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Abstract

We present an overview of Tartanian5, a no-limit Texas
Hold’em agent which we submitted to the 2012 Annual Com-
puter Poker Competition. The agent plays a game-theoretic
approximate Nash equilibrium strategy. First, it applies a
potential-aware, perfect-recall, automated abstraction algo-
rithm to group similar game states together and construct a
smaller game that is strategically similar to the full game. In
order to maintain a tractable number of possible betting se-
quences, it employs a discretized betting model, where only
a small number of bet sizes are allowed at each game state.
The strategies for both players are then computed using an
improved version of Nesterov’s excessive gap technique spe-
cialized for poker. To mitigate the effect of overfitting, we
employ an ex-post purification procedure to remove actions
that are played with small probability. One final feature of
our agent is a novel algorithm for interpreting bet sizes of the
opponent that fall outside our model. We describe our new
approach in detail, and present theoretical and empirical ad-
vantages over prior approaches. Finally, we briefly describe
ongoing research in our group involving real-time computa-
tion and opponent exploitation, which will hopefully be in-
corporated into our agents in future years.

Introduction

Developing effective strategies for agents in multiagent sys-
tems is an important and challenging problem. It has re-
ceived significant attention in recent years from several dif-
ferent communities—in part due to the competitions held at
top conferences (e.g, the computer poker, robo-soccer, and
trading agent competitions). As many domains are so large
that solving them directly (i.e., computing a Nash equilib-
rium or a solution according to some other relevant solution
concept) is computationally infeasible, some amount of ap-
proximation is necessary to produce agents.

Specifically, significant work has been done on com-
puting approximate game-theory-based strategies in large
imperfect-information games (Sandholm 2010). This work
typically follows a three-step approach, which is depicted
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in Figure 1. First, a smaller game G’ is constructed which
is strategically similar to the original game G. Initially this
was done by a hand-crafted abstraction procedure (Billings
et al. 2003), and more recently has been done by automated
abstraction algorithms (Gilpin and Sandholm 2006; 2007;
Shi and Littman 2002). Second, an equilibrium-finding al-
gorithm is run on G’ to compute an e-equilibrium ¢’ (Hoda
et al. 2010; Zinkevich et al. 2007). Third, a reverse mapping
is applied to ¢’ to compute an approximate equilibrium o
in the full game G (Gilpin, Sandholm, and Sgrensen 2008;
Schnizlein, Bowling, and Szafron 2009).
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Figure 1: General game-theoretic approach for solving large
games.

No-limit Texas Hold’em poker is an especially challeng-
ing domain, as its game tree contains 107! states (Gilpin,
Sandholm, and Sgrensen 2008)!. State of the art equi-
librium-finding algorithms can only scale to games with
approximately 10'2 game tree states (Hoda et al. 2010;
Zinkevich et al. 2007); hence, significant abstraction and
approximation is necessary to apply a game-theoretic ap-
proach. Interestingly, only two agents from the 2011 com-
petition were based on approximate equilibrium strategies,

'This is for the two-player version with starting stacks of 500
big blinds where stacks are reset after each hand. Initially the
Annual Computer Poker Competition used 500 big blind starting
stacks, but for the last few years 200 big blind stacks were used;
thus, the number of game states is actually smaller than 107"



while 4 of the 7 agents that reported a description used hand-
crafted expert systems. The final agent used a case-based ap-
proach designed to imitate the strategies of top-performing
agents in previous years’ competitions (Rubin and Watson
2012). In 2010 two of the five agents submitted to the two-
player no-limit competition employed approximate equilib-
rium strategies, including the previous variant of our pro-
gram, Tartanian4, which finished in first place in the total
bankroll competition and in third place in the bankroll in-
stant run-off competition.

In this paper we describe our new no-limit approximate-
equilibrium agent, Tartanian5. The primary components
of our agent are a potential-aware automated abstraction
algorithm, discretized betting model, custom equilibrium-
finding algorithm, ex-post purification procedure, and a
novel reverse mapping algorithm. We describe our new re-
verse mapping algorithm in detail, as it has changed sig-
nificantly from the algorithm used in our prior agents. We
present theoretical and empirical advantages of our new ap-
proach over prior approaches in simplified settings, which
we expect to translate directly to improved performance in
Texas Hold’em.

An overview of Tartanian5

In this section we present the different technical components
of our agent Tartanian5, and discuss the key differences from
prior versions.

Automated card abstraction

In order to reduce to size of the game tree to make equi-
librium computation feasible, we applied a potential-aware
automated abstraction algorithm (Gilpin, Sandholm, and
Sgrensen 2007). The algorithm uses clustering to group
hands together that have similar histograms over future out-
comes, and integer programing to determine how many chil-
dren to allocate to each node.

Many abstraction algorithms group hands together that
have similar expected hand strength against a uniform roll-
out of the opponent’s hands. Our approach takes into ac-
count that the strength of hands can vary significantly over
the course of a hand, and some hands with similar expected
hand strength should be played quite differently. For exam-
ple, QJ suited and 55 both win about 60% of the time against
a random hand, but should be played very differently. Our
algorithm uses perfect recall, in which each player is forced
to remember his hole cards and the exact sequence of com-
munity cards throughout the hand. Future work will involve
considering imperfect recall abstractions, in which agents
potentially forget information that they once knew (Waugh
et al. 2009).

The previous version of our program, Tartanian4, used a
potential-aware card abstraction with branching factors of
12, 25, 6, and 6 for the four betting rounds. Perhaps counter-
intuitively, this year we decided to use a smaller abstraction;
Tartanian5 uses an abstraction with branching factors of 8,
12, 4, and 4. The reason for this change was that we realized
the 12-25-6-6 abstraction was so large that our equilibrium-
finding algorithm was not able to converge sufficiently fast.

Define the exploitability of strategy o; to be the difference
between the value of the game to player v; and the perfor-
mance of o; against its nemesis, formally:

expl(o;) = v; — I;linui(ffufffz‘)-
i

Define the total exploitability of an agent which plays strat-
egy o1 as player 1 and strategy o2 as player 2 to be
expl(oy) + expl(oz)
2

Even within its abstracted game, Tartanian4 had ex-
ploitability of approximately 0.8 big blinds per hand. This
is noteworthy for several reasons. First, notice that the strat-
egy of always folding would have an exploitability of 0.75
big blinds per hand (since it would lose 0.5 big blinds when
it is in the small blind and 1 big blind when it is in the big
blind). So our program which came in first place in the
2010 no-limit Texas Hold’em division of the computer poker
competition was more exploitable than always folding! Fur-
thermore, the exploitability of 0.8 BB/hand assumed that the
opponent was restricted to the same card and betting abstrac-
tion; the full game exploitability of our strategies was prob-
ably significantly higher. This indicates that there is still a
long way to go in terms of developing strong game-theoretic
agents for no-limit Texas Hold’em. It also suggests that per-
haps worst-case exploitability is not the most useful metric
for evaluating the quality of strategies.

This year, we decided to use a smaller abstraction that
had a smaller exploitability in its abstraction. At the time of
our decision, the 8-12-4-4 abstraction had an exploitability
of 0.55 BB/hand, while the 8-4-3-3 abstraction had an ex-
ploitability of 0.13 BB/hand (and the 12-25-6-6 abstraction
had an exploitability of 0.8 BB/hand). We played these three
agents against each other, and the 8-12-4-4 agent (with in-
termediate abstraction size and exploitability) beat the other
two. So we chose that for our abstraction size. The current
exploitability of our strategy is approximately 0.3 BB/hand
within the abstraction.

Discretized betting model

In limit Texas Hold’em, there is a fixed betting size; thus at
each game state, a player must choose between 3 options:
folding, calling/checking, or betting. By contrast in no-limit
Texas Hold’em, a player can bet any amount (up to the num-
ber of chips in his stack) at any game state. This causes an
enormous blowup in the size of the game tree. While two-
player limit Texas Hold’em has about 10'® game states in
its tree, two-player no-limit Texas Hold’em has about 107!
states. Thus, in order to develop a no-limit agent, some form
of betting abstraction or discretization is needed.

Our approach is to discretize the betting space into a small
number of allowable bet sizes at each game state (Gilpin,
Sandholm, and Sgrensen 2008). Folding, calling/checking,
and going all-in are available at every game state. In ad-
dition, one or two intermediate bet sizes are also available
at each game state (which ones are available depend on the
betting history so far). These include bet sizes of %-pot, %-
pot, and pot. This year we made some changes to our dis-
cretization, and allowed bets of 1.5-pot and 2-pot in certain
situations.



Equilibrium finding

Once we fixed our card abstraction and betting model, we
ran a perl script which automatically generates C++ code
for running an equilibrium-finding algorithm on the abstract
game (Gilpin, Sandholm, and Sgrensen 2008). The algo-
rithm we used is a gradient-based algorithm which uses an
improved version of Nesterov’s excessive gap technique spe-
cialized for poker (Hoda et al. 2010). The computation
was run using 64 cores at the Pittsburgh Supercomputing
center on the world’s largest shared-memory supercomputer
(called blacklight).

Purification

Rather than play the exact strategies output by our equi-
librium-finding algorithm, we decided to modify the ac-
tion probabilities by preferring the higher-probability ac-
tions. The intuition for doing this is that we should ignore
actions that are played with small probability in the abstract
equilibrium, as they are likely due to abstraction coarseness,
overfitting, or failure of the equilibrium-finding algorithm to
fully converge (Ganzfried, Sandholm, and Waugh 2012).

In 2010, we submitted two versions of our Tartanian4
agent; one that employed full purification, and one that em-
ployed thresholding using a threshold of 0.15. The purifica-
tion agent played the highest-probability action with proba-
bility 1 at each information set, and played the other actions
with probability 0 (randomizing for ties). The thresholded
agent rounded all action probabilities below 0.15 to 0, then
renormalized. The purification agent beat the thresholded
agent head-to-head, and outperformed it against all compe-
tition opponents except one. Thus, we decided to use full
purification in Tartanian5.

Reverse mapping

While the strategies we computed assume the opponent is
following our discretized betting model, our actual opponent
may in fact make bet sizes that fall outside of our model.
Thus a reverse mapping algorithm is necessary to map his
bet size to one of the bet sizes in our model. Tartanian5
uses a new reverse mapping algorithm that differs from our
algorithm of previous years, as well as the algorithms used
by prior agents.

Discussion of our new reverse mapping
algorithm and comparison to prior approaches

In this section, we present our new reverse mapping and
discuss advantages over prior approaches. We first present
several basic properties that a reverse mapping should sat-
isfy, and show that each of the prior mappings either fails
to satisfy some of the properties, or produces strategies that
are highly exploitable. Furthermore, the prior mappings are
based on heuristics and do not have any theoretical justifica-
tion. By contrast, our mapping satisfies all of the properties,
has low exploitability, and is theoretically motivated as the
solution to simplified poker games.

Problem formulation

Suppose our opponent makes a bet of size x € [A, B, where
A denotes the largest betting size in our abstraction less than
or equal to z, and B denotes the smallest betting size in
our abstraction greater than or equal to x (we require that
0 < A < B.) The reverse mapping problem is to determine
whether we should map z to A or to B (perhaps probabilis-
tically). Thus, our goal is to find a function f4 p(z), which
denotes the probability that we map zto A (1 — f4, p(z) de-
notes the probability that we map x to B); this is our reverse
mapping function. We assume the pot size is 1, and that all
values have been normalized accordingly. For simplicity, we
will sometimes write f4 p just as f.

Basic properties a reverse mapping algorithm
should have

It seems clear that every reverse mapping function should
satisfy the following basic properties:

1. fap(4)=1
2. fap(B)=0
3. fa,p is monotonically decreasing

4. Vk >0,z € [A, B], fraxp(kr) = faB(v)

Boundary constraints If the opponent takes an action that
is actually in our abstraction, then it is natural to map his ac-
tion x to the corresponding action with probability 1. Hence
we require that f(A) = 1 and f(B) = 0.

Monotonicity As the opponent’s action x moves away
from A towards B, it is natural to require that the proba-
bility of his action being mapped to A decreases. Thus we
require that f be monotonically decreasing.

Scale invariance This condition requires that scaling A,
B, and x by some multiplicative factor £ > 0 does not affect
our reverse mapping. In poker for example, it is common to
scale all bet sizes by the size of the big blind or the size of
the pot.

Survey of existing reverse mapping algorithms

In this section, we will present several reverse mapping
algorithms have been proposed in the literature (Gilpin,
Sandholm, and Sgrensen 2008; Rubin and Watson 2012;
Schnizlein, Bowling, and Szafron 2009). For each algo-
rithm, we will check whether it satisfies the above proper-
ties, and discuss additional strengths and limitations.

Deterministic arithmetic The deterministic arithmetic al-
gorithm is perhaps the simplest. If x < A%B, then x is
mapped to A with probability 1; otherwise x is mapped to
B with probability 1.

This mapping satisfies Properties 1, 2, and 4, but not
Property 3. (It is constant from z = A to # and from
x = ““’TB to B, and is therefore not monotonically de-
creasing). Furthermore, it is potentially highly exploitable.
For example, suppose A is a pot-size bet and B is an all-in.
Then the opponent could significantly exploit us by betting

slightly under AJFTB with his strong hands.



Randomized arithmetic
B—=x

fA7B(CU> = B_A

This mapping satisfies all four properties; but it is ex-
ploitable in the same way as the deterministic arithmetic
mapping (though to a lesser extent).

Deterministic geometric The motivation behind this al-
gorithm is to reduce the level of exploitability of the arith-
metic approach by making our threshold x* at the point
where the ratios of z* to A and B to x* are the same (rather
than the differences). Specifically, if f > % then x is
mapped to A with probability 1; otherwise x is mapped to B

with probability 1. Thus, the threshold will be 2* = VvV AB
rather than 442 This will diminish the effectiveness of the
exploitation described above; namely to make a large value
bet just below the threshold.

Like the deterministic arithmetic mapping, this mapping
satisfies Properties 1, 2, and 4, but not Property 3. An ad-
ditional undesirable property is that f(x) = 0 for all x at
A = 0 (i.e., A corresponds to the check action). If A = 0,
B =1, and x = 0.1 for example, we will believe the op-
ponent’s small bet of 0.1 times the pot is actually a full pot-

sized bet. This function also behaves undesirably as A — 0.

Randomized geometric 1

A_ A

ga(r) = I_f

B

z A

hA,B(x) = ]f_ j

B

faB(z) = 94,5(2)

9a,(x) + ha,p(x)
Like the deterministic geometric mapping, this violates
monotonicity at A = 0. This mapping has been used in
previous competition agents (e.g., Hyperborean from Al-
berta (Schnizlein, Bowling, and Szafron 2009) and Sartre
from Auckland (Rubin and Watson 2012)).

Randomized geometric 2

AB(A + B) n A
(B—A)(z2+AB) A-B
This mapping behaves similarly to the first randomized ge-
ometric mapping, and also violates monotonicity at A =

0. This was the mapping we used in our Tartanian4
agent. Note that both randomized geometric mappings have

fas(VAB) = 1.

Our new reverse mapping algorithm

The motivating problem for our new reverse mapping is a
half-street no-limit clairvoyance game (Ankenman and Chen
2006):

e There are two players, P1 and P2.

fap(z) =

e The initial size of the pot is $1.

e Both players have stacks of size n.

e P1 is clairvoyant, and his hand is randomly drawn from
a distribution that is half winning hands and half losing
hands.

e P1 is allowed to bet a fixed amount s, where s € [0, n].
e P2 is allowed to call or fold.

For a given bet size s, equilibrium strategies for both play-
ers are as follows (Ankenman and Chen 2006):

e P1 bets s with probability 1 with a winning hand.

s
1+4s

e PI1 bets s with probability
checks otherwise).

with a losing hand (and

e P2 calls with probability 1.

In fact, these betting and calling frequencies are shown to be
optimal in many other no-limit poker games as well (Anken-
man and Chen 2006).

Using this as motivation, our reverse mapping will be the
solution to

1 1 1
Fan@) g+ 0= Tas@) g = 1y
Specifically, our mapping is:
_(B-x)(1+A)
fap@) = =

This is the only mapping consistent with calling a bet of size
x with probability 1-&-% forall z € [A, B].

This mapping satisfies all of the properties, is well-
behaved as A — 0, and is not as susceptible to the ex-
ploitations previously described. The threshold x* for which
fap(x*) = % is

*

A+ B+2AB
A+ B+2

Examples

In Figure 2 we plot all four randomized reverse mapping
algorithms using A = 0.01 and B = 1. As the figure shows,
both of the randomized geometric algorithms map a bet size
of 0.1-pot to A and B with roughly equal probability, while
the corresponding threshold of the arithmetic algorithm is
around 0.5-pot and the new algorithm is around 0.35-pot. In
this case, the algorithms differ quite significantly.

In Figure 3, we plot the algorithms using A = 1 and
B = 4. In this case our mapping is relatively similar to the
geometric mappings, while the arithmetic mapping differs
significantly from the others.

Additional research relevant to poker and
imperfect-information games

In addition to the research that went into Tartanian5, our
group has worked on several other topics highly related to
imperfect-information games, and to poker in particular.

e We have developed algorithms for computing an e-equi-
librium in the endgame of a 3-player no-limit Texas
Hold’em tournament for provably small ¢ (Ganzfried and
Sandholm 2008; 2009).
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Figure 2: Plots of the four randomized reverse mapping algorithms using A = 0.01 and B = 1.
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Figure 3: Plots of the four randomized reverse mapping algorithms using A = 1 and B = 4.




e We have developed an algorithm for quickly solving river
subgames in real time in limit Texas Hold’em that ex-
ploits qualitative information on the structure of equilib-
rium strategies (Ganzfried and Sandholm 2010).

e We have a developed a opponent exploitation algorithm
that leads to improved performance against a variety of
agents in two-player limit Texas Hold’em (Ganzfried and
Sandholm 2011). It works by constructing a model of
the opponent based on deviations from a precomputed ap-
proximate equilibrium, and computing approximate best
responses in real time.

e We have developed algorithms for exploiting suboptimal
opponents that guarantee at least the value of the game
in expectation (Ganzfried and Sandholm 2012). Our al-
gorithms led to a significant performance improvement
against several opponent classes in Kuhn poker.

Conclusion

We introduced our no-limit Texas Hold’em agent Tartanian5
and described its primary components: an automated ab-
straction algorithm, a discretized betting model, a custom
equilibrium-finding algorithm, an ex-post purification pro-
cedure, and a new reverse mapping algorithm. We also
briefly described ongoing research in our group involv-
ing real-time computation and opponent exploitation, which
will hopefully be incorporated into our agents in future
years. We described several theoretical and empirical ad-
vantages of our new reverse mapping algorithm over prior
approaches. Specifically, all prior mappings either fail to
satisfy some basic properties or are highly exploitable; fur-
thermore, they are all ad hoc and lack any theoretical justi-
fication. By contrast, our mapping satisfies all of the prop-
erties, has low exploitability, and is theoretically motivated
as the solution to simplified poker games. Future work
will involve doing a thorough comparison of the various ap-
proaches against agents submitted to this year’s competition.
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