which are designed (even in

In this section we show that if we allow the mechanism to select multiagent settings) to allow the mechanism to choose the social
the outcome randomly on the basis of the reported type, the SAMD Welfare maximizing outcome while still guaranteeing implemen-
problem without payments becomes easy. tation in dominant strategies. (In fact, over general quasilinear
preferences, they are the only mechanisms with this property [8].)
However, the mechanism is notGlarke mechanisrf], the most
THEOREM 2. SAMD with randomized mechanisms without pay- common Groves mechanism. In the Clarke mechanism, even the
ments can be done in polynomial time using linear programming silent agents may have to make payments (and the payments col-
(even for general objective functions). lected cannot be redistributed among the agents because this would
compromise the incentives), while in our mechanism there are no

PROOF We can generate an optimal mechanism using linear transfers from the silent agents. For the type-reporting agent, our
programming as follows. For ea¢hc ©, we need to choose a  Mechanism can be made to coincide with the Clarke mechanism by

probability distributionp(6) over the outcomes i. Such aproba-  subtracting a constant paymentx.co v(o) from that agent.

bility function is defined by a probabilityp(6)) (o) for eacto € O. ®In our earlier paper, we provide linear programs for solving 2-

These will be the variables in the linear program. In addition to the agent mechanism design without payments with randomization, for
constraints necessary to enforce that e#@h) is a probability dis- implementation in dominant strategies and in Bayes-Nash equilib-
tribution, we need the following constraints to ensure nonmanipu- rium [3]. The linear program presented above can be derived from

ik 7 either of these programs, again by adding a dummy agent into the
lability: for eachf, § € ©, we must havti%jo(p(é))(o)u(ﬁ,o) > SAMD instance.




Unfortunately, SAMD turns out to b&/P-complete for general agent can attain. So there is no incentive for the agent to misre-
objective functions. To demonstratéP-hardness, we reduce from  port anywhere. All that is left to show is that the expected value
the INDEPENDENT-SET problem which i§"P-complete [14]. of g(6,0(0)) reachess. Forv € I, g(9,0(0)) = g(0,0,) = 1,

and forv ¢ I, g(9,0(0)) = g(0, 02) = 0. Because the distribution
over® is uniform, it follows thatE[g(6, o(0))] = % > ﬁ =G.

DEFINITION 7 (INDEPENDENT-SET).We are given an undi- So there is a solution to the SAMD instance.

rected graph(V, E) (with no self-loops, that is, edges that begin
and end at the same node) and an integeYVe are asked whether

there is somd C V of size at leask such that no two elements of
I have an edge between them.

Now suppose there is a solution to the SAMD instance, that is,
a nonmanipulable mechanism given by an outcome function

© — O and a payment function : © — R, which leads to an
expected value o§ (6, o(0)) of at leastG. LetI = {v : 0o(f) =

We are now ready to show hardness of mechanism design even witho,, }- We claim! is a solution to the INDEPENDENT-SET instance.

quasilinear preferences. First, becausg(6,, o(0,)) is1 only forv € I, we know thatﬁ =
G < Elg(0,0(0))] = % or equivalently|I| > k. All that is left

to show is that there are no edges between elemerts®tdippose

there were an edge betweenw € I. Without loss of generality,

saym(0,) < m(0w). Thenu(fy,0(0,)) + w(0,) = u(y,0l) +

7(0y) = 7(0y) < 7(0w) < 14+ 7(0w) = w0y, 0) + 7(0w) =

u(0y,0(0)) + 7(0). So the agent has an incentive to misreport
PROOF First we show that the problem is ixP. We can non- when its type ig,,, which contradicts the nonmanipulability of the

deterministically generate an outcome functionWe then check mechanism. It follows that there are no edges between elements of

whether the payment functioncan be set so as to make the mech- . So there is a solution to the INDEPENDENT-SET instandel

anism nonmanipulable. Because we have already generatesl

can phrase this problem as a linear program with the following con-

straints: for al, 6 € ©,u(60,0(0))+7(0) > u(6,0(0))+=(6). If Again, this generalizes to multiple agents:

the linear program has a solution, we subsequently check if the cor-

responding mechanism achieves the threstibfdr E[g(6, o(0))].

THEOREM 4. SAMD with deterministic mechanisms with pay-
ments is\VP-complete (with general objective functions), even when
the probability distribution ove® is uniform.

COROLLARY 2. Designing a deterministic mechanism with pay-

To show that the problem & P-hard, we reduce an arbitrary ments for 2 (or more) agents i§P-hard for implementation in
INDEPENDENT-SET instance to a SAMD instance as follows. dominant strategies and for implementation in Bayes-Nash equi-
For every vertexs € V, let there be outcomes, ando?, and a librium (and in fact for any solution concept that coincides with
type 6,,. The probability distribution ove® is uniform. Let the nonmanipulability in the single-agent case) for general objective
utility function be as follows: functions, even if the agents’ preferences are quasilinear.
e u(f,,0L) =1forallv,w € V with (v,w) € E; PROOFR The proof introduces one (or more) dummy agent(s)
and is analogous to the proof of Corollary 1 (though slightly sim-
e u(fy,0y) = 0forallv,w € V with (v,w) ¢ E (this pler because here we do not need to make the social welfare func-
includes all cases where= w as there are no self-loops in  tions coincide). [J
the graph);

2\ _ .
o u(f,0,) =1forallv € V; We observe that in the proof of Theorem 4, the objective still de-

e u(f,,02) =0forallw € V with v # w. pends on the agent’s type. If it does not—that is, the objective only
represents the designer's own preferences over outcomes—we are
simply in the setting of a general social welfare function again,

Let the objective function bg(#.,0:) = 1 for allv € V, and which we can solve in polynomial time as pointed out above.
g() = 0 everywhere else. Finally, let = I_‘]i\ (wherek is the

threshold of the INDEPENDENT-SET instance). We claim that the _
SAMD instance has a solution if and only if the INDEPENDENT- 7. COMPLEXITY OF DESIGNING RANDOM

SET instance has a solution. IZED MECHANISMS WITH PAYMENTS

In this section we show that if we allow the mechanism to select
First suppose that the INDEPENDENT-SET instance has a solu- the outcome randomly on the basis of the reported type, the SAMD
tion, that is, somel C V of size at leastt such that no two problem with payments becomes easy for general objective func-
elements ofl have an edge between them. Then consider the tions. (In Section 6 we showed that when the objective function is a
following mechanism. For al € I, let o(6,) = o}. For all generalized social welfare function, we can quickly generate a non-
v ¢ V,leto(d,) = o2. Letw be zero everywhere (no payments manipulable mechanism with payments that selects an objective-
are made). First we show that this mechanism is indeed nonma-maximizing outcome, so in that case randomization is not neces-
nipulable. Ifv € T andw € I, then (becausé is an independent ~ sary.)
set) (v, w) ¢ I, and thusu(6,,0(0,)) + 7(0,) = u(fy,,05) =
0 = u(by,0L) = u(By,0(0)) + 7(0y). fv e Tandw ¢ I,
thenu(6y,0(0,)) + 7(0,) = u(fp,08) = 0 = u(By,02) = THEOREM 5. SAMD with randomized mechanisms with pay-
w(By,0(0w)) + 7(0w). Finally, if v ¢ I, thenu(b,,0(6y)) + ments can be done in polynomial time using linear programming
w(0,) = u(f,,02) = 1, which is the highest possible value the (even for general objective functions).



PROOF We can generate an optimal mechanism using linear The downside is that the mechanism design problem needs to be
programming as follows. We first observe that as far as paymentssolved anew each time. Hence, the computational complexity of
are concerned, by linearity of expectation, the agent only cares mechanism design becomes a key issue. In this paper, we ana-
about the expected payment it gets given that it reports a given lyzed the single-agent mechanism design problem, for the follow-
type; so there is no reason to randomize over payments at all. Thus,ing reasons: 1) All of the many concepts of nonmanipulability for
for eachd € ©, we need to choose a probability distributipf®) multiple agents coincide for the single agent setting, so all results in
over the outcomes i@, defined by a probabilityp(9)) (o) for each this setting rely only on the most fundamental properties of nonma-
o € O; and a payment(0). These will be the variables in the lin-  nipulability; 2) It is the simplest version of the mechanism design
ear program. In addition to the constraints necessary to enforce thatproblem; 3) Results here easily extend to settings with multiple
eachp(0) is a probability distribution, we need the following con- agents—as we demonstrated.
straints to ensure nonmanipulability: for eatld € ©, we must o _ o _
have( S (p(6))(0)u(8,0)) + m(6) > (3= (p(A))(0)u(8,0)) + We showed that designing an optimal deterministic mechanism that

0€0 0€0 does not use payments.AéP-complete even if there is only one
7(0). Then, we seek to maximize the expected valug,ofrhich agent whose type is private information—even when the designer’s
is > v(0) 3 (p(0))(0)g(6, 0). Observing that all the constraints  objective is social welfare. We showed how this hardness result ex-
v 0€0 i ) tends to settings with multiple agents with private information. We
and the objective are linear in ttig(6)) (o) and ther (), we con- then showed that if the mechanism is allowed to use randomiza-

clude that this is a linear program. Because there is a polynomial tion, the design problem is solvable by linear programming (even
number of constraints and variables, we conclude that this programg, general objectives) and hence# This generalizes to any

can be solved in polynomial time.[] fixed number of agents.

The linear program in the proof can easily be generalized to set- We then studied settings where side payments are possible and
tings with multiple agents, for various concepts of nonmanipulabil- the agents’ preferences are quasilinear. We showed that if the de-
ity (e.g., implementation in dominant strategies, or in Bayes-Nash Signer’s objective is social welfare, an optimal deterministic mech-
equilibrium). anism is easy to construct; in fact, this mechanism is elspost
optimal. We then showed that designing an optimal deterministic

8. RELATED RESEARCH ON COMPUTA- mechanism with side paymentsA§P-complete for general objec-
TIONAL COMPLEXITY INMECHANISM tives, and this hardness extends to settings with multiple agents.

Finally, we showed that an optimal randomized mechanism can be
DESIGN designed in polynomial time using linear programming even for

There has been considerable recent interest in mechanism desigigeneral objective functions. This again generalizes to any fixed
in computer science. Some of it has focused on issues of computa-number of agents.
tional complexity, but most of that work has strived toward design-
ing mechanisms that are easyet@cutde.g. [6,12,13]), ratherthan  Future research includes extending the approach of automated mech-
studying the complexity oflesigningthe mechanism. The closest anism design to other settings, for example, settings where side
piece of earlier work is our paper which studied the complexity of payments are possible but the agents’ preferences are not quasi-
multiagent mechanism desigvithout side paymentsndonly for linear, and settings where each agent’s type space is very large or
two specific notions of nonmanipulabilifg]. Roughgarden has infinite (but concisely representable). Another interesting use of
studied the complexity of designing a good network topology for automated mechanism design is to solve for mechanisms for a va-
agents that selfishly choose the links they use [15]. This is related riety of settings (real or artificially generated), and to see whether
to mechanism design, but differs significantly in that the designer general mechanisms (or mechanism design principles) can be in-
only has restricted control over the rules of the game because thereferred. Finally, this approach could be used to generate counterex-
is no party that can impose the outcome (or side payments). Also,amples or corroborate that a postulated mechanism is optimal for a

there is no explicit reporting of preferences. given class of settings.
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