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Abstract

Coalition formation is a key aspect of automated negotiation
among self-interested agents. In order for coalitions to be
stable, a key question that must be answered is how the gains
from cooperation are to be distributed. Various solution con-
cepts (such as the Shapley value, core, least core, and nucle-
olus) have been proposed. In this paper, we demonstrate how
these concepts are vulnerable to various kinds of manipula-
tions in open anonymous environments such as the Internet.
These manipulations include submitting false names (one act-
ing as many), collusion (many acting as one), and the hiding
of skills. To address these threats, we introduce a new solu-
tion concept called the anonymity-proof core, which is robust
to these manipulations. We show that the anonymity-proof
core is characterized by certain simple axiomatic conditions.
Furthermore, we show that by relaxing these conditions, we
obtain a concept called the least anonymity-proof core, which
is guaranteed to be non-empty. We also show that computa-
tional hardness of manipulation may provide an alternative
barrier to manipulation.

Introduction
Coalition formation is a key capability in automated nego-
tiation among self-interested agents. In order for coalition
formation to be successful, a key question that must be an-
swered is how the gains from cooperation are to be dis-
tributed. Coalitional game theory provides a number of so-
lution concepts for this, such as the Shapley value, the core,
the least core, and the nucleolus. Some of these solution
concepts have already been adopted in the multi-agent sys-
tems literature (Zlotkin & Rosenschein 1994; Yagodnick &
Rosenschein 1998; Ketchpel 1994; Shehory & Kraus 1998;
Conitzer & Sandholm 2003; 2004).

Besides being of interest of the game-theory and multi-
agent systems research community, the growth of the In-
ternet and e-commerce has expanded the application areas
of coalitional game theory. For example, consider a large
number of companies, some subset of which could form
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profitable virtual organizations that can respond to larger or
more diverse orders than an individual company can. Due
to the advance of the Internet, forming such virtual organi-
zations becomes much easier, but the companies must agree
on how to divide the profit among themselves.

However, existing solution concepts have limitations
when applied to open anonymous environments such as the
Internet. In such environments, a single agent can use mul-
tiple identifiers (or false names), pretending to be multiple
agents, and distribute its ability (skills) among these identi-
fiers. Alternatively, multiple agents can collude and pretend
to be a single agent that combines all of their skills. Fur-
thermore, an agent might try to hide some of its skills. Fi-
nally, complex combinations of these manipulations are also
possible—for example, three agents could collude and use
two identifiers, distributing some of each agent’s skills to
each identifier, while hiding other skills.

These manipulations are virtually impossible to detect in
open anonymous environments, and have thus become an is-
sue in such environments specifically. That is also the reason
why the gamut of these manipulations, in particular, false-
name manipulations, has not received much research atten-
tion previously. (An important exception is the work on
pseudonymous bidding in combinatorial Internet auctions.
For that setting, false-name proof protocols have been de-
veloped (Yokoo, Sakurai, & Matsubara 2004).)

In this paper, we provide a range of examples that demon-
strate the vulnerability of the existing coalitional solution
concepts to these new types of manipulations.1 We then de-
velop a new solution concept for coalitional games called the
anonymity-proof core, which is robust to the manipulations
described above. We show that the anonymity-proof core
is characterized by certain axiomatic conditions (including
that an agent does not have an incentive to use the manipu-
lations mentioned above). Furthermore, we show that by re-
laxing some of these conditions, we obtain a concept called
the least anonymity-proof core, which is guaranteed to be
non-empty. Also, as an alternative protection from manip-
ulation, we show that manipulating the traditional solution
concepts may be computationally hard.

1A similar claim has been made regarding allocation rules in a
pure exchange economy (Sertel & Yildiz 2004).



Model
Traditionally, value division in coalition formation is stud-
ied in characteristic function games, where each potential
coalition (that is, each subset X of the agents) has a value
w(X) that it can obtain. This assumes that utility is transfer-
able (for example, utility can be transferred using side pay-
ments), and that a coalition’s value is independent of what
non-members of the coalition do.

The characteristic function by itself does not give us suffi-
cient information to assess what manipulations may be per-
formed by agents in an open anonymous environment. For
example, if an agent decides to use false names and to split
itself into two different identifiers, then what is the new char-
acteristic function over the new set of agent identifiers? Pre-
sumably, this depends on how the agent splits itself into mul-
tiple agents—but the characteristic function does not contain
any information on different ways in which the agent may
split itself up. Because of this, we need a more fine-grained
representation of what each agent brings to the table. Instead
of defining the characteristic function over agents, we de-
fine it over skills that the agents possess. (The word “skills”
should not be interpreted too strictly—while the skills may
indeed correspond to the abilities of the agents, they may
also correspond to, for example, resources that the agents
possess.)

Definition 1 (skills and agents) Assume the set of all pos-
sible skills is T . Each agent i has one or multiple skills
Si ⊂ T . For simplicity, we assume each skill is unique, that
is, ∀i �= j, Si ∩ Sj = ∅ holds.2

Definition 2 (characteristic function defined over skills)
A characteristic function v : 2T → � assigns a value to
each set of skills.

We will denote by w the characteristic function defined
over agents, and by v the characteristic function defined over
skills. For a given set of agents X , let SX =

⋃
i∈X Si. Then,

we have w(X) = v(SX). The characteristic function over
skills is a more fine-grained representation than the charac-
teristic function over agents (the latter can be derived from
the former but not vice versa). Typically, both v and w are
weakly increasing: adding more skills or agents to a coali-
tion never hurts.

We assume that the coalition and the value division (pay-
offs to the agents) are established as follows.

• There exists a special agent whom we will call the mecha-
nism designer. The mechanism designer knows T , the set
of all possible skills,3 and v, the characteristic function
defined over T .

• If agent i is interested in joining a coalition, it declares the
skills it has to the mechanism designer.

2This assumption is just for making the notation simple; even if
there are two identical skills, we can set different names on them.

3We do not require that each skill in T is actually possessed
by some agent; the only thing that is required is that every skill
that an agent possesses is indeed in T . Therefore, the mechanism
designer really only needs to know an upper bound on the set of
skills possessed by the agents.

• The mechanism designer determines the value division
among participants.

We assume the following three types of manipulation (or
any combination of them) are possible for agents.

Definition 3 (hiding skills) If agent i has a set of skills Si,
for any S ′

i ⊆ Si, it can declare that it has only S ′
i.

On the other hand, we assume that an agent cannot declare
it has a skill that it does not have in reality—we assume that
such a lie is detectable (because the lie will be exposed once
the agents in the coalition are called on to apply their skills).

Definition 4 (false names) Agent i can use multiple identi-
fiers and declare that each identifier has a subset of skills S i.
Since we assume each skill is unique, two different identifiers
cannot declare they have the same skill.4 Thus, a false-name
manipulation by agent i corresponds to a partition of S i into
multiple identifiers. (If the manipulation is combined with a
skill-hiding manipulation, only a subset of S i is partitioned.)

Definition 5 (collusion) Multiple agents can collude and
pretend to be a single agent. They can declare the skills
of this agent to be the union of their skills (or a subset of this
union, in case we combine the manipulation with a skill-
hiding manipulation).

We can combine the various manipulations to obtain more
complex manipulations. We already described how to com-
bine the latter two manipulations with a skill-hiding manip-
ulation. As another example, an agent with skills a and b,
and another agent with only skill c, can collude and submit
one identifier with only skill a, and another with skills b and
c. This can be seen as a combination of the latter two manip-
ulations: 1) the first agent splits into two false names (one
with skill a and one with skill b), 2) the second false name
(with skill b) colludes with the agent with skill c. More gen-
erally, the following result shows that all manipulations can
be seen as a combination of these three basic manipulations.

Theorem 1 Letting S be the union of a coalition’s skills,
any manipulation in which this coalition submits several
identifiers with non-overlapping subsets of S as their skills
can be achieved by a combination of the previous three ma-
nipulations.

We omit the proof due to space constraint.

Traditional Solution Concepts
So far, we have not yet discussed how the value of the
coalition should be divided. In this section, we briefly re-
view some of the traditional solution concepts for doing so.
First, we review a well-known solution concept known as
the Shapley value (Shapley 1953). The Shapley value aims
to distribute the gains from cooperation in a fair manner. It
has many equivalent characterizations; we will review one
that gives a formula in closed form for it.

4Alternatively, we can consider a case where agents can declare
that they have multiple “copies” of a single skill. We hope to ad-
dress this model in our future works.



Definition 6 (Shapley value) Give an ordering o of the set
of agents W in the coalition, let X(o, i) be the set of agents
in W that appear before i in ordering o. Then the Shapley
value for agent i is defined as

Sh(W, i) =
1

|W |!
∑

o

(w(X(o, i) ∪ {i})− w(X(o, i))).

The intuitive interpretation of the Shapley value is that it
averages an agent’s marginal value over all possible orders
in which the agents may join the coalition.

Next, we show another well-known (perhaps the best
known) solution concept called the core (Gillies 1953;
von Neumann & Morgenstein 1947).

Definition 7 (core) Given a set of agents W , an outcome,
that is, a value division cW = (cW

1 , cW
2 , . . .) among agents

is in the core if the following two conditions hold:

1. ∀X ⊂ W ,
∑

i∈X cW
i ≥ w(X),

2.
∑

i∈W cW
i = w(W ).

The first condition is called the non-blocking condition: if
for some set of agents X , this condition does not hold, then
the agents in X have an incentive to collectively deviate
from the mechanism and to divide w(X) among themselves.
The second condition is called the feasibility condition: if∑

i∈W cW
i > w(W ), this outcome is infeasible.5 Thus, an

outcome is in the core if it is blocked by no coalition and
feasible. In general, the core can be empty. Also, the core
can contain a large set of outcomes.

Next, we show a solution concept called the least core,
which can be either a relaxation or a tightening of the core.
We first define the ε-core, which is used in the later defini-
tion.

Definition 8 (ε-core) Given a set of agents W and value ε,
an outcome cW = (cW

1 , cW
2 , . . .) is in the ε-core if the fol-

lowing two conditions hold:

1. ∀X ⊂ W ,
∑

i∈X cW
i ≥ w(X) − ε,

2.
∑

i∈W cW
i = w(W ).

If ε = 0, this definition coincides with the definition of the
core. If ε is positive (negative), the non-blocking condition
is relaxed (resp. tightened). It is obvious that for any ε < ε ′,
if an outcome is in the ε-core, it also in the ε ′-core.

Now, we can define the least core as follows.

Definition 9 (least core) Given a set of agents W , an out-
come cW = (cW

1 , cW
2 , . . .) is in the least core if the following

two conditions hold.

• cW is in the ε-core,
• ∀ε′ < ε, the ε′-core is empty.

The least core is non-empty for any characteristic function,
but it may contain multiple outcomes. The solution concept
known as nucleolus (Schmeidler 1969) is a refinement of
the least core. It is guaranteed to be in the least core and
uniquely determined for any characteristic function. Due to
limited space, we omit the formal definition of the nucleolus.

5Usually, the feasibility condition is represented as∑
i∈W

cW
i ≤ w(W ). From the non-blocking condition, the

equality must hold.

Manipulability of Traditional
Solution Concepts

In this section, we show a number of ways in which tradi-
tional solution concepts may fail.

Vulnerability to False Names
Example 1 Let there be three skills a, b, and c. Let all three
skills be necessary, that is, let the characteristic function
over skills be as follows:

• v({a, b, c}) = 1,
• For any proper subset S ⊂ {a, b, c}, v(S) = 0.

Let agent 1 have skill a and let agent 2 have skills b and c.
Then, the characteristic function over agents is as follows.

• w({1}) = w({2}) = 0,
• w({1, 2}) = 1.

In this example, there are only two possible orderings of
the agents and in each of those, the second agent in the or-
dering has marginal contribution 1. Therefore, the Shapley
value for each agent is 1/2. Any outcome (c1, c2) that satis-
fies c1 ≥ 0, c2 ≥ 0, and c1 + c2 = 1 is in the core. The least
core has only one outcome, which is identical to the Shapley
value. Hence, the nucleolus is identical to the Shapley value.

Example 2 Let the skills and the function v be the same as
in Example 1. Let there be three agents 1, 2, and 3 who
have skills a, b, and c, respectively. Then, the characteristic
function over agents is as follows.

• w({1, 2, 3}) = 1,
• For any proper subset X ⊂ {1, 2, 3}, w(X) = 0.

In this example, there are six possible orderings of the
agents, and the last agent has marginal contribution 1.
Therefore, the Shapley value for each agent is 1/3. Any
outcome (c1, c2, c3) that satisfies c1 ≥ 0, c2 ≥ 0, c3 ≥ 0,
and c1 + c2 + c3 = 1 is in the core. The least core has
only one outcome, which is identical to the Shapley value.
Hence, the nucleolus is identical to the Shapley value.

Now, we can see that the Shapley value, the least core, and
nucleolus are all vulnerable to false-name manipulations: in
Example 1, agent 2 can use two identifiers 2 and 3 and split
its skills over these identifiers. Then, the situation becomes
identical to Example 2. Thus, agent 2 can increase the value
awarded to it from 1/2 to 2/3 = 1/3 + 1/3 using false-
names. In fact, this example proves the following result:

Theorem 2 There exists no payoff division function that 1)
equally rewards the agents that are symmetric with respect
to w, 2) distributes all the value, and 3) is false-name proof.

Proof: Assume a function satisfies 1) and 2). Then, this
function should coincide with the Shapley value (or nucle-
olus) on both Examples 1 and 2. However, we have just
shown that such a payoff division is not false-name proof. �

Vulnerability to Collusion
Example 3 Let there be three skills a, b, and c. Let the char-
acteristic function over skills be as follows.

• v({a, b}) = v({a, c}) = v({a, b, c}) = 1,



• v({a}) = v({b}) = v({c}) = v({b, c}) = 0.

Let there be three agents 1, 2, and 3 with skills a, b, and c,
respectively. Then, the characteristic function over agents is
as follows.

• w({1, 2}) = w({1, 3}) = w({1, 2, 3}) = 1,

• w({1}) = w({2}) = w({3}) = w({2, 3}) = 0.

In this example, there are six possible orderings of the
agents. The marginal contribution of agent 1 is 0 only if it
is the first agent in the ordering, and 1 otherwise. Hence,
the Shapley value of agent 1 is 2/3, and the Shapley value
of each of agents 2 and 3 is 1/6 (if two agents are sym-
metric, their Shapley values must be identical). In this ex-
ample, there is only one outcome in the core, namely out-
come (1, 0, 0). This is because if agent 2 (or 3) obtains any
value, then the non-blocking condition is violated because
agent 1 and agent 3 (or 2) have an incentive to deviate from
the mechanism and form their own coalition. This is also the
only outcome of the least core, and hence the nucleolus also
gives this outcome.

Example 4 Let the skills and the function v be the same as
in Example 3. Let there be two agents, and let agent 1 have
skill a and let agent 2 have skills b and c. Then, the charac-
teristic function over agents is identical to the one in Exam-
ple 1.

Since the characteristic function over agents is identical to
the one in Example 1, the Shapley value, the core, the least
core, and nucleolus, are also identical to those for Exam-
ple 1.

Now, we can see that the Shapley value, the least core, and
the nucleolus are all vulnerable to collusion: in Example 3,
agent 2 and 3 can collude and pretend to be a single agent 2,
who has skills b and c. Then, the situation becomes identical
to Example 4. Thus, if the Shapley value is used, agent 2 and
3 can increase the total value awarded to them from 1/3 =
1/6 + 1/6 to 1/2. Also, if the least core or the nucleolus is
used, agent 2 and 3 can increase the total value awarded to
them from 0 to 1/2.

Applying the Solution Concepts to Skills
The examples from the previous section show that the char-
acteristic function w defined over agents is too coarse-
grained to represent the relative importance of agents in an
open anonymous environment. In this section, we take a
different approach: what if we apply the traditional solution
concepts directly to the (finer-grained) characteristic func-
tion v over skills? That is, treat each submitted skill as an
imaginary agent, and use the characteristic function v over
these imaginary agents to compute the value division over
them. Then, give each (real) agent the sum of the payoffs
to the skills that it submitted. For example, in Example 1,
the Shapley value, least core, and nucleolus would all give
a value of 1/3 to each skill; therefore, agent 1 receives 1/3,
and agent 2 (having submitted two skills) receives 2/3.

Theorem 3 Applying any solution concept to the skills di-
rectly is robust to false names, collusion, and any combina-
tions thereof.

Proof: Because solution concepts applied to the skills di-
rectly are indifferent to which agent submitted which skills,
changing the identifiers under which skills are submitted
never changes the payoffs to those skills. �

However, there may still be incentives to hide skills, as we
demonstrate next. Consider again Example 4. If we calcu-
late the solution concepts over the skills directly, the payoffs
to these skills (for any one of the solution concepts) are the
same as the payoffs to agents in Example 3. Thus, agent 1
receives 2/3 and agent 2 receives 1/3 if we use the Shapley
value applied to the skills, and agent 1 receives 1 and agent
2 receives 0 if we use the core/least core/nucleolus applied
to the skills. Now, consider the following example.

Example 5 Let there be two skills a and b. Let the charac-
teristic function over skills be as follows:

• v({a, b}) = 1,

• v({a}) = v({b}) = 0.

Let agent 1 have skill a and let agent 2 have skill b.

It is easy to see that both the Shapley value and the least
core/nucleolus will give 1/2 to each agent in this example.
Now, we can see that the Shapley value, the least core, and
the nucleolus are all vulnerable to the hiding of skills when
applied directly to the skills. In Example 4, agent 2 can
hide skill c. Then, the situation becomes identical to Exam-
ple 5. Hence the agent 2 increases its payoff from 1/3 to
1/2 for the Shapley value, and from 0 to 1/2 for the least
core/nucleolus.

Anonymity-Proof Core
In this section, we develop a new solution concept for our
setting which we call anonymity-proof core. As we will
show, the anonymity-proof core can be characterized by cer-
tain axiomatic conditions. Again, we assume that the only
knowledge that the mechanism designer has is T , that is,
the set of all possible skills, and v, that is, the characteristic
function defined over T . The mechanism designer does not
know the number of agents, or the skills that each agent has.
The mechanism designer must define an outcome function
π that decides, for all possible reports by the agents of their
skills, how to divide the value generated by these skills.

We require that the outcome function π is anonymous, that
is, the payoff to an agent does not depend on the identifiers
of the agents; it depends only on the skills of the agent and
the distribution of skills over other agents.

More specifically, given an agent i and a set of other
agents Y , let Si be the set of skills that agent i has, and
let SSY = {Sj | j ∈ Y }, where Sj is the set of skills that
agent j has. Then, the outcome function π(S i, SSY ) takes
Si and SSY as arguments, and returns the payoff to agent
i, when agent i declares its skills as Si and the other agents
declare their skills as SSY .

Let the set of agents who joined the mechanism be W ,
and let the profile of the skills that agents declared be
k = (k1, k2, . . .), where ki is the set of skills that agent
i declared. Let SX =

⋃
i∈X ki, that is, SX is the union

of the skills declared by a set of agents X ; let S = SW ;
and let SSX = {ki | i ∈ X}. Also, let SS∼i =



{k1, . . . , ki−1, ki+1, . . .}, that is, a set, each of whose ele-
ments is the set of skills corresponding to agent j (j �= i).

We now give six axiomatic conditions that the outcome
function π should satisfy.

1. The outcome function π is anonymous.

2. π is never blocked by any coalition, that is, ∀k, ∀X ⊆ W ,∑
i∈X π(ki, SS∼i) ≥ v(SX) holds.

3. π is always feasible and always distributes all of the value,
that is, ∀k,

∑
i∈W π(ki, SS∼i) = v(S) holds.

4. π is robust against hiding skills, that is, ∀S ′, S′′, where
S′′ ⊆ S′, ∀SS, π(S′′, SS) ≤ π(S′, SS) holds.

5. π is robust against false-name manipulations, that is,
∀k, ∀X ⊆ W , Y = W \ X ,

∑
i∈X π(ki, SS∼i) ≤

π(SX , SSY ) holds.

6. π is robust against collusions, that is, ∀k, ∀X ⊆ W , Y =
W \ X ,

∑
i∈X π(ki, SS∼i) ≥ π(SX , SSY ) holds.

In order to define the anonymity-proof core, we first for-
mally define the core for skills. For a set of skills S =
{s1, s2, . . .}, we define a set of core outcomes for skills
Core(S) as follows.

Definition 10 (core for skills) cS = (cS
s1

, cS
s2

, . . .) is in
Core(S) if it satisfies the following two conditions.

• ∀S′ ⊂ S,
∑

sj∈S′ cS
sj

≥ v(S′),

• ∑
sj∈S cS

sj
= v(S).

Now we are ready to define the anonymity-proof core.

Definition 11 (anonymity-proof core) We say the outcome
function πap is in the anonymity-proof core if πap satisfies
the following two conditions.

1. For any set of skills S ⊆ T , there exists a core outcome for
S, that is, some cS = (cS

s1
, cS

s2
, . . .) ∈ Core(S), such that

for any skill profile k = (k1, k2, . . . , ) with
⋃

i ki = S,
πap(ki, SS∼i) =

∑
sj∈ki

cS
sj

holds.

2. ∀S ′, S′′, where S′′ ⊆ S′, ∀SS, πap(S′′, SS) ≤
πap(S′, SS) holds.

The first condition says that for any set of skills reported
by the agents, some outcome in the core for that set of skills
should be used to distribute the value. The second condition
says that an agent has no incentive to hide its skills.

Example 6 Let the skills and the function v be iden-
tical to those in Example 3. Since c{a,b,c} =
(c{a,b,c}

a , c
{a,b,c}
b , c

{a,b,c}
c ) ∈ Core({a, b, c}) if c

{a,b,c}
a =

1, c
{a,b,c}
b = 0, c

{a,b,c}
c = 0, the following outcome function

is in the anonymity-proof core:

• πap({a}, {{b, . . .}, . . .}) = πap({a}, {{c, . . .}, . . .}) =
πap({a, b}, {. . .}) = πap({a, c}, {. . .}) =
πap({a, b, c}, {}) = 1,

• πap = 0 everywhere else.

First, we show that outcome functions in the anonymity-
proof core satisfy the axioms.

Theorem 4 Any outcome function πap in the anonymity-
proof core satisfies the six axioms.

Proof: Axiom 1 holds because πap only considers which
skills were reported and not by which agent they were re-
ported. Axiom 4 holds by the second condition of the
anonymity-proof core. Also, using the first condition of
the anonymity-proof core, for any set of skills S ⊆ T ,
there exists a core outcome for S, that is, some cS =
(cS

s1
, cS

s2
, . . .) ∈ Core(S), such that for any skill profile

k = (k1, k2, . . . , ) with
⋃

i ki = S, πap(ki, SS∼i) =∑
sj∈ki

cS
sj

holds. Therefore, ∀k with
⋃

i ki = S,

∀X ⊆ W ,
∑

i∈X πap(ki, SS∼i) =
∑

i∈X

∑
sj∈ki

cS
sj

=∑
sj∈SX

cS
sj

≥ v(SX). Thus, Axiom 2 holds.

Also,
∑

i∈W πap(ki, SS∼i) =
∑

i∈W

∑
sj∈ki

cS
sj

=∑
sj∈S cS

sj
= v(S). Thus, Axiom 3 holds. Also, ∀k with⋃

i ki = S, ∀X ⊆ W , Y = W \X ,
∑

i∈X πap(ki, SS∼i) =∑
i∈X

∑
sj∈ki

cS
sj

= πap(SX , SSY ) holds. Therefore, Ax-
iom 5 and Axiom 6 hold. �

Next, we prove that any outcome function that satisfies the
above six axioms is actually in the anonymity-proof core. To
prove this, we use the following lemma.

Lemma 1 If an outcome function π satisfies the six axioms,
then for any skill profile k = (k1, k2, . . . , ) where

⋃
i ki =

S, π(ki, SS∼i) = π(ki, {S \ ki}) holds.

Proof: Using Axiom 3, we obtain the following:

π(ki, SS∼i) +
∑

j �=i

π(kj , SS∼j) = v(S) =

π(ki, {S \ ki}) + π(S \ ki, {ki}).
Also, from Axiom 5 and Axiom 6,

∑
j �=i π(kj , SS∼j) =

π(S \ ki, {ki}) holds. Thus, π(ki, SS∼i) = π(ki, {S \ ki})
holds. �

Hence, the outcome of agent i is determined by k i and
S \ ki, that is, the skills of agent i and the union of skills
of other agents, i.e., how the skills in S \ ki are distributed
among other agents does not affect the payoff to agent i.

Theorem 5 Any outcome function π that satisfies the six ax-
ioms is in the anonymity-proof core.

Proof: If outcome function π satisfies the six axioms, then π
satisfies the second condition of the anonymity-proof core,
since Axiom 4 is identical to the second condition. All
that remains to show is that π also satisfies the first con-
dition of an anonymity-proof core. For a set of skills S =
{s1, s2, . . .}, let us denote SS = {{sj} | sj ∈ S}. From
Axiom 2 and Axiom 3, considering the case where each
agent has exactly one skill in S, the following two condi-
tions hold.

• ∀S′ ⊂ S,
∑

sj∈S′ π({sj}, SS \ {{sj}}) ≥ v(S′),

• ∑
sj∈S π({sj}, SS \ {{sj}}) = v(S).

These conditions are identical to the conditions in Defini-
tion 10. Therefore, if we let cS

sj
= π({sj}, SS \ {{sj}}),

this constitutes an element of Core(S). Moreover, using
Lemma 1, π({sj}, SS \ {{sj}}) = π({sj}, {S \ {sj}}) =
cS
sj

holds. Now, using Lemma 1, Axiom 5, and Ax-
iom 6, for any skill profile k = (k1, k2, . . . , ), where



⋃
i ki = S, and SS∼i = {k1, k2, . . . , ki−1, ki+1, . . .},

π(ki, SS∼i) = π(ki, {S \ ki}) =
∑

sj∈ki
π({sj}, {S \

{sj}}) =
∑

sj∈ki
cS
sj

holds. Thus, the first condition of
the anonymity-proof core is satisfied. �

It is clear that if for some S ⊆ T , Core(S) is empty, then
there exists no function πap in the anonymity-proof core.
The following theorem shows that the inverse is not true.
Theorem 6 Even if for all S ⊆ T , Core(S) is non-empty,
it may be the case that the anonymity-proof core is empty.
We use a counterexample that involves four skills to prove
this theorem. Also, it turns out that if there are only three
skills, no counterexamples exist. (We omit the proof due to
space constraint.)

As in the case of the traditional core, there are conditions
on the characteristic function v, such as convexity, under
which the anonymity-proof core can be guaranteed to be
non-empty. We omit this section due to limited space.

Least Anonymity-proof Core
We first define the ε-core for skills.
Definition 12 (ε-core for skills) For given ε, cS =
(cS

s1
, cS

s2
, . . .) is in ε-Core(S) if it satisfies the following

two conditions.
• ∀S′ ⊂ S,

∑
sj∈S′ cS

sj
≥ v(S′) − ε,

• ∑
sj∈S cS

sj
= v(S).

By replacing Core(S) to ε-Core(S) in Definition 11, we
obtain the definition of an ε-anonymity-proof core. An ε-
anonymity-proof core satisfies all axioms except Axiom 2.
Therefore, although a group of agents might have an incen-
tive to deviate from the mechanism, they don’t have an in-
centive to use other manipulations.

A least anonymity-proof core can be defined as follows.
Definition 13 (least anonymity-proof core) We say the
outcome function πap is in the least anonymity-proof core if
πap satisfies the following conditions.
• πap is in the ε-anonymity-proof core.
• ∀ε′ < ε, the ε′-anonymity-proof core is empty.

The following theorem holds.
Theorem 7 ∀T, v, there always exists an outcome function
that is in the least anonymity-proof core.
This theorem holds since if we set ε large enough, we can
choose an ε-core so that the second condition in Defini-
tion 11 can be satisfied. We omit the detail due to space
constraint.

Computational Manipulation Protection
Even when a value division scheme that is vulnerable against
manipulations is used, it may be computationally hard to
find a beneficial manipulation. This barrier of computational
hardness may prevent the manipulation from occurring.
Theorem 8 When the Shapley value over agents is used to
distribute the value, it is NP-complete to determine whether
an agent can benefit by submitting false names.

The proof is by reduction from satisfiability. We omit the
details due to limited space.

Conclusions
We demonstrated that traditional solution concepts of coali-
tional games—namely the Shapley value, core, least core,
and nucleolus—are vulnerable to various kinds of manip-
ulations in open anonymous environments such as the In-
ternet. Specifically, we showed that they can be vulnera-
ble to the submission of false-name identifiers and collu-
sion. We showed that the problems of false-name identi-
fiers and collusion can be prevented by applying the solution
concepts to the skills directly rather than to the agents, but
this is still vulnerable to the hiding of skills. We then intro-
duced a solution concept called the anonymity-proof core,
which is robust to these manipulations. We characterized
the anonymity-proof core by certain simple axioms. Also,
we introduced another concept called the least anonymity-
proof core, which is guaranteed to be non-empty. Finally,
we showed that computational hardness may provide an al-
ternative barrier to manipulation.
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