
Automated Mechanism Design:
Complexity Results Stemming from the Single-Agent

Setting ∗

Vincent Conitzer Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

{conitzer, sandholm}@cs.cmu.edu

ABSTRACT
The aggregation of conflicting preferences is a central problem in
multiagent systems. The key difficulty is that the agents may re-
port their preferences insincerely.Mechanism designis the art of
designing the rules of the game so that the agents are motivated
to report their preferences truthfully and a (socially) desirable out-
come is chosen. We propose an approach where a mechanism is au-
tomatically created for the preference aggregation setting at hand.
This has several advantages, but the downside is that the mecha-
nism design optimization problem needs to be solved anew each
time. Hence the computational complexity of mechanism design
becomes a key issue. In this paper we analyze the single-agent
mechanism design problem, whose simplicity allows for elegant
and generally applicable results.

We show that designing an optimal deterministic mechanism that
does not use payments isNP-complete even if there is only one
agent whose type is private information—even when the designer’s
objective is social welfare. We show how this hardness result ex-
tends to settings with multiple agents with private information. We
then show that if the mechanism is allowed to use randomization,
the design problem is solvable by linear programming (even for
general objectives) and hence inP. This generalizes to any fixed
number of agents. We then study settings where side payments are
possible and the agents’ preferences are quasilinear. We show that
if the designer’s objective is social welfare, an optimal determinis-
tic mechanism is easy to construct; in fact, this mechanism is also
ex postoptimal. We then show that designing an optimal deter-
ministic mechanism with side payments isNP-complete for gen-
eral objectives, and this hardness extends to settings with multiple
agents. Finally, we show that an optimal randomized mechanism
can be designed in polynomial time using linear programming even
for general objective functions. This again generalizes to any fixed
number of agents.

∗The material in this paper is based upon work supported by the
National Science Foundation under CAREER Award IRI-9703122,
Grant IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics

General Terms
Algorithms, Economics

Keywords
Game Theory, Automated Mechanism Design

1. INTRODUCTION
In multiagent settings, agents generally have different preferences,
and it is of central importance to be able to aggregate these, that is,
to pick a socially desirableoutcomefrom a set of outcomes. Such
outcomes could be potential presidents, joint plans, allocations of
goods or resources, etc. The preference aggregator generally does
not know the agents’ preferencesa priori. Rather, the agents report
their preferences to the coordinator. Unfortunately, an agent may
have an incentive to misreport its preferences in order to mislead
the mechanism into selecting an outcome that is more desirable to
the agent than the outcome that would be selected if the agent re-
vealed its preferences truthfully. Such manipulation is undesirable
because preference aggregation mechanisms are tailored to aggre-
gate preferences in a socially desirable way, and if the agents reveal
their preferences insincerely, a socially undesirable outcome may
be chosen.

Manipulability is a pervasive problem across preference aggrega-
tion mechanisms. A seminal negative result, theGibbard-
Satterthwaite theorem, shows that underanynondictatorial prefer-
ence aggregation scheme, if there are at least 3 possible outcomes,
there are preferences under which an agent is better off reporting
untruthfully [7, 16]. (A preference aggregation scheme is called
dictatorial if one of the agents dictates the outcome no matter how
the others vote.)

What the aggregator would like to do is design a preference aggre-
gation mechanism so that 1) the self-interested agents are motivated
to report their preferences truthfully, and 2) the mechanism chooses
an outcome that is desirable from the perspective of some social
objective. This is the classic setting ofmechanism designin game
theory. Mechanism design provides a variety of carefully crafted
definitions of what it means for a mechanism to be nonmanipulable,
and objectives to pursue under this constraint (e.g., social welfare
maximization). It also provides some general mechanisms which,

under certain assumptions, are nonmanipulable and socially desir-
able (among other properties). The upside of these mechanisms
is that they do not rely on (even probabilistic) information about
the agents’ preferences (e.g., the Vickrey-Clarke-Groves mecha-
nism [2,9,17]), or they can be easily applied to any probability dis-
tribution over the preferences (e.g., the dAGVA mechanism [1,5]).
The downside is that these mechanisms only work under restrictive
assumptions. It is often assumed that side payments can be used
to tailor the agents’ incentives, but this is not always practical. For
example, in many voting settings, the use of side payments would
not be politically feasible. Furthermore, among software agents, it
might be more desirable to construct mechanisms that do not rely
on the ability to make payments. Another common assumption
is that the designer’s objective is social welfare. There are many
other measures of social desirability, such as fairness, that the clas-
sical mechanisms do not maximize. Furthermore, sometimes the
designer’s objective is not a measure of social desirability (e.g.,
in many auctions, the auctioneer seeks to maximize expected rev-
enue).

In contrast, we propose that themechanism be designed automati-
cally for the specific preference aggregation problem at hand. We
formulate the mechanism design problem as an optimization prob-
lem. The input is characterized by the number of agents, the agents’
possible types (preferences), and the aggregator’s prior probability
distributions over the agents’ types. The output is a nonmanipula-
ble mechanism that is optimal with respect to some objective.

This approach has three advantages over the classical approach of
designing general mechanisms. First, it can be used even in set-
tings that do not satisfy the assumptions of the classical mecha-
nisms (such as availability of side payments or that the objective
is social welfare). Second, it may allow one to circumvent impos-
sibility results (such as the Gibbard-Satterthwaite theorem) which
state that there is no mechanism that is desirable across all pref-
erences. When the mechanism is designed to the setting at hand,
it does not matter that it would not work more generally. Third,
it may yield better mechanisms (in terms of stronger nonmanipu-
lability guarantees and/or better outcomes) than classical mecha-
nisms because the mechanism capitalizes on the particulars of the
setting (the probabilistic information that the mechanism designer
has about the agents’ types). Given the vast amount of informa-
tion that parties have about each other today, this approach is likely
to lead to tremendous savings over classical mechanisms, which
largely ignore that information. For example, imagine a company
automatically creating its procurement mechanism based on its sta-
tistical knowledge about its suppliers, rather than using a classical
descending procurement auction.

However, this approach requires the mechanism design optimiza-
tion problem to be solved anew for each setting. Hence its compu-
tational complexity becomes a key issue. In this paper we study the
computational complexity of mechanism design in the single-agent
setting, for the following reasons:

• All of the many concepts of nonmanipulability for multiple
agents coincide for the single agent setting, so all results in
this setting rely only on the most fundamental properties of
nonmanipulability (rather than specific aspects of a particular
definition of nonmanipulability);

• It is the simplest version of the mechanism design problem;

• Results here easily extend to settings with multiple agents—
as we will demonstrate.

The rest of this paper is organized as follows. In Section 2, we
justify our focus on nonmanipulable mechanisms. In Section 3, we
define the problem. We study its complexity without payments, for
deterministic mechanisms (Section 4) and randomized mechanisms
(Section 5). We then study its complexity with payments, for de-
terministic mechanisms (Section 6) and randomized mechanisms
(Section 7).

The next two sections mostly review the relevant well-established
definitions and results from game theory; our only contributions in
these sections are thecomputationalconsiderations and definitions.

2. JUSTIFYING THE FOCUS ON NONMA-
NIPULABLE MECHANISMS

Before we define the computational problem of single-agent mech-
anism design, we should justify our focus on nonmanipulable mech-
anisms. After all, it is not immediately obvious that there are no
manipulable mechanisms that, even when agents report their types
strategically and hence sometimes untruthfully, still reach better
outcomes (according to whichever objective we use) than any non-
manipulable mechanism. Additionally, given our computational
focus, we should also be concerned that manipulable mechanisms
that do as well as nonmanipulable ones may be easier to construct.
It turns out that we need not worry about either of these points:
given any mechanism, we can quickly construct a nonmanipula-
ble mechanism whose performance is identical. For given such a
mechanism, we can build an interface layer between the agent and
this mechanism. The agents report their preferences (ortypes) to
the interface layer; subsequently, the interface layer inputs into the
original mechanism the typesthat the agents would have strategi-
cally reportedto the original mechanism, if their types were as de-
clared to the interface layer. The resulting outcome is the outcome
of the new mechanism.1 Since the interface layer acts “strategically
on each agent’s behalf”, there is never an incentive to report falsely
to the interface layer; and hence, the types reported by the interface
layer are the strategic types that would have been reported without
the interface layer, so the results are exactly as they would have
been with the original mechanism. This argument (or at least the
existential part of it, if not the constructive) is known in the mech-
anism design literature as therevelation principle[11]. Given this,
we can focus on truthful mechanisms in the rest of the paper.

3. DEFINITIONS
We now formally define the setting of single-agent mechanism de-
sign.

DEFINITION 1. In a single-agent mechanism design setting, we
are given a finite set of outcomesO, a finite set of typesΘ for the
agent together with a probability distributionγ over Θ, a utility
functionu : Θ× O → R for the agent,2 and an objective function
g : Θ×O → R.
1There are computational considerations to this argument: for in-
stance, an agent’s optimization problem for a given type may be
hard. Thus employing this argument may shift a hard optimization
problem from the agent (where the hardness may have been to the
designer’s benefit because it made manipulation harder) to the de-
signer (where it is certainly not to the designer’s benefit). We study
this issue elsewhere [4]. This issue, however, does not affect the
results obtained in this paper, because in the representation we use
here, an agent’s optimization problem is always computationally
easy.
2Though this follows standard game theory notation [11], the fact
that the agent has both a utility function and types is perhaps con-

One typical objective function is thestandard social welfare func-
tion which is simply the sum of the agents’ utilities. In settings
where there is only one agent, standard social welfare is simply
the utility of that agent; so if our objective function is the stan-
dard social welfare function, there is no conflict of interest and our
mechanism can simply select the outcome with the most utility for
each reported type. On the other hand, it is possible that there are
one or moresilent agents who do not report types (e.g., because
their types are already known) who nevertheless have an interest
in the outcome, and whose preferences the mechanism should take
into account.(If the mechanism designer itelf has an interest in the
outcome, the mechanism designer can be considered to be such a
silent agent.) Because these agents do not need to report their types,
we can still phrase this as a single-agent mechanism design setting
where the other agents are accounted for by the objective function.
This leads to the following definition:

DEFINITION 2. An objective functiong is a generalized social
welfare functionif it is possible to decompose it asg(θ, o) =
u(θ, o) + v(o), whereu is the given utility function for the (type-
reporting) agent, andv : O → R is any function (which represents
the interests of other agents in the outcome selection).

We now define the kinds of mechanisms that we will consider.

DEFINITION 3. A deterministic single-agent mechanism with-
out paymentsconsists of an outcome selection functiono : Θ→ O.
A randomized single-agent mechanism without paymentsconsists
of a distribution selection functionp : Θ→ P(O), whereP(O) is
the set of probability distributions overO. A deterministic single-
agent mechanism with paymentsconsists of an outcome selection
functiono : Θ→ O and a payment selection functionπ : Θ→ R,
whereπ(θ) gives the payment made to the agent when it reportsθ.
A randomized single-agent mechanism with paymentsconsists of a
distribution selection functionp : Θ→ P(O×R), whereP(O) is
the set of (joint) probability distributions overO × R.

Next, we need a definition of what it means for a mechanism to
be nonmanipulable. Informally, a mechanism is nonmanipulable if
agents never have incentives to misreport their type; but this def-
inition is incomplete without a statement about what the agents
may know about each others’ types and behavior. Different state-
ments about this lead to different definitions of manipulability (that
is, different solution concepts from noncooperative game theory).
For example, truthful implementation indominant strategiesmeans
that agents have no incentive to manipulate even if they know what
the other agents reported. On the other hand, truthful implementa-
tion in Bayes-Nash equilibriummeans that no agent has incentive
to manipulate as long as it does not know the other agents’ types,
and the other agents are reporting truthfully. We have studied the
computational complexity of generating mechanisms for multiple
agents for these two solution concepts (only in the setting with no
payments) [3]. However, there are numerous other solution con-
cepts in noncooperative game theory that we did not cover. Also,

fusing. The types encode the various possible preferences that the
agent may turn out to have, and the agent’s type is not known by the
aggregator. The utility function is common knowledge, but because
the agent’s type is a parameter in the agent’s utility function, the ag-
gregator cannot know what the agent’s utility is without querying
the agent about its type.

one can imagine new solution concepts. For example, we could
require that an agent cannot manipulate unless it knows the types
of at leastk other agents (this is the flavor of nonmanipulability in
many cryptographic applications).

Fortunately, one of the main benefits of studying single-agent mech-
anism design is that in this setting, all sensible notions of nonma-
nipulability coincide. This is because different nonmanipulability
definitions correspond to different statements about what can be
known about other agents’ types and behavior; but in single-agent
mechanism design there are no other agents with types or behaviors
pertinent to how the agent should play the game. Thus, all sensible
notions of nonmanipulability coincide to the following definition.

DEFINITION 4. A single-agent mechanism isnonmanipulable
if for no type, the agent can increase its (expected) utility by re-
porting another type (instead of the true type). The formal defi-
nitions for each type of mechanism are as follows. (In these def-
initions, the symbol← means “drawn from”.) A deterministic
single-agent mechanism without payments is nonmanipulable if for
all θ, θ̂ ∈ Θ, u(θ, o(θ)) ≥ u(θ, o(θ̂)). A randomized single-agent
mechanism without payments is nonmanipulable if for allθ, θ̂ ∈ Θ,
Eo←p(θ)[u(θ, o)] ≥ Eo←p(θ̂)[u(θ, o)]. In the settings with side
payments, we make the common [11] assumption that the agents’
utility functions are quasilinear, that is, each agent’s utility is lin-
ear in money. A deterministic single-agent mechanism with pay-
ments is nonmanipulable if for allθ, θ̂ ∈ Θ, u(θ, o(θ)) + π(θ) ≥
u(θ, o(θ̂))+π(θ̂). A randomized single-agent mechanism with pay-
ments is nonmanipulable if for allθ, θ̂ ∈ Θ,E(o,π)←p(θ)[u(θ, o) +
π] ≥ E(o,π)←p(θ̂)[u(θ, o) + π].

The fact that all notions of nonmanipulability coincide for single-
agent mechanism design implies that all results on this topic apply
to any notion of nonmanipulability. Now we define the computa-
tional problem.

DEFINITION 5. SINGLE-AGENT-MECHANISM-
DESIGN (SAMD) We are given a single-agent mechanism design
setting,3 the kind of mechanism (deterministic or randomized, with
or without payments), and a thresholdG. We are asked whether
there exists a nonmanipulable mechanism of the given kind such
that the expected value of the objective functiong is at leastG.

We observe that, without the nonmanipulability constraint (that is,
with an agent that always reports truthfully regardless of incen-
tives), the SAMD problem (in any of its forms) is trivial: the opti-
mal mechanism is to simply let the mechanism choose the objective-
maximizing outcome for each type.4 However, as we will see, the
problem is harder with the nonmanipulability constraint.

In the rest of the paper, we will analyze the SAMD problem for the
four kinds of mechanism (deterministic and randomized; without
and with payments).

3The setting is givenexplicitly, that is, the outcome set, the type set,
the probability distribution over the type set, the utility function,
and the objective function all have all their elements or values listed
one by one.
4In our representation, finding the objective-maximizing outcome
for a given type is straightforward.

4. COMPLEXITY OF DESIGNING DETER-
MINISTIC MECHANISMS WITHOUT PAY-
MENTS

In this section we will show that the SAMD problem isNP-complete
for deterministic single-agent mechanisms without payments. To
demonstrateNP-hardness, we reduce from the MINSAT problem.

DEFINITION 6 (MINSAT). We are given a formulaφ in con-
junctive normal form, represented by a set of Boolean variablesV
and a set of clausesC, and an integerk (k < |C|). We are asked
whether there exists an assignment to the variables inV such that
at mostk clauses inφ are satisfied.

MINSAT was recently shown to beNP-complete [10]. We are
now ready to present our result.

THEOREM 1. SAMD with deterministic mechanisms without pay-
ments isNP-complete, even when the objective function is a gen-
eralized social welfare function and the probability distribution
overΘ is uniform.

PROOF. The problem is inNP because we can nondetermin-
istically generate an outcome selection function, and subsequently
verify in polynomial time whether it is nonmanipulable, and whether
the expectation of the objective function achieves the threshold. To
show that the problem isNP-hard, we reduce an arbitrary MIN-
SAT instance to a SAMD instance as follows.

Let the outcomesO be as follows. For every clausec ∈ C, there is
an outcomeoc. For every variablev ∈ V , there is an outcomeov
and an outcomeo−v. Finally, there is a single additional outcome
ob.

Let L be the set of literals, that is,L = {v : v ∈ V } ∪ {−v :
v ∈ V }. Then, let the type spaceΘ be as follows. For every clause
c ∈ C, there is a typeθc. For every variablev ∈ V , there is a type
θv. The probability distribution overΘ is uniform.

Let the utility function be as follows:

• u(θv, ov) = u(θv, o−v) = |C|+ 3 for all v ∈ V ;

• u(θc, ol) = 1 for all c ∈ C andl ∈ c (that is,l is a literal
that occurs inc);

• u(θc, oc) = 1 for all c ∈ C;

• u is 0 everywhere else.

Let g(θ, o) = u(θ, o) + v(o), wherev(ob) = 2 andv is 0 every-
where else. (Note thatg is a generalized social welfare function.)
Finally, letG = |V |(|C|+3)+2|C|−k

|V |+|C| (k is the threshold of the MIN-
SAT instance). We claim that the SAMD instance has a solution if
and only if the MINSAT instance has a solution.

First suppose that the MINSAT instance has a solution, that is, an
assignment to the variables that satisfies at mostk clauses. Then
consider the following mechanism. Ifv ∈ V is set totrue in
the assignment, then seto(θv) = ov; if it is set to false, then set

o(θv) = o−v. If c ∈ C is satisfied by the assignment, then set
o(θc) = oc; if it is not satisfied, then seto(θc) = ob. First we show
that this mechanism is nonmanipulable. If the agent’s type is either
any one of theθv or one of theθc corresponding to a satisfied clause
c, then the mechanism gives the agent the maximum utility it can
possibly get with that type, so there is no incentive for the agent to
misreport. On the other hand, if the agent’s type is one of theθc
corresponding to a nonsatisfied clausec, then any outcomeol cor-
responding to a literall in c, or oc, would give utility1, as opposed
to ob (which the mechanism actually chooses forθc) which gives
the agent utility0. It follows that the mechanism is nonmanipulable
if and only if there is no otherθ such thato(θ) is any outcomeol
corresponding to a literall in c, or oc. It is easy to see that there is
indeed noθ such thato(θ) = oc. There is also noθ such thato(θ) is
any outcomeol corresponding to a literall in c: this is because the
only type that could possibly give the outcomeol is θv, wherev is
the variable corresponding tol; but becausec is not satisfied in the
assignment to the variables, we know that actually,o(θv) = o−l
(that is, the outcome corresponding to the opposite literal is cho-
sen). It follows that the mechanism is indeed nonmanipulable. All
that is left to show is that the expected value ofg(θ, o(θ)) reaches
G. For anyθv we haveg(θv, o(θv)) = |C|+ 3. For anyθc where
c is a satisfied clause, we haveg(θc, o(θc)) = 1. Finally, for any
θc wherec is an unsatisfied clause, we haveg(θc, o(θc)) = 2. If
s is the number of satisfied clauses, then, using the facts that the
probability distribution overΘ is uniform and thats ≤ k, we have
E[g(θ, o(θ))] = |V |(|C|+3)+s+2(|C|−s)

|V |+|C| ≥ |V |(|C|+3)+2|C|−k
|V |+|C| =

G. So there is a solution to the SAMD instance.

Now suppose there is a solution to the SAMD instance, that is,
a nonmanipulable mechanism given by an outcome functiono :
Θ → O, which leads to an expected value ofg(θ, o(θ)) of at
leastG. We observe that the maximum value that we can get for
g(θ, o(θ)) is |C|+3 whenθ is one of theθv, and2 otherwise. Thus,
if for somev it were the case thato(θv) /∈ {ov, o−v} and hence
g(θ, o(θ)) ≤ 2, it would follow thatE[g(θ, o(θ))] can be at most
(|V |−1)(|C|+3)+2(|C|+1)

|V |+|C| < (|V |)(|C|+3)+|C|
|V |+|C| < |V |(|C|+3)+2|C|−k

|V |+|C| =

G (becausek < |C|). (Contradiction.) It follows that for allv,
o(θv) ∈ {ov, o−v}. From this we can derive an assignment to the
variables: setv to true if o(θv) = ov, and tofalse if o(θv) =
o−v. We claim this assignment is a solution to the MINSAT in-
stance for the following reason. If a clausec is satisfied by this
assignment, there is some literall such thatl ∈ c ando(θv) =
ol for the corresponding variablev. But theno(θc) cannot be
ob, because if it were, the agent would be motivated to reportθv
when its true type isθc, to get a utility of1 as opposed to the0
it would get for reporting truthfully. Henceg(θc, o(θc)) can be at
most1 for a satisfied clausec. It follows thatE[g(θ, o(θ))] can
be at most|V |(|C|+3)+s+2(|C|−s)

|V |+|C| wheres is the number of sat-
isfied clauses. But becauseE[g(θ, o(θ))] ≥ G, we can conclude
|V |(|C|+3)+s+2(|C|−s)

|V |+|C| ≥ G = |V |(|C|+3)+2|C|−k
|V |+|C| , which is equiv-

alent tos ≤ k. So there is a solution to the MINSAT instance.

In an earlier paper we showed that designing an optimal determin-
istic mechanism for 2 agents isNP-complete even when the ob-
jective function is thestandardsocial welfare function [3]. We
showed this both for implementation in dominant strategies and for
implementation in Bayes-Nash equilibrium. We will conclude this
section by demonstrating the power of hardness results for single-
agent mechanism design, by showing that Theorem 1 immediately
implies (the hardness parts of) both of these earlier results.

We will not formally redefine either the 2-agent mechanism design
problem or implementation in dominant strategies/Bayes-Nash equi-
librium. All that is necessary to know is that both solution concepts
coincide to the nonmanipulability concept for the single-agent mech-
anism design problem.

COROLLARY 1. Designing a deterministic mechanism without
payments for 2 (or more) agents isNP-hard for implementation
in dominant strategies and for implementation in Bayes-Nash equi-
librium (and in fact for any solution concept that coincides with
nonmanipulability in the single-agent case), even when the objec-
tive function is the standard social welfare function (where there
are no silent agents).

PROOF. There are two reasons why the SAMD problem we an-
alyzed is not immediately a special case of 2-agent mechanism de-
sign with the standard social welfare function as an objective. First,
we have one agent too few. Second, we allowed for more general
social welfare functions with an outside component corresponding
to silent agents’ interests. We solve these problems by reducing an
arbitrary SAMD instance with a generalized social welfare func-
tion as objective function, to a 2-agent mechanism design instance
with the standard social welfare function, as follows. We introduce
a dummy agent that has only one type; its utility (given this type) is
simply the outside component of the SAMD-instance’s generalized
social welfare function. Because an outcome function here cannot
depend on the dummy agent’s type (because it is constant), it cor-
responds naturally to an outcome function for the SAMD-instance.
An outcome function in the 2-agent mechanism design instance
is nonmanipulable (for any of the nonmanipulability concepts) if
and only if the corresponding outcome function for the SAMD-
instance is nonmanipulable, because the dummy agent can never
manipulate, and the nonmanipulability concept coincides with the
SAMD concept for the original agent. Furthermore, the social wel-
fare is the same in both cases because the outside component in
the SAMD-instance has been incorporated into the dummy agent.
Thus the problem instances are equivalent.

For the case of more than two agents, we simply add more dummy
agents that have one type each, and utility zero for all outcomes.

5. COMPLEXITY OF DESIGNING
RANDOMIZED MECHANISMS
WITHOUT PAYMENTS

In this section we show that if we allow the mechanism to select
the outcome randomly on the basis of the reported type, the SAMD
problem without payments becomes easy.

THEOREM 2. SAMD with randomized mechanisms without pay-
ments can be done in polynomial time using linear programming
(even for general objective functions).

PROOF. We can generate an optimal mechanism using linear
programming as follows. For eachθ ∈ Θ, we need to choose a
probability distributionp(θ) over the outcomes inO. Such a proba-
bility function is defined by a probability(p(θ))(o) for eacho ∈ O.
These will be the variables in the linear program. In addition to the
constraints necessary to enforce that eachp(θ) is a probability dis-
tribution, we need the following constraints to ensure nonmanipu-
lability: for eachθ, θ̂ ∈ Θ, we must have

∑
o∈O

(p(θ))(o)u(θ, o) ≥

∑
o∈O

(p(θ̂))(o)u(θ, o). We seek to maximize the expected value of

g, which is
∑
θ∈Θ

γ(θ)
∑
o∈O

(p(θ))(o)g(θ, o). Observing that all the

constraints and the objective are linear in the variables(p(θ))(o),
we conclude that this is a linear program. Because there is a poly-
nomial number of constraints and variables, we conclude that this
program can be solved in polynomial time.

For any specific solution concept, this linear program can easily be
generalized to multiple agents. The size of the program is exponen-
tial in the number of agents, but for any constant number of agents,
the problem is polynomial in size.5

6. COMPLEXITY OF DESIGNING DETER-
MINISTIC MECHANISMS WITH
PAYMENTS

We first show that when the objective is generalized social welfare,
allowing for payments makes the SAMD problem easy even when
randomization in the mechanism is not possible.

THEOREM 3. Wheng is a generalized social welfare function
and the agents’ preferences are quasilinear, there exists a nonma-
nipulable single-agent mechanism (with payments) that, for any
θ, selects an outcomeo(θ) that maximizesg(θ, o(θ)), and hence
achieves the maximum possible expectation of this function. Such
a mechanism can be constructed in polynomial time. So, SAMD
with deterministic mechanisms with payments is inP wheng is a
generalized social welfare function.

PROOF. Let o(θ) = arg maxo∈O g(θ, o) (if multiple o ∈ O
maximize this expression, choose one arbitrarily). Becauseg is a
generalized social welfare function, we know it can be decomposed
asg(θ, o) = u(θ, o) + v(o). Let π(θ) = v(o(θ)). Clearly, this
mechanism can be constructed inO(|Θ||O|) time. All we need
to show is that it is indeed nonmanipulable. If the agent has type
θ, it will report θ̂ to maximizeu(θ, o(θ̂)) + π(θ̂) = u(θ, o(θ̂)) +

v(o(θ̂)) = g(θ, o(θ̂)). Buto(θ) is chosen to maximizeg(θ, o) over
all o ∈ O, and hence reportingθ is optimal for the agent.

The mechanism constructed in the proof belongs to the more gen-
eral class ofGroves mechanisms[9], which are designed (even in
multiagent settings) to allow the mechanism to choose the social
welfare maximizing outcome while still guaranteeing implemen-
tation in dominant strategies. (In fact, over general quasilinear
preferences, they are the only mechanisms with this property [8].)
However, the mechanism is not aClarke mechanism[2], the most
common Groves mechanism. In the Clarke mechanism, even the
silent agents may have to make payments (and the payments col-
lected cannot be redistributed among the agents because this would
compromise the incentives), while in our mechanism there are no
transfers from the silent agents. For the type-reporting agent, our
mechanism can be made to coincide with the Clarke mechanism by
subtracting a constant paymentmaxo∈O v(o) from that agent.
5In our earlier paper, we provide linear programs for solving 2-
agent mechanism design without payments with randomization, for
implementation in dominant strategies and in Bayes-Nash equilib-
rium [3]. The linear program presented above can be derived from
either of these programs, again by adding a dummy agent into the
SAMD instance.

Unfortunately, SAMD turns out to beNP-complete for general
objective functions. To demonstrateNP-hardness, we reduce from
the INDEPENDENT-SET problem which isNP-complete [14].

DEFINITION 7 (INDEPENDENT-SET).We are given an undi-
rected graph(V,E) (with no self-loops, that is, edges that begin
and end at the same node) and an integerk. We are asked whether
there is someI ⊆ V of size at leastk such that no two elements of
I have an edge between them.

We are now ready to show hardness of mechanism design even with
quasilinear preferences.

THEOREM 4. SAMD with deterministic mechanisms with pay-
ments isNP-complete (with general objective functions), even when
the probability distribution overΘ is uniform.

PROOF. First we show that the problem is inNP. We can non-
deterministically generate an outcome functiono. We then check
whether the payment functionπ can be set so as to make the mech-
anism nonmanipulable. Because we have already generatedo, we
can phrase this problem as a linear program with the following con-
straints: for allθ, θ̂ ∈ Θ, u(θ, o(θ))+π(θ) ≥ u(θ, o(θ̂))+π(θ̂). If
the linear program has a solution, we subsequently check if the cor-
responding mechanism achieves the thresholdG for E[g(θ, o(θ))].

To show that the problem isNP-hard, we reduce an arbitrary
INDEPENDENT-SET instance to a SAMD instance as follows.
For every vertexv ∈ V , let there be outcomeso1

v ando2
v, and a

type θv. The probability distribution overΘ is uniform. Let the
utility function be as follows:

• u(θv, o
1
w) = 1 for all v, w ∈ V with (v, w) ∈ E;

• u(θv, o
1
w) = 0 for all v, w ∈ V with (v, w) /∈ E (this

includes all cases wherev = w as there are no self-loops in
the graph);

• u(θv, o
2
v) = 1 for all v ∈ V ;

• u(θv, o
2
w) = 0 for all w ∈ V with v 6= w.

Let the objective function beg(θv, o
1
v) = 1 for all v ∈ V , and

g() = 0 everywhere else. Finally, letG = k
|V | (wherek is the

threshold of the INDEPENDENT-SET instance). We claim that the
SAMD instance has a solution if and only if the INDEPENDENT-
SET instance has a solution.

First suppose that the INDEPENDENT-SET instance has a solu-
tion, that is, someI ⊆ V of size at leastk such that no two
elements ofI have an edge between them. Then consider the
following mechanism. For allv ∈ I, let o(θv) = o1

v. For all
v /∈ V , let o(θv) = o2

v. Let π be zero everywhere (no payments
are made). First we show that this mechanism is indeed nonma-
nipulable. Ifv ∈ I andw ∈ I, then (becauseI is an independent
set) (v, w) /∈ I, and thusu(θv, o(θv)) + π(θv) = u(θv, o

1
v) =

0 = u(θv, o
1
w) = u(θv, o(θw)) + π(θw). If v ∈ I andw /∈ I,

then u(θv, o(θv)) + π(θv) = u(θv, o
1
v) = 0 = u(θv, o

2
w) =

u(θv, o(θw)) + π(θw). Finally, if v /∈ I, thenu(θv, o(θv)) +
π(θv) = u(θv, o

2
v) = 1, which is the highest possible value the

agent can attain. So there is no incentive for the agent to misre-
port anywhere. All that is left to show is that the expected value
of g(θ, o(θ)) reachesG. For v ∈ I, g(θ, o(θ)) = g(θ, o1

v) = 1,
and forv /∈ I, g(θ, o(θ)) = g(θ, o2

v) = 0. Because the distribution
overΘ is uniform, it follows thatE[g(θ, o(θ))] = |I|

|V | ≥
k
|V | = G.

So there is a solution to the SAMD instance.

Now suppose there is a solution to the SAMD instance, that is,
a nonmanipulable mechanism given by an outcome functiono :
Θ → O and a payment functionπ : Θ → R, which leads to an
expected value ofg(θ, o(θ)) of at leastG. Let I = {v : o(θ) =
o1
v}. We claimI is a solution to the INDEPENDENT-SET instance.

First, becauseg(θv, o(θv)) is 1 only for v ∈ I, we know that k|V | =

G ≤ E[g(θ, o(θ))] = |I|
|V | , or equivalently,|I| ≥ k. All that is left

to show is that there are no edges between elements ofI. Suppose
there were an edge betweenv, w ∈ I. Without loss of generality,
sayπ(θv) ≤ π(θw). Then,u(θv, o(θv)) + π(θv) = u(θv, o

1
v) +

π(θv) = π(θv) ≤ π(θw) < 1 + π(θw) = u(θv, o
1
w) + π(θw) =

u(θv, o(θw)) + π(θw). So the agent has an incentive to misreport
when its type isθv, which contradicts the nonmanipulability of the
mechanism. It follows that there are no edges between elements of
I. So there is a solution to the INDEPENDENT-SET instance.

Again, this generalizes to multiple agents:

COROLLARY 2. Designing a deterministic mechanism with pay-
ments for 2 (or more) agents isNP-hard for implementation in
dominant strategies and for implementation in Bayes-Nash equi-
librium (and in fact for any solution concept that coincides with
nonmanipulability in the single-agent case) for general objective
functions, even if the agents’ preferences are quasilinear.

PROOF. The proof introduces one (or more) dummy agent(s)
and is analogous to the proof of Corollary 1 (though slightly sim-
pler because here we do not need to make the social welfare func-
tions coincide).

We observe that in the proof of Theorem 4, the objective still de-
pends on the agent’s type. If it does not—that is, the objective only
represents the designer’s own preferences over outcomes—we are
simply in the setting of a general social welfare function again,
which we can solve in polynomial time as pointed out above.

7. COMPLEXITY OF DESIGNING RANDOM-
IZED MECHANISMS WITH PAYMENTS

In this section we show that if we allow the mechanism to select
the outcome randomly on the basis of the reported type, the SAMD
problem with payments becomes easy for general objective func-
tions. (In Section 6 we showed that when the objective function is a
generalized social welfare function, we can quickly generate a non-
manipulable mechanism with payments that selects an objective-
maximizing outcome, so in that case randomization is not neces-
sary.)

THEOREM 5. SAMD with randomized mechanisms with pay-
ments can be done in polynomial time using linear programming
(even for general objective functions).

PROOF. We can generate an optimal mechanism using linear
programming as follows. We first observe that as far as payments
are concerned, by linearity of expectation, the agent only cares
about the expected payment it gets given that it reports a given
type; so there is no reason to randomize over payments at all. Thus,
for eachθ ∈ Θ, we need to choose a probability distributionp(θ)
over the outcomes inO, defined by a probability(p(θ))(o) for each
o ∈ O; and a paymentπ(θ). These will be the variables in the lin-
ear program. In addition to the constraints necessary to enforce that
eachp(θ) is a probability distribution, we need the following con-
straints to ensure nonmanipulability: for eachθ, θ̂ ∈ Θ, we must
have(

∑
o∈O

(p(θ))(o)u(θ, o)) + π(θ) ≥ (
∑
o∈O

(p(θ̂))(o)u(θ, o)) +

π(θ̂). Then, we seek to maximize the expected value ofg, which
is
∑
θ∈Θ

γ(θ)
∑
o∈O

(p(θ))(o)g(θ, o). Observing that all the constraints

and the objective are linear in the(p(θ))(o) and theπ(θ), we con-
clude that this is a linear program. Because there is a polynomial
number of constraints and variables, we conclude that this program
can be solved in polynomial time.

The linear program in the proof can easily be generalized to set-
tings with multiple agents, for various concepts of nonmanipulabil-
ity (e.g., implementation in dominant strategies, or in Bayes-Nash
equilibrium).

8. RELATED RESEARCH ON COMPUTA-
TIONAL COMPLEXITY IN MECHANISM
DESIGN

There has been considerable recent interest in mechanism design
in computer science. Some of it has focused on issues of computa-
tional complexity, but most of that work has strived toward design-
ing mechanisms that are easy toexecute(e.g. [6,12,13]), rather than
studying the complexity ofdesigningthe mechanism. The closest
piece of earlier work is our paper which studied the complexity of
multiagent mechanism designwithout side paymentsandonly for
two specific notions of nonmanipulability[3]. Roughgarden has
studied the complexity of designing a good network topology for
agents that selfishly choose the links they use [15]. This is related
to mechanism design, but differs significantly in that the designer
only has restricted control over the rules of the game because there
is no party that can impose the outcome (or side payments). Also,
there is no explicit reporting of preferences.

9. CONCLUSIONS AND FUTURE
RESEARCH

The aggregation of conflicting preferences is a central problem in
multiagent systems. The key difficulty is that the agents may re-
port their preferences insincerely. Mechanism design is the art of
designing the rules of the game so that the agents are motivated
to report their preferences truthfully and a (socially) desirable out-
come is chosen.

We propose an approach where a mechanism is automatically cre-
ated for the preference aggregation setting at hand. This approach
can be used even in settings that do not satisfy the assumptions
of classical mechanisms. It may also yield better mechanisms (in
terms of stronger nonmanipulability guarantees and/or better out-
comes) than classical mechanisms. Finally, it may allow one to cir-
cumvent impossibility results (such as the Gibbard-Satterthwaite
theorem) which state that there is no mechanism that is desirable
across a whole class of preferences.

The downside is that the mechanism design problem needs to be
solved anew each time. Hence, the computational complexity of
mechanism design becomes a key issue. In this paper, we ana-
lyzed the single-agent mechanism design problem, for the follow-
ing reasons: 1) All of the many concepts of nonmanipulability for
multiple agents coincide for the single agent setting, so all results in
this setting rely only on the most fundamental properties of nonma-
nipulability; 2) It is the simplest version of the mechanism design
problem; 3) Results here easily extend to settings with multiple
agents—as we demonstrated.

We showed that designing an optimal deterministic mechanism that
does not use payments isNP-complete even if there is only one
agent whose type is private information—even when the designer’s
objective is social welfare. We showed how this hardness result ex-
tends to settings with multiple agents with private information. We
then showed that if the mechanism is allowed to use randomiza-
tion, the design problem is solvable by linear programming (even
for general objectives) and hence inP. This generalizes to any
fixed number of agents.

We then studied settings where side payments are possible and
the agents’ preferences are quasilinear. We showed that if the de-
signer’s objective is social welfare, an optimal deterministic mech-
anism is easy to construct; in fact, this mechanism is alsoex post
optimal. We then showed that designing an optimal deterministic
mechanism with side payments isNP-complete for general objec-
tives, and this hardness extends to settings with multiple agents.
Finally, we showed that an optimal randomized mechanism can be
designed in polynomial time using linear programming even for
general objective functions. This again generalizes to any fixed
number of agents.

Future research includes extending the approach of automated mech-
anism design to other settings, for example, settings where side
payments are possible but the agents’ preferences are not quasi-
linear, and settings where each agent’s type space is very large or
infinite (but concisely representable). Another interesting use of
automated mechanism design is to solve for mechanisms for a va-
riety of settings (real or artificially generated), and to see whether
general mechanisms (or mechanism design principles) can be in-
ferred. Finally, this approach could be used to generate counterex-
amples or corroborate that a postulated mechanism is optimal for a
given class of settings.

10. REFERENCES
[1] Kenneth Arrow. The property rights doctrine and demand

revelation under incomplete information. In M Boskin,
editor,Economics and human welfare. New York Academic
Press, 1979.

[2] E H Clarke. Multipart pricing of public goods.Public
Choice, 11:17–33, 1971.

[3] Vincent Conitzer and Tuomas Sandholm. Complexity of
mechanism design. InProceedings of the 18th Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-02), pages 103–110, Edmonton, Canada, 2002.

[4] Vincent Conitzer and Tuomas Sandholm. Computational
criticisms of the revelation principle. Inthe AAMAS-03 5th
Workshop on Agent Mediated Electronic Commerce (AMEC
V), Melbourne, Australia, 2003.

[5] C d’Aspremont and L A Ǵerard-Varet. Incentives and
incomplete information.Journal of Public Economics,
11:25–45, 1979.

[6] Joan Feigenbaum, Christos Papadimitriou, and Scott
Shenker. Sharing the cost of muliticast transmissions.
Journal of Computer and System Sciences, 63:21–41, 2001.
Early version in STOC-00.

[7] A Gibbard. Manipulation of voting schemes.Econometrica,
41:587–602, 1973.

[8] J Green and J-J Laffont. Characterization of satisfactory
mechanisms for the revelation of preferences for public
goods.Econometrica, 45:427–438, 1977.

[9] Theodore Groves. Incentives in teams.Econometrica,
41:617–631, 1973.

[10] R Kohli, R Krishnamurthi, and P Mirchandani. The
minimum satisfiability problem.SIAM Journal of Discrete
Mathematics, 7(2):275–283, 1994.

[11] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green.
Microeconomic Theory. Oxford University Press, 1995.

[12] Noam Nisan and Amir Ronen. Computationally feasible
VCG mechanisms. InProceedings of the ACM Conference
on Electronic Commerce (ACM-EC), pages 242–252,
Minneapolis, MN, 2000.

[13] Noam Nisan and Amir Ronen. Algorithmic mechanism
design.Games and Economic Behavior, 35:166–196, 2001.
Early version in STOC-99.

[14] Christos H Papadimitriou.Computational Complexity.
Addison-Wesley, 1995.

[15] Tim Roughgarden. Designing networks for selfish users is
hard. InFOCS, 2001.

[16] M A Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems for
voting procedures and social welfare functions.Journal of
Economic Theory, 10:187–217, 1975.

[17] W Vickrey. Counterspeculation, auctions, and competitive
sealed tenders.Journal of Finance, 16:8–37, 1961.

