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Abstract

We define a generalized strategy eliminability criterion for bi-
matrix games that considers whether a given strategy is elim-
inable relative to given dominator & eliminee subsets of the
players’ strategies. We show that this definition spans a spec-
trum of eliminability criteria from strict dominance (when the
sets are as small as possible) to Nash equilibrium (when the
sets are as large as possible). We show that checking whether
a strategy is eliminable according to this criterion is coNP-
complete (both when all the sets are as large as possible and
when the dominator sets each have size1). We then give an
alternative definition of the eliminability criterion and show
that it is equivalent using the Minimax Theorem. We show
how this alternative definition can be translated into a mixed
integer program of polynomial size with a number of (binary)
integer variables equal to the sum of the sizes of the eliminee
sets, implying that checking whether a strategy is eliminable
according to the criterion can be done in polynomial time,
given that the eliminee sets are small. Finally, we study using
the criterion for iterated elimination of strategies.

Introduction
Solving general-sum games is a topic of growing interest
in AI. To solve such games, the concept of (iterated) domi-
nance is often too strong: it cannot eliminate enough strate-
gies. But, if possible, we would like a stronger argument for
eliminating a strategy than (mixed-strategy) Nash equilib-
rium. Hence, it is desirable to have eliminability criteria that
arebetweenthese two concepts in strength. In this paper, we
will introduce such a criterion. The criterion we introduce
considers whether a given strategy is eliminable relative to
given dominator & eliminee subsets of the players’ strate-
gies. The criterion spans an entirespectrumof strength be-
tween Nash equilibrium and strict dominance (in terms of
which strategies it can eliminate), and in the extremes can
be made to coincide with either of these two concepts, de-
pending on how the dominator & eliminee sets are set. It
can also be used for iterated elimination of strategies.

An important question to ask of any solution concept is
how efficiently a solution can becomputed. In particular,
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the question of how hard it is to compute a Nash equi-
librium is still open and has been called one of the two
most important concrete open questions on the boundary
of P today (Papadimitriou 2001). (In contrast,approximate
Nash equilibria can be found in quasi-polynomial time (Lip-
ton, Markakis, & Mehta 2003). Also, Nash equilibria can
be found in polynomial time for average-payoff repeated
games (Littman & Stone 2003).) The best-known algo-
rithm for finding a Nash equilibrium, theLemke-Howson
algorithm (Lemke & Howson 1964), has a worst-case ex-
ponential running time (Savani & von Stengel 2004), and
methods based on exhaustively searching through the space
of the mixed strategies’ supports fare comparatively well
for many classes of games (Porter, Nudelman, & Shoham
2004). It is known that finding Nash equilibriawith cer-
tain additional properties(for example, the social-welfare
maximizing Nash equilibrium) is NP-complete (Gilboa &
Zemel 1989; Conitzer & Sandholm 2003). The computa-
tional complexity of dominance and iterated dominance has
also been studied (Knuth, Papadimitriou, & Tsitsiklis 1988;
Gilboa, Kalai, & Zemel 1993; Conitzer & Sandholm 2005).
In this paper, we will study the computational complexity
of applying the new eliminability criterion, and provide a
mixed integer programming approach for it.

Throughout, we focus on two-player games only. The
eliminability criterion itself can be generalized to more play-
ers, but the computational tools we introduce do not straight-
forwardly generalize to more players. Moreover, we focus
only on normal-form games (rather than make use of struc-
tured representations of games (Kearns, Littman, & Singh
2001; Leyton-Brown & Tennenholtz 2003; Blum, Shelton,
& Koller 2003; Gottlob, Greco, & Scarcello 2003)).

One of the benefits of the new criterion is that when a
strategy cannot be eliminated by dominance (but it can be
eliminated by the Nash equilibrium concept), the new crite-
rion may provide a stronger argument than Nash equilibrium
for eliminating the strategy, by using dominator & eliminee
sets smaller than the entire strategy set. To get the strongest
possible argument for eliminating a strategy, the dominator
& eliminee sets should be chosen to be as small as possible
while still having the strategy be eliminable relative to these
sets.1 Iterated elimination of strategies using the new crite-

1There may be multiple minimal vectors of dominator & elim-



rion is also possible, and again, to get the strongest possible
argument for eliminating a strategy, the sequence of elim-
inations leading up to it should use dominator & eliminee
sets that are as small as possible.2

As another benefit, the algorithm that we provide for
checking whether a strategy is eliminable according to the
new criterion can also be used as a subroutine in the com-
putation of Nash equilibria. Specifically, any strategy that
is eliminable (even using iterated elimination) according to
the criterion is guaranteed not to occur in any Nash equi-
librium. Current state-of-the-art algorithms for comput-
ing Nash equilibria already use a subroutine that eliminates
(conditionally) dominated strategies (Porter, Nudelman, &
Shoham 2004). Because the new criterion can eliminate
more strategies than dominance, the algorithm we provide
may speed up the computation of Nash equilibria. (For pur-
poses of speed, it is probably desirable to only apply special
cases of the criterion that can be computed fast—in particu-
lar, as we will show, eliminability according to the criterion
can be computed fast when the eliminee sets are small. Even
these special cases are more powerful than dominance.)

A motivating example
Because the definition of the new eliminability criterion is
complex, we will first illustrate it with an example. Consider
the following (partially specified) game.

σ1
c σ2

c σ3
c σ4

c

σ1
r ?, ? ?, 2 ?, 0 ?, 0
σ2
r 2, ? 2, 2 2, 0 2, 0
σ3
r 0, ? 0, 2 3, 0 0, 3
σ4
r 0, ? 0, 2 0, 3 3, 0

A quick look at this game reveals that strategiesσ3
r andσ4

r
are bothalmostdominated byσ2

r—but they perform better
thanσ2

r againstσ3
c andσ4

c , respectively. Similarly, strate-
giesσ3

c andσ4
c are both almost dominated byσ2

c—but they
perform better thanσ2

c againstσ4
r andσ3

c , respectively. So
we are unable to eliminate any strategies using (even weak)
dominance.

Now consider the following reasoning. In order for it to
be worthwhile for the row player to ever playσ3

r rather than
σ2
r , the column player should playσ3

c at least23 of the time.
(If it is exactly 2

3 , then switching fromσ2
r to σ3

r will cost
the row player2 exactly 1

3 of the time, but the row player
will gain 1 exactly 2

3 of the time, so the expected benefit is
0.) But, similarly, in order for it to be worthwhile for the

inee sets relative to which the strategy is eliminable; in this paper,
we will not attempt to settle which of these minimal vectors, if any,
constitutes the most powerful argument for eliminating the strat-
egy.

2Here, there may also be a tradeoff with the length of the elim-
ination path. For example, there may be a path of several elimina-
tions using dominator & eliminee sets that are small, as well as a
single elimination using dominator & eliminee sets that are large,
both of which eliminate a given strategy. (In fact, we willalways
be confronted with this situation, as Corollary 3 will show.) Again,
in this paper, we will not attempt to settle which argument for elim-
inating the strategy is stronger.

column player to ever playσ3
c , the row player should play

σ4
r at least2

3 of the time. But again, in order for it to be
worthwhile for the row player to ever playσ4

r , the column
player should playσ4

c at least23 of the time. Thus, if both
the row and the column player accurately assess the prob-
abilities that the other places on these strategies, and their
strategies are rational with respect to these assessments (as
would be the case in a Nash equilibrium), then, if the row
player puts positive probability onσ3

r , by the previous rea-
soning, the column player should be playingσ3

c at least23
of the time, andσ4

c at least23 of the time. Of course, this
is impossible; so, in a sense, the row player should not play
σ3
r .
It may appear that all we have shown is thatσ3

r is not
played in any Nash equilibrium. But, to some extent, our
argument for not playingσ3

r did not make use of the full
elimination power of the Nash equilibrium concept. Most
notably, we only reasoned about a small part of the game:
we never mentioned strategiesσ1

r andσ1
c , and we did not

even specify most of the utilities for these strategies. (It is
easy to extend this example so that the argument only uses
an arbitrarily small fraction of the strategies and of the utili-
ties in the matrix, for instance by adding many copies ofσ1

r
andσ1

c .) The locality of the reasoning that we did is more
akin to the notion of dominance, which is perhaps the ex-
treme case of local reasoning about eliminability—only two
strategies are mentioned in it. So, in this sense, the argu-
ment for eliminatingσ3

r is somewhere between dominance
and Nash equilibrium in strength.

Definition of the eliminability criterion
We are now ready to give the formal definition of the gen-
eralized eliminability criterion. To make the definition a
bit simpler, we define its negation—when a strategy isnot
eliminable relative to certain sets of strategies. Also, we
only define when one of therow player’sstrategies is elim-
inable, but of course the definition is analogous for the col-
umn player.

The definition, which considers when a strategye∗r is
eliminable relative to subsetsDr, Er of the row player’s
pure strategies (withe∗r ∈ Er) and subsetsDc, Ec of the
column player’s pure strategies, can be stated informally as
follows. To protecte∗r from elimination, we should be able
to specify the probabilities that the players’ mixed strate-
gies place on theEi sets in such a way that 1)e∗r receives
nonzero probability, and 2) for every pure strategyei that
receives nonzero probability, for every mixed strategydi us-
ing only strategies inDi, it is conceivable that player−i’s
mixed strategy3 is completed so thatei is no worse thandi.4

The formal definition follows.

Definition 1 Given a two-player game in normal form, sub-
setsDr, Er of the row player’s pure strategiesΣr, subsets

3As is common in the game theory literature,−i denotes “the
player other thani.”

4This description may sound similar to the concept ofratio-
nalizability. However, in two-player games (the subject of this
paper), rationalizability is known to coincide with iterated strict
dominance (Pearce 1984).



Dc, Ec of the column player’s pure strategiesΣc, and a dis-
tinguished strategye∗r ∈ Er, we say thate∗r is not eliminable
relative toDr, Er, Dc, Ec, if there exist functions (partial
mixed strategies)pr : Er → [0, 1] andpc : Ec → [0, 1] with
pr(e∗r) > 0,

∑
er∈Er

pr(er) ≤ 1, and
∑

ec∈Ec
pc(ec) ≤ 1, such

that the following holds. For bothi ∈ {r, c}, for anyei ∈ Ei
with pi(ei) > 0, for any mixed strategydi placing positive
probability only on strategies inDi, there is some pure strat-
egyσ−i ∈ Σ−i−E−i such that (lettingp−i �σ−i denote the
mixed strategy that results from placing the remaining prob-
ability 1 −

∑
e−i∈E−i

p−i(e−i) that is not used by the partial

mixed strategyp−i on σ−i), we have:ui(ei, p−i � σ−i) ≥
ui(di, p−i �σ−i). (If p−i already uses up all the probability,
we simply haveui(ei, p−i) ≥ ui(di, p−i)—noσ−i needs to
be chosen.)5

In the example from the previous subsection, we can set
Dr = {σ2

r}, Dc = {σ2
c}, Er = {σ3

r , σ
4
r}, Ec = {σ3

c , σ
4
c},

ande∗r = σ3
r . Then, by the reasoning that we did, it is im-

possible to setpr andpc so that the conditions are satisfied,
and henceσ3

r is eliminable relative to these sets.

The spectrum of strength
In this section we show that the generalized eliminability cri-
terion we defined in in the previous section spans a spectrum
of strength all the way from Nash equilibrium (when the
setsDr, Er, Dc, Ec are chosen as large as possible), to strict
dominance (when the sets are chosen as small as possible).
First, we show that the criterion is monotonically increasing,
in the sense that the larger we make the setsDr, Er, Dc, Ec,
the more strategies are eliminable. (We omit many of the
proofs of this paper due to space constraint.)

Theorem 1 If e∗r is eliminable relative toD1
r , E

1
r , D

1
c , E

1
c ,

andD1
r ⊆ D2

r , E
1
r ⊆ E2

r , D
1
c ⊆ D2

c , E
1
c ⊆ E2

c , thene∗r is
eliminable relative toD2

r , E
2
r , D

2
c , E

2
c .

Next, we show that the Nash equilibrium concept is
weaker6 than our generalized eliminability criterion—in the
sense that the generalized criterion can never eliminate a
strategy that is in some Nash equilibrium. So, if a strat-
egy can be eliminated by the generalized criterion, it can be
eliminated by the Nash equilibrium concept.

Theorem 2 If there is some Nash equilibrium that places
positive probability on pure strategyσ∗r , thenσ∗r is not elim-
inable relative to anyDr, Er, Dc, Ec.

We next show that by choosing the setsDr, Er, Dc, Ec as
large as possible, we can make the generalized eliminability

5We need to make this case explicit for the caseE−i = Σ−i.
6When discussing elimination of strategies, it is tempting to

say that the stronger criterion is the one that can eliminate more
strategies. However, when discussing solution concepts, the con-
vention is that the stronger concept is the one that implies the other.
Therefore, the criterion that can eliminate fewer strategies is actu-
ally the stronger one. For example, strict dominance is stronger
than weak dominance, even though weak dominance can eliminate
more strategies.

criterion coincide with the Nash equilibrium concept.7

Theorem 3 LetDr = Er = Σr andDc = Ec = Σc. Then
e∗r is eliminable relative to these sets if and only if there is
no Nash equilibrium that places positive probability one∗r .

Moving to the other side of the spectrum, we now show
that the concept of strict dominance is stronger than the gen-
eralized eliminability criterion—in the sense that the gener-
alized eliminability criterion can always eliminate a strictly
dominated strategy (as long as the dominating strategy is in
Dr).

Theorem 4 If pure strategyσ∗r is strictly dominated by
some mixed strategydr, thenσ∗r is eliminable relative to
anyDr, Er, Dc, Ec such that 1)σ∗r ∈ Er, and 2) all the
pure strategies on whichdr places positive probability are
in Dr.

Finally, we show that by choosing the setsEr, Ec as small
as possible, we can make the generalized eliminability crite-
rion coincide with the strict dominance concept.

Theorem 5 LetEc = {} andEr = {er}. Thener is elim-
inable relative toDr, Er, Dc, Ec if and only if it is strictly
dominated by some mixed strategy that places positive prob-
ability only on elements ofDr.

We are now ready to turn to computational aspects of the
new eliminability criterion.

Applying the new eliminability criterion
can be computationally hard

In this section, we demonstrate that applying the eliminabil-
ity criterion can be computationally hard, in the sense of
worst-case complexity.8 We show that applying the elim-
inability criterion is coNP-complete in two key special cases
(subclasses of the problem). The first case is the one in
which theDr, Er, Dc, Ec sets are set to be as large as pos-
sible. Here, the hardness follows directly from Theorem 3
and a known hardness result on computing Nash equilib-
ria (Gilboa & Zemel 1989; Conitzer & Sandholm 2003).

Theorem 6 Deciding whether a given strategy is eliminable
relative toDr = Er = Σr andDc = Ec = Σc is coNP-
complete, even when the game is symmetric.

While this shows that the eliminability criterion is, in gen-
eral, computationally hard to apply, we may wonder if there
are special cases in which it is computationally easy to ap-
ply. Natural special cases to look at include those in which
some of the setsDr, Er, Dc, Ec are small. The next theo-
rem shows that applying the eliminability criterion remains
coNP-complete even when|Dr| = |Dc| = 1.

Theorem 7 Deciding whether a given strategy is eliminable
relative to givenDr, Er, Dc, Ec is coNP-complete, even
when|Dr| = |Dc| = 1.

7Unlike Nash equilibrium, the generalized eliminability crite-
rion does not discuss what probabilities should be placed on strate-
gies that are not eliminated, so it only “coincides” with Nash equi-
librium in terms of what it can eliminate.

8Because we only show hardness in the worst case, it is possible
that many (or even most) instances are in fact easy to solve.



However, we will show later that the eliminability crite-
rion can be applied in polynomial time if theEi sets are
small (regardless of the size of theDi sets). To do so, we
first need to introduce an alternative version of the defini-
tion.

An alternative, equivalent definition
of the eliminability criterion

In this section, we will give an alternative definition of elim-
inability, and we will show it is equivalent to the one pre-
sented in Definition 1. While the alternative definition is
slightly less intuitve than the original one, it is easier to work
with computationally, as we will show in the next section.
Informally, the alternative definition differs from the origi-
nal one as follows: in the alternative definition, the comple-
tion of player−i’s mixed strategy has to be chosenbefore
playeri’s strategydi is chosen (but after playeri’s strategy
ei with pi(ei) > 0 is chosen). The formal definition follows.

Definition 2 Given a two-player game in normal form, sub-
setsDr, Er of the row player’s pure strategiesΣr, subsets
Dc, Ec of the column player’s pure strategiesΣc, and a dis-
tinguished strategye∗r ∈ Er, we say thate∗r is not eliminable
relative toDr, Er, Dc, Ec, if there exist functions (partial
mixed strategies)pr : Er → [0, 1] and pc : Ec → [0, 1]
with pr(e∗r) > 0,

∑
er∈Er

pr(er) ≤ 1, and
∑

ec∈Ec
pc(ec) ≤ 1,

such that the following holds. For bothi ∈ {r, c}, for any
ei ∈ Ei with pi(ei) > 0, there exists some completion of
the probability distribution over−i’s strategies, given by
pei−i : Σ−i → [0, 1] (with pei−i(e−i) = p−i(e−i) for all
e−i ∈ E−i, and

∑
σ−i∈Σ−i

pei−i(σ−i) = 1), such that for any

pure strategydi ∈ Di, we haveui(ei, pei−i) ≥ ui(di, pei−i).
We now show that the two definitions are equivalent.

Theorem 8 The notions of eliminability put forward in Def-
initions 1 and 2 are equivalent. That is,e∗r is eliminable rel-
ative toDr, Er, Dc, Ec according to Definition 1 if and only
if e∗r is eliminable relative to (the same)Dr, Er, Dc, Ec ac-
cording to Definition 2.

Proof: The definitions are identical up to the condition that
each strategy with positive probability (eacher ∈ Er with
pr(er) > 0 and eachec ∈ Ec with pc(ec) > 0) must
satisfy. We will show that these conditions are equivalent
across the two definitions, thereby showing that the defini-
tions are equivalent.

To show that the conditions are equivalent, we introduce
another, zero-sum game that is a function of the original
game, the setsDr, Er, Dc, Ec, the chosen partial probabil-
ity distributionspr andpc, and the strategyei for which we
are checking whether the conditions are satisfied. (Without
loss of generality, assume that we are checking it for some
strategyer ∈ Er with pr(er) > 0.)

The zero-sum game has two players,1 and2 (not to be
confused with the row and column players of the original
game). Player1 chooses somedr ∈ Dr, and player2
chooses someσc ∈ Σc − Ec. The utility to player1 is
ur(dr, pc �σc)−ur(er, pc �σc) (and the utility to player2 is

the negative of this). (We assume without loss of generality
thatpc does not already use up all the probability, because
in this case the conditions are trivially equivalent across the
two definitions.)

First, suppose that player1 must declare her probabil-
ity distribution (mixed strategy) overDr first, after which
player2 best-responds. Then, letting∆(X) denote the set
of probability distributions over setX, player1 will receive
maxδr∈∆(Dr) minσc∈Σc−Ec

∑
dr∈Dr

δr(dr)(ur(dr, pc �σc)−

ur(er, pc � σc)) = maxδr∈∆(Dr) minσc∈Σc−Ec ur(δr, pc �
σc) − ur(er, pc � σc). This expression is at most0 if and
only if the condition in Definition 1 is satisfied.

Second, suppose that player2 must declare his probabil-
ity distribution (mixed strategy) overΣc − Ec first, after
which player1 best-responds. Then, player1 will receive
minδc∈∆(Σc−Ec) maxdr∈Dr

∑
σc∈Σc−Ec

δc(σc)(ur(dr, pc �

σc)− ur(er, pc � σc)) = minδc∈∆(Σc−Ec) maxdr∈Dr∑
ec∈Ec

pc(ec)(ur(dr, ec)− ur(er, ec))+∑
σc∈Σc−Ec

(1 −
∑

ec∈Ec
pc(ec))δc(σc)(ur(dr, σc) −

ur(er, σc)) = minδc∈∆(Σc−Ec) maxdr∈Dr ur(dr, pc �
δc) − ur(er, pc � δc). This expression is at most0 if and
only if the condition in Definition 2 is satisfied.

However, by the Minimax Theorem (von Neumann
1927), the two expressions must have the same value, and
hence the two conditions are equivalent.

Informally, the reason that Definition 2 is easier to work
with computationally is that all of the continuous variables
(the values of the functionspr, pc, perc , p

ec
r ) are set by the

party that is trying to prove that the strategy is not elim-
inable; whereas in Definition 1, some of the continuous vari-
ables (the probabilities defining the mixed strategiesdr, dc)
are set by the party trying to refute the proof that the strategy
is not eliminable. This will become more precise in the next
section.

A mixed integer programming approach
In this section, we show how to translate Definition 2
into a mixed integer program that determines whether
a given strategye∗r is eliminable relative to given sets
Dr, Er, Dc, Ec. The variables in the program, which are all
restricted to be nonnegative, are thepi(ei) for all ei ∈ Ei;
thepe−ii (σi) for all e−i ∈ E−i and allσi ∈ Σi − Ei; and
binary indicator variablesbi(ei) for all ei ∈ Ei which can
be set to zero if and only ifpi(ei) = 0. The program is the
following:

maximizepr(e∗r) subject to

(probability constraints):for bothi ∈ {r, c}, for all ei ∈ Ei,∑
e−i∈E−i

p−i(e−i) +
∑

σ−i∈Σ−i−E−i
pei−i(σ−i) = 1

(binary constraints):for both i ∈ {r, c}, for all ei ∈ Ei,
pi(ei) ≤ bi(ei)



(main constraints):for both i ∈ {r, c}, for all ei ∈ Ei and
all di ∈ Di,

∑
e−i∈E−i

p−i(e−i)(ui(ei, e−i) − ui(di, e−i)) +∑
σ−i∈Σ−i−E−i

pei−i(σ−i)(ui(ei, σ−i) − ui(di, σ−i)) ≥

(bi(ei)− 1)Ui

In this program, the constantUi is the maxi-
mum difference between two different utilities that
player i may receive in the game, that is,Ui =
maxσr,σ′r∈Σr,σc,σ′c∈Σc ui(σr, σc)− ui(σ′r, σ′c).
Theorem 9 The mixed integer program has a solution with
objective value greater than zero if and only ife∗r is not elim-
inable relative toDr, Er, Dc, Ec.

We obtain the following corollaries:

Corollary 1 Checking whether a given strategy can be
eliminated relative to givenDr, Er, Dc, Ec is in coNP.

Corollary 2 Using the mixed integer program above, the
time required to check whether a given strategy can be elim-
inated relative to givenDr, Er, Dc, Ec is exponential only
in |Er|+ |Ec| (and not in|Dr|, |Dc|, |Σr|, or |Σc|).

Iterated elimination
In this section, we study what happens when we eliminate
strategiesiteratively using the new criterion. The criterion
can be iteratively applied by removing an eliminated strat-
egy from the game, and subsequently checking for new elim-
inabilities in the game with the strategy removed,etc. (as in
the more elementary, conventional notion of iterated dom-
inance). First, we show that this procedure is, in a sense,
sound.

Theorem 10 Iterated elimination according to the general-
ized criterion will never remove a strategy that is played with
positive probability in some Nash equilibrium of the original
game.

Because (the single-round version of) the eliminability
criterion extends all the way to Nash equilibrium by The-
orem 3, we get the following corollary.

Corollary 3 Any strategy that can be eliminated using it-
erated elimination can also be eliminated in a single round
(that is, without iterated application of the criterion).

Interestingly, iterated elimination is in a sense incomplete:

Proposition 1 Removing an eliminated strategy from a
game sometimes decreases the set of strategies that can be
eliminated.

Proof: Consider the following game:

L M R

U 2, 2 0, 1 0, 5
D 1, 0 1, 1 1, 0

The unique Nash equilibrium of this game is(D,M), for
the following reasons. In order for it to be worthwhile for the
row player to playU with positive probability, the column
player should playL with probability at least1/2. But, in

order for it to be worthwhile for the column player to play
L with positive probability (rather thanM ), the row player
should playU with probability at least1/2. However, if the
row player playsU with probability at least1/2, then the
column player’s unique best response is to playR. Hence,
the row player must playD in any Nash equilibrium, and the
unique best response toD isM .

Thus, by Theorem 3, all strategies besidesD andM can
be eliminated. In particular,R can be eliminated. However,
if we removeR from the game, the remaining game is:

L M

U 2, 2 0, 1
D 1, 0 1, 1

In this game,(U,L) is also a Nash equilibrium, and hence
U andL can no longer be eliminated, by Theorem 2.

This example highlights an interesting issue with respect
to using this eliminability criterion as a preprocessing step
in the computation of Nash equilibria: it does not suffice to
simply throw out eliminated strategies and compute a Nash
equilibrium for the remaining game. Rather, we need to use
the criterion more carefully: if we know that a strategy is
eliminable according to the criterion we can restrict our at-
tention to supports for the player that do not include this
strategy.

The example also directly implies that iterated elimination
according to the generalized criterion is path-dependent (the
choice of which strategy to remove first affects which strate-
gies can/will be removed later). The same phenomenon
occurs with iterated weak dominance (one strategy weakly
dominates another if the former always does at least as well
as the latter, and in at least one case, strictly better). There is
a sizeable literature on path (in)dependence for various no-
tions of dominance (Gilboa, Kalai, & Zemel 1990; Borgers
1993; Osborne & Rubinstein 1994; Marx & Swinkels 1997;
2000; Apt 2004).

In light of these results, it may appear that there is not
much reason to do iterated elimination using the new cri-
terion, because it never increases and sometimes even de-
creases the set of strategies that we can eliminate. How-
ever, we need to keep in mind that Theorem 10, Corollary 3,
and Proposition 1 do not pose any restrictions on the sets
Dr, Er, Dc, Ec, and therefore (by Theorems 2 and 3) are ef-
fectively results about iteratively removing strategies based
on whether they are played in a Nash equilibrium. However,
the new criterion is more informative and useful when there
are restrictions on the setsDr, Er, Dc, Ec. Of particular in-
terest is the restriction|Er| + |Ec| ≤ k, because by Corol-
lary 2 this quantity determines the (worst-case) runtime of
the mixed integer programming approach that we presented
in the previous section. Under this restriction, it turns out
that iterated elimination can eliminate strategies that single-
round elimination cannot.

Proposition 2 Under a restriction of the form|Er|+|Ec| ≤
k, iterated elimination can eliminate strategies that single-
round elimination cannot (even whenk = 1).



Of course, even under this (or any other) restriction iter-
ated elimination remains sound in the sense of Theorem 10.
Therefore, one sensible approach to eliminating strategies
is the following. Iteratively apply the eliminability crite-
rion (with whatever restrictions are desired to increase the
strength of the argument, or are necessary to make it compu-
tationally manageable, such as|Er| + |Ec| ≤ k), removing
each eliminated strategy, until the process gets stuck. Then,
start again with the original game, and take a different path
of iterated elimination (which may eliminate strategies that
could no longer be eliminated after the first path of elimi-
nation, as described in Proposition 1), until the process gets
stuck—etc. In the end, any strategy that was eliminated in
any one of the elimination paths can be considered “elimi-
nated”, and this is safe by Theorem 10.9

Interestingly, here the analogy with iterated weak dom-
inance breaks down. Because there is no soundness theo-
rem such as Theorem 10 for iterated weak dominance, con-
sidering all the strategies that are eliminated in some iter-
ated weak dominance elimination path to be simultaneously
“eliminated” can lead to senseless results. Consider for ex-
ample the following game:

L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

U can be eliminated by removingR first, andD can
be eliminated by removingM first—but these are the row
player’s only strategies, so considering both of them to be
eliminated makes little sense.

Conclusions
We defined a generalized eliminability criterion for bimatrix
games that considers whether a given strategy is eliminable
relative to given dominator & eliminee subsets of the play-
ers’ strategies. We showed that this definition spans a spec-
trum of eliminability criteria from strict dominance (when
the sets are as small as possible) to Nash equilibrium (when
the sets are as large as possible). Thus, eliminating a strat-
egy relative to dominator & eliminee sets of intermediate
size can provide a stronger argument for eliminating a strat-
egy than Nash equilibrium, even when the strategy cannot be
eliminated by (iterated) dominance. We showed that check-
ing whether a strategy is eliminable according to this crite-
rion is coNP-complete (both when all the sets are as large
as possible and when the dominator sets each have size1).
We then gave an alternative definition of the eliminability
criterion and showed that it is equivalent using the Mini-
max Theorem. We showed how this alternative definition
can be translated into a mixed integer program of polyno-
mial size with a number of (binary) integer variables equal
to the sum of the sizes of the eliminee sets, implying that
checking whether a strategy is eliminable according to the
criterion can be done in polynomial time if the eliminee sets
are small. Finally, we studied using the criterion for iterated
elimination of strategies.

9This procedure is reminiscent of iterative sampling.

There are numerous avenues for future research. One is
to use the new eliminability criterion and the computational
tools we provided for it to speed up search-based techniques
for computing Nash equilibria. Another avenue is to charac-
terize the eliminability criterion at intermediate points of the
spectrum. Yet another possibility is to try to find other spe-
cial cases that can be computed in polynomial time. Finally,
we can experimentally analyze the runtime of the mixed
integer programming approach on random games (such as
those generated by GAMUT (Nudelmanet al. 2004)).
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