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Abstract

Using a model of agent behavior based around envy-reducing
strategies, we describe an iterated combinatorial auction in
which the allocation and prices converge to a solution in the
core of the agents’ true valuations. In each round of the iter-
ative auction mechanism, agents act on envy quotes produced
by the mechanism: hints that suggest the prices of the bundles
they are interested in. We describe optimal methods of gen-
erating envy quotes for various core-selecting mechanisms.
Prior work on core-selecting combinatorial auctions has re-
quired agents to have perfect information about every agent’s
valuations to achieve a solution in the core. In contrast, here
a core solution is reached even in the private information set-
ting.

Introduction
The Vickrey-Clarke-Groves mechanism (VCG) is ubiquitous
in theoretical mechanism design. In the standard private-
values setting, it is the revenue-maximizing mechanism
among all incentive compatible individually rational effi-
cient mechanisms [Krishna and Perry, 1997]. Unfortunately,
in addition to being unwieldy to implement in practice, VCG
suffers from a number of pathologies [Rothkopf et al., 1990,
Sandholm, 2000, Ausubel and Milgrom, 2006, Rothkopf,
2007]. These include revenue non-monotonicity, in which
adding another bidder can lower the seller’s revenue, and
receiving an arbitrarily small fraction of the revenue achiev-
able by posting prices.

To obtain higher revenues than VCG, one can ex-
plore inefficient mechanisms, which leads to combinato-
rial generalizations of the revenue-maximizing single-item
auction [Myerson, 1981]. Revenue-maximizing mech-
anisms are unknown even for the (unrestricted) two-
item setting, and in general a concise description of
the revenue-maximizing combinatorial auction cannot ex-
ist (unless P=NP) because that design problem is NP-
complete [Conitzer and Sandholm, 2004]. Some work has
been done on automated mechanism design for finding high-
revenue combinatorial auctions, but those approaches have
not been used for large numbers of items [Likhodedov and
Sandholm, 2004, 2005]. Even simple revenue-enhancement
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approaches like setting reserve prices require good knowl-
edge of a prior distribution over agent valuations, which may
or may not be available depending on the setting.

A different approach is to relax incentive compatibility.
One recent stream of research in non-incentive compati-
ble mechanisms has involved core-selecting combinatorial
auctions. Mechanisms of this class were used in the re-
cent successful spectrum license auction in the United King-
dom [Cramton, 2008a,b, Day and Cramton, 2008]. These
mechanisms mitigate the poor revenue properties of the
VCG mechanism without necessarily subscribing to a first-
price mechanism, which motivates significant underbidding.
Selecting an outcome in the core yields a host of desir-
able properties that VCG lacks [Parkes, 2002], such as rev-
enue monotonicity and resistance to bidding using multiple
pseudonyms [Yokoo, 2006].

The word iterative has taken on a confusing double mean-
ing in combinatorial auction research. On the one hand,
the auction process itself can be iterative, in which bids
are solicited in a series of rounds until a termination con-
dition is reached (for instance, no agent submits a new bid).
This is the concept we explore in this paper. On the other
hand, given a set of bids, a solution may be produced it-
eratively, for example, by raising the price of bundles in
ascending rounds in a specific way until reaching a point
in the core. Examples of this latter process include Parkes
[1999], Ausubel and Milgrom [2002], Wurman et al. [2004],
and Hoffman et al. [2006]. Unfortunately, these techniques
tend to be too slow to be used in an explicitly multi-round
auction, so these mechanisms work by inputting valuations
into proxy agents that bid on behalf of the auction partici-
pants. Thus, price increases are a function of iterating on
the bids of these proxy agents rather than multiple iterative
rounds of buyers changing their valuations. As a conse-
quence these auctions are essentially one-shot. Thus they
do not achieve the main benefit of auctions that elicit the
bidders’ offers via multiple interactions: multi-interaction
mechanisms in effect give feedback to each bidder regarding
what information is (not) needed from her, thus reducing the
bidders’ deliberation effort in determining their own valua-
tions. For a review of preference elicitation in combinatorial
auctions see Sandholm and Boutilier [2006].

One attempt to get around the inability to solve for a
core solution quickly is the clock-proxy auction [Ausubel
et al., 2006]. It maintains (fast-to-compute) linear prices
over items through a number of bidding rounds before solv-



ing a single final core-selecting round.
It would be ideal, however, to conduct a series of fully

core-selecting rounds. Recent computational work by Day
and Raghavan [2007] has shown that constraint generation
can be used to clear large-scale core-selecting combinatorial
auctions orders of magnitude faster than previously possible.
We argue that this makes multi-interaction core-selecting
combinatorial auctions practical. In this paper we introduce
and study such a mechanism.

Prior work by Milgrom [2006] and Day and Milgrom
[2008] has studied some of the revenue and strategic proper-
ties of core-selecting combinatorial auctions. That literature
has examined the case where bidders have perfect informa-
tion about their own valuations and the valuations of others.
They analyze a mechanism under which a bidder-optimal
(i.e., revenue-pessimal) point in the core is selected. They
emphasize that, with perfect information, this will be the
outcome if side-payments between players are allowed in
any core-selecting mechanism. They show that agents will
adopt a set of strategies that involve truncation, that is, each
agent shaves all her bids by a certain individual value.

Unfortunately, the perfect information assumption is sel-
dom realistic in practice. One of the primary reasons for
running an auction in the first place—as opposed to, for ex-
ample, simply posting prices—is that there usually is con-
siderable uncertainty about agents’ valuations. It is a poor
modeling choice to assume the auctioneer has no prior infor-
mation about the agents’ valuations while at the same time
assuming that every agent exactly knows the private valua-
tion of every other agent. A contribution of our paper is to
provide a mechanism with all the benefits of a core-selecting
combinatorial auction in the more plausible setting where
bidders’ valuations are private information.

Core-selecting combinatorial auctions are not (generally)
incentive compatible. This is easy to see because they are ef-
ficient and individually rational, yet promise higher revenue
than the VCG (but the VCG is the highest-revenue efficient
individually rational incentive compatible mechanism [Kr-
ishna and Perry, 1997]).1 (In parallel to our work, Goeree
and Lien [2009] have shown non-incentive compatibility of
core-selecting combinatorial auctions using a different argu-
ment.) So, in lieu of traditional incentive compatibility, a
different model of bidder behavior is needed.

In this paper we study core-selecting combinatorial auc-
tions where bidders use envy-reducing strategies. We begin
by formally establishing the properties of envy-freeness and
envy-reduction, and show that a straightforward approach to
applying these techniques to an iterated core-selecting com-
binatorial auction fails to produce an outcome in the core.
We then introduce the driving concept behind this paper,
envy quotes, which serve as estimates of the current prices
of bundles the agent is losing. Employing these envy quotes
in an iterated setting, we prove that when agents act to re-
duce their envy of their envy quotes, the solution converges

1In special cases of agent valuations that cause the VCG out-
come to be in the core, and where a bidder-optimal core-selecting
mechanism is used, the mechanism is, of course, incentive compat-
ible.

to the core of the agents’ true valuations. Then, we discuss
what happens when agents do not behave according to our
prescribed model, showing that our mechanism has desir-
able safeguards against low-revenue outcomes. Finally, we
discuss how to generate these envy quotes in practice, show-
ing a general method that works with any core-selecting
combinatorial auction, a computationally inefficient optimal
(in a sense defined later) technique for any core-selecting
combinatorial auction, an optimal technique for any bidder-
optimal core-selecting combinatorial auction, and an opti-
mal technique for the bidder-pessimal core-selecting combi-
natorial auction (which is equivalent to a first-price mecha-
nism).

Theory of envy-freeness
There exists a set of n agents and k items, and therefore
2k − 1 bundles. As is normal, we assume that agents have
quasilinear utility, so that an agent’s utility for receiving al-
location a and paying π is u(a)− π.

Definition 1. A (feasible) outcome is a set of allocations
a1, . . . , an and payments π1, . . . , πn, where ai ∩ aj = ∅ for
i 6= j.

Definition 2. A blocking coalition is a group of agents
G who can propose an alternate outcome (with alloca-
tions a′1, . . . , a

′
n and payments π′1, . . . , π

′
n) in which only

members of G win a bundle, such that for all i ∈ G,
ui(a′i)− π′i ≥ ui(ai)− πi where the inequality is strict for
at least one i, and

∑
i π
′
i >

∑
i πi.

Definition 3. An outcome is in the core if it induces no
blocking coalitions.

Definition 4. An outcome is efficient if no other feasible
outcome has a higher social welfare (sum of utilities) for the
participants.

It follows that every outcome in the core is efficient, be-
cause any inefficiencies would yield a blocking coalition
(c.f. Shapley and Shubik [1971], Day and Raghavan [2007]).

Definition 5. Agent i (with allocation ai and payment
πi) envies agent j (with allocation aj and payment πj) if
ui(ai)−πi < ui(aj)−πj , where (ui(aj)−πj)− (ui(ai)−
πi) is the amount of envy (or just envy).

Definition 6. An agent plays a (myopic) envy-reducing
strategy if, given a set of reports of the other agents, she
modifies her type report to reduce her envy of some agent
without lowering her utility. A group of agents play a (my-
opic) group envy-reducing strategy when no agent in the
group lowers their utility and at least one agent changes her
bid to reduce her envy of another agent.

Definition 7. An outcome is envy-free if no subset of agents
prefers the allocation-payment pair of any other subset of
agents to its own allocation-payment pair. If both subsets
are restricted to consist of only individual agents, then we
call that set individually envy-free.

The set of individually envy-free points is at least as large
as the set of envy-free points because the concept is less re-
strictive.



Definition 8. An envy-free fixed point is a fixed point of a
system where groups of agents follow envy-reducing strate-
gies.
Corollary 1. Every envy-free fixed point is in the core (with
respect to true valuations).
Corollary 2. Every envy-free fixed point is efficient (with
respect to true valuations).
Lemma 1 (Leonard [1983]). The revenue from VCG does
not exceed that of the bidder-optimal (i.e., revenue-pessimal)
outcome in the core.
Corollary 3. Every envy-free fixed point delivers at least as
much revenue as the VCG mechanism.

The path forward seems straightforward: Simply have
agents iterate in an envy-reducing manner towards an envy-
free solution in the core. This would yield desirable revenue
properties while only requiring agents to have private infor-
mation. However, as we show in the next section, the com-
binatorial nature of the problem complicates a simple model
of individual envy-reduction.

Individual envy-reduction is insufficient
The following example shows how individual envy reduc-
tion can be insufficient for reaching a fixed point in the core.
Example 1. Consider a two-item three-bidder problem,
where bids (bi) and true valuations (vi) are given by the fol-
lowing table:

Bundle Bid Valuation
A b1 = 5, b2 = 0, b3 = 0 v1 = 9, v2 = 0, v3 = 0
B b1 = 0, b2 = 5, b3 = 0 v1 = 0, v2 = 9, v3 = 0
AB b1 = 5, b2 = 5, b3 = 15 v1 = 9, v2 = 9, v3 = 15

Every core solution awards itemA to bidder one and itemB
to bidder two at a total price of between 15 and 18. But with
these valuations and bids, every core-selecting combinato-
rial auction awards both items to the third agent at a price in
[10,15]—a solution that is not in the true core. However, no
agent individually envies the allocation of any other: neither
losing bidder would prefer to pay 10 for AB.

Iterative combinatorial auctions
with envy quotes

The problems illustrated by the above example arise because
we are not properly expressing to an agent how her bid im-
pacts the combinatorial nature of the allocation. As we have
discussed, envy-free dynamics in the combinatorial setting
only work when groups of agents work together. But this
is undesirable, because it encourages collusion among bid-
ders (which could lead to bad outcomes) or could be illegal,
which is the case in many public goods auctions [Day and
Raghavan, 2007]. In this section, we explore how to present
envy quotes to agents regarding the clearing prices of bids
they have lost, such that the envy quotes meaningfully re-
flect what actual prices are. In effect, we are changing the
target of agents’ envy from distinct bidders to the winners’
prices on bundles in which the agent is interested. Further-
more, we show that the fixed point of individuals reducing
their envy on these quotes is in the core with respect to true
valuations.

Our iterative scheme
We propose the following process:

1. Solicit bids from agents.

2. Compute current winners and payments according to
some core-selecting combinatorial auction.

3. For each of her losing bids, an agent receives an
envy quote, p(S), in the form of “The bundle S is cur-
rently going for price p(S)”.

4. Repeat steps 1 through 3 until no new bids are received.

When we provide an envy quote to an agent on the price
of a bundle, we have competing objectives. On the one hand,
the envy quote has to be low enough so that it does not cut
into the core (which could lead to agents not envying out-
comes they should legitimately envy). On the other hand,
an envy quote should not be lower than the agent’s bid on
a bundle, in order to reflect the core-selecting nature of the
mechanism. This leads us to the following definitions:

Definition 9. An agent’s core support c(S) for a bundle S
she is losing is the highest bid she could submit and not
change the current allocation or prices.

It follows that the core support c(S) is always less than
the agent’s quote on S, that is, the amount she would need
to win the bundle.

Definition 10. Let an agent bid b(S) for bundle S and
not win that bundle. The envy quote p(S) satisfies
b(S) ≤ p(S) ≤ c(S).

Now we can define what envy means in the envy quote
context.

Definition 11. Let an agent currently be winning bundle w
at price πw. She envies the envy quote p(S) on a bundle she
is losing, S, if u(S)− p(S) > u(w)− πw.

Proposition 1. If the current solution in the iterated core-
selecting combinatorial auction is not in the core (with re-
spect to true valuations), then some agent has a bid that re-
duces her envy of the envy quote she receives on at least one
bundle.

Proof. Assume we are in a non-core state such that alloca-
tions are given by a1, . . . , an and prices by π1, . . . , πn. We
will show that some agent has envy in this state, and that she
has a bid to reduce that envy.

Since the solution is not in the core, there exists some
blocking coalition in which at least one member of the coali-
tion is strictly better off. Call that new solution a′1, . . . , a

′
n,

with prices π′1, . . . , π
′
n. Without loss of generality, let agent

1 be strictly better off. We have u1(a1)−π1 < u1(a′1)−π′1,
where the left hand side is non-negative, and a′1 6= ∅ by the
restriction that no agent bids above her valuation. We will
show that in the initial state, agent 1 is presented with an
envy quote that induces envy. Let the envy quote of a′1 in
the original state be p. To show agent 1 has envy for a′1, we
must have u1(a1)−π1 < u1(a′1)−p, for which it is sufficient
to show that p ≤ π′1, which holds because envy quotes are
always less than quotes. As an example of an envy-reducing
strategy, the agent can increase her bid on a′1 to p+ ε, where



0 < ε < (u1(a′1) − p) − (u1(a1) − π1), because either the
agent’s next envy quote on a′1 must be higher so her envy of
it is reduced, or she wins the item at a price of at most p+ ε,
which gives her more utility. �

Envy-reducing dynamics converge
In this section, we show that if agents respond to their
envy quotes on items they are not winning, then prices to
converge to a fixed point. Furthermore, it suffices that agents
select such envy-reducing actions with positive probability.
This kind of convergence result is standard in the match-
ing market literature (c.f. Roth and Vande Vate [1990]), and
holds regardless of the path taken to the current set of prices.
Proposition 2. Assume that bids must be from a finite set
of discrete levels, where the difference between consecutive
levels is at most ε (e.g., bids are in integer dollars). If at ev-
ery state of the auction at least one agent has positive prob-
ability of selecting an action among those that reduce her
envy of an envy quote on a bundle she is not winning, then
any iterated core-selecting combinatorial auction converges
to a fixed point with probability 1. In this fixed point, each
agent’s envy of the envy quote on any bundle is at most ε,
each coalition’s payoff is no less than its pessimal core pay-
off minus |coalition| · ε, and revenue is no less than that of
the revenue-pessimal point of the core minus n · ε.

Proof. The proof of Proposition 1 can be extended trivially
to show that in the fixed point, no agent can have more than
ε envy on any bundle, and that an ascending bid exists oth-
erwise. Furthermore, the largest envy quotes on bundles of
some core outcome are no smaller than the agents’ bids in
that core outcome minus ε. If this were not the case, some
agent could reduce her envy by bidding ε higher for some
bundle. Since some agent has an ascending bid at every
non-fixed point, by assumption the agent will select such
an action with positive probability. Since there are only a
finite number of (agent, bundle, bid level)-triples, we can
construct a finite number of steps to reach a state in which
no agent has envy greater than ε of her envy quote on any
bundle. Thus, these envy-reducing dynamics converge to
such a fixed point with probability 1.

Suppose some coalition’s payoff is less than its lowest
core payoff minus |coalition| · ε. Then some agent in the
coalition has at least ε envy of the core state. Because envy
quotes are smaller than quotes, it follows that the agent has
at least ε envy of the envy quote of the bundle she would
receive in that state. Thus we are not in a fixed point, which
contradicts our premise. Therefore, each coalition’s payoff
is at least its lowest core payoff minus |coalition| · ε.

Let r denote the revenue in the fixed point we reach. Let
rc denote the revenue from the core solution that we are near
(not necessarily the revenue-pessimal core solution), and let
pi represent the largest envy quote received by any agent for
agent i’s bundle in the core solution we are near. Because the
mechanism is core-selecting with respect to reported bids,
we have rc ≥

∑
pi. Since we are in a fixed point, we must

have r ≤
∑

(pi+ε), because were this not the case, an agent
would have an envy-reducing play by bidding ε higher and
thereby forcing the core solution. Letting rpessimal ≤ rc

represent the revenue-pessimal core solution, it follows that
rpessimal − n · ε ≤

∑
pi ≤ r. Therefore, our revenue is

no smaller than that of the revenue-pessimal core outcome
minus n · ε. �

Robustness of the approach
As we argued in the introduction, core-selecting combina-
torial auctions are not incentive compatible. Abandoning
incentive compatibility comes with a host of strategic con-
cerns. How can we say how agents will play if they do not
play truthfully? In this section, we explore the robustness
of our mechanisms: what happens when agents either bid
too little or too much, or attempt to otherwise manipulate
the mechanism in ways that could be to their benefit. That
is, what happens when agents fail—either due to willful ma-
nipulation or incompetence—to decrease their envy of envy
quotes?

The optimal manipulation, if agents had perfect informa-
tion and side payments were allowed, would be for each to
shave her bid in a specific manner in order to achieve the
core solution that minimizes the sum of the payments by the
agents. This solution will coincide with the VCG solution
if the VCG solution is in the core; this is the solution con-
cept featured by Ausubel and Milgrom [2002] and Day and
Raghavan [2007]. But in our setting, agents do not have per-
fect information, and the setting is iterated.

An agent can, of course, shave her bid too much. This
is the great fear of running a non-incentive compatible
mechanism—that agents, recognizing that they should shave
their bids, will bid very little and the end result will be low
revenue. As we show, however, we do not necessarily need
to rely on agents being motivated only by envy to achieve
solutions in the core.

Proposition 3. If revenue is less than the revenue-minimal
point in the (true) core, then some agent can make a new bid
on a bundle she is losing that will myopically increase (or
maintain) her utility.

Proof. If revenue is less than the revenue-minimal point in
the core, then some agent has an envy-reducing bid on an
envy quote she is receiving on a losing bundle. Moreover,
since envy quotes may coincide with a quote of the actual
value she would need to pay to win the bundle, bidding in
response to such a report can increase myopic utility. Specif-
ically, if she captures the bundle at the higher price she will
have higher utility, and if she fails to capture the bundle she
will be no worse off. �

Agent rationality provides a strong argument for our
mechanism not returning a low revenue solution. On the
other hand, if an agent shaves her bid too little, there might
not be any straightforward way to achieve a better outcome
for her. There may be a multitude of core outcomes with
higher revenue, in which agents bid more than in the bidder-
optimal solution. If an agent insufficiently shaves her bid,
the mechanism might arrive at such a state. Since that out-
come is in the core, only a global effort by a grand coalition
of agents can force an outcome where the agents pay less.



In summary, our mechanism handles agents’ mistakes in a
revenue-optimizing way. If agents bid too low, self-interest
will compel them to correct their bids. If agents bid too high,
the structure of the core can lock agents into a high-revenue
core solution that no agent can escape.

Another concern if agents do not play optimally is that, in
an iterated setting, agents will move around in the state space
of possible allocations, attempting to find advantageous out-
comes in which other agents make errors that are beneficial
to the agent that is causing the moving. One way of deal-
ing with this possibility is to ignore it; as we have shown,
only efficient outcomes can emerge as the fixed points of
our iterated mechanisms. Therefore, the only way an agent
will be able to take advantage of an inefficient outcome that
yields low revenue for the auctioneer is for some other agent
to not make an envy-reducing—and utility non-reducing—
move that is made apparent to her by her envy quotes. An-
other possibility is to add an ascending clock to the auction,
such that bids can only increase. This does not impact our
convergence result, which relies on agents increasing their
bids on bundles they are not winning.

Comparison with the ascending proxy auction

In this section, we discuss the differences between our ap-
proach and the iterative core-selecting combinatorial auction
of Ausubel and Milgrom [2002], the ascending proxy auc-
tion (APA).

The most important difference involves bidder strategies.
The APA mandates that bidders behave in a specific way to
achieve a solution in the core, namely, that agents raise their
losing bids by small ε in each iterative round. Since that elic-
itation process is slow and there is no guarantee agents will
behave this way in practice, Ausubel and Milgrom [2002]
suggest that agents surrender their valuations to a proxy
agent that bids in this manner on their behalf. Such a scheme
loses out on perhaps the most important part of having an
iterative auction in the first place: reducing the bidders’ val-
uation deliberation efforts [Sandholm and Boutilier, 2006]
(and potentially yielding higher revenue by making bidders
feel more secure in their valuations [Cramton, 1998]). Fur-
thermore, even with proxy agents, the APA is a very slow
way to calculate a core solution from a set of bids [Day and
Raghavan, 2007].

Essentially, what envy quotes provide is a more efficient
way of conveying price information to losing agents. As we
discuss in the next section, we can formalize this argument.
If an optimal scheme for generating envy quotes with a par-
ticular core-selecting mechanism is used, price information
is conveyed to losing bidders as efficiently as possible. In
contrast, the APA uses the least efficient scheme for con-
veying prices to losing bidders.

Additionally, our approach works with any core-selecting
combinatorial auction, while the APA was designed only
for the bidder-optimal core-selecting combinatorial auction.
Furthermore, the APA relies on an ascending global clock
for setting prices while our approach assumes neither a
global clock nor ascending prices.

Computing envy quotes
In this section we introduce the concept of optimal envy
quotes and show how to compute optimal envy quotes for
different core-selecting mechanisms.

Trivial envy quotes for any core-selecting
combinatorial auction
One simple but valid scheme for producing envy quotes is
to give an agent that is losing bundle S with a bid of b the
envy quote of b. This trivially satisfies the envy quote defini-
tion. It is also fundamentally equivalent to the APA, because
using this scheme the only feedback a bidder receives on a
bundle she is losing is that she is losing the bundle at her
current bid, and that a bid of ε higher may or may not win
the bundle.

Recalling that envy quotes are bounded from above by the
core support c(S) (Definition 9), we have the following def-
inition of what kinds of envy quotes accelerate the auction
the most:

Definition 12. A method for generating envy quotes is
optimal for a core-selecting combinatorial auction if it al-
ways generates the largest possible envy quotes.

It is never possible for an agent following an optimal envy
quote to make an uncompetitive bid that does not change the
outcome. Therefore, any such action causes a state change
in the system. This is generally not the case with subopti-
mal envy quotes and thus the process with such quotes can
take more steps to terminate. Conveying the best possible
information about current prices to bidders allows them to
make the best decisions about what bundles to bid on and
how much to bid on them.

Optimal envy quotes for any core-selecting
combinatorial auction
Intrinsically, the use of a core-selecting auction implies that,
for each losing bid, there exists some threshold value (the
optimal envy quote) above which the allocation and/or pay-
ments change and below which they do not. Because of this
property, we can solve for the threshold value by treating
the core-selecting process as a black box and using binary
search to find that threshold. Letting v∗ represent the sum
total of the accepted bids of the current solution, we begin
on the search interval [0, v∗ + ε], and query as to whether
the midpoint of the interval changes the current solution.
If so, the midpoint becomes the new upper bound, and if
not, the midpoint becomes the new lower bound. Each time
this process is run, we produce an additional bit of accu-
racy with respect to finding the optimal envy quote. Because
this approach treats the core-selecting mechanism as a black
box, this process works with any core-selecting combinato-
rial auction.

However, this approach is likely to be slow because it
must be run multiple times for each losing bid. To address
this shortcoming, in the following sections we develop tech-
niques to solve for optimal envy quotes in a single step for
the two common kinds of core-selecting combinatorial auc-
tion.



Optimal envy quotes for bidder-optimal
core-selecting combinatorial auctions
The most common core-selecting combinatorial auctions se-
lect a bidder-optimal (i.e., revenue-pessimal) point in the
core (as defined by reported, rather than actual, valuations).
Those methods vary depending on which bidder-optimal
core solution is chosen [Day and Raghavan, 2007, Day and
Cramton, 2008, Erdil and Klemperer, 2009].

We now describe a method for generating optimal envy
quotes for any bidder-optimal core-selecting combinatorial
auction. To construct an optimal envy quote for a bundle, we
use a mixed integer program (MIP) to find the smallest price
for that bundle that could be used to construct a blocking
coalition. To compute an envy quote for agent i for bundle
S, we do the following:

1. Add each winners’ accepted bid constrained by the price
paid by the agent into the MIP. For example, if an agent
wins the bundle ABC at a price of 20, we add the con-
straint πA + πB + πC = 20.

2. For each bidder j 6= i, calculate j’s surplus (i.e., reported
valuation minus price), subtract it from j’s losing bids,
and add those revised losing bids as constraints into the
MIP using the sum of item prices. To illustrate this, imag-
ine a winning agent with surplus 3 that has a losing bid
for the bundle AB for a price of 10. This would be added
as πA + πB ≥ 10− 3.

3. Add all of i’s losing bids as constraints, without subtract-
ing i’s surplus. For example, if i has a losing bid on AB
for a price of 5, then we add the constraint πA + πB ≥ 5.

4. For each agent, use binary variables and a constraint on
them to ensure that at most one of the agent’s losing bids
is selected.2 This ensures that any blocking coalition of
bids involves at most one bid from each agent. Thus none
of the constraints from Step 2 or 3 cut into the core.

5. The objective of the MIP is to calculate the lowest bundle
price (as sum of item prices) for S. For instance, consider
bundle AB. Our objective function is minπA +πB . This
is equivalent to designating the envy quote for a bundle
along a hyperplane normal to the items in the bundle, and
is therefore more flexible than imposing only item prices.

6. The solution to the objective, the minimum bundle price,
is given to agent i as an envy quote for bundle S.

Proposition 4. The above method generates optimal envy
quotes for any bidder-optimal core-selecting combinatorial
auction.

Proof. Suppose our method produces an envy quote for a
bundle S of p. We will show that a bid of p+ ε will change
the mechanism’s allocation-payment pair.

The constraints in the MIP that we use to generate the
envy quote define the set of all possible blocking coalitions
involving an agent’s bids exactly. Since the combinatorial
auction selects a bidder-optimal point in the core, this im-
plies that the addition of a hyperplane corresponding to the

2This can be implemented relatively efficiently in a MIP using
the SOS1 construct.

items of S,
∑

xi∈S πi = p+ ε cuts into the core, which im-
plies the existence of a blocking coalition at the current set
of prices based on the bid p+ ε. Because the mechanism se-
lects a bidder-optimal point in the core, either the bid p + ε
would be part of a new winning coalition or it would change
the prices. �

One can make this MIP into an anytime algorithm by first
adding the agent’s losing bids as constraints, and then adding
the constraints from the other agents into the MIP incre-
mentally. After the optimization of every such addition, we
have a valid envy quote, and those quotes increase as addi-
tional constraints are added. However, terminating the opti-
mization prematurely will obviously not yield optimal envy
quotes in every case.

Our method of generating envy quotes works with any
bidder-optimal core-selecting combinatorial auction. Dif-
ferent allocations and different individual payments may be
the outcome according to the different bidder-optimal core-
selecting combinatorial auctions. This is captured in the
above envy quoting method as different ways of calculating
the surpluses in Step 2.

According to our Proposition 2, our process converges to
some core solution of the true valuations. Furthermore, if
no agent bids more than her true valuation, some bidder-
optimal point in the true core is reached. This can be seen
by analyzing two cases. First, if the current solution has rev-
enue less than the bidder-optimal revenue in the true core,
some agent has an envy-reducing move on an envy quote ac-
cording to our Proposition 1, and thus the auction has not ter-
minated. Second, if the current solution has revenue greater
than the bidder-optimal revenue in the true core, some bid-
der is bidding more than her true valuation. This is because
if agents bid truthfully, a bidder-optimal point in the true
core is reached and revenue is nondecreasing in reported
bids (given that a solution in the core of the reported val-
uations is chosen).

Optimal envy quotes for the first-price
combinatorial auction
We can also develop optimal envy quoting methods for
other core-selecting mechanisms. As an extreme (bidder-
pessimal) example, consider a first-price mechanism, which
charges winning bidders their bids, and selects the allocation
that will maximize revenue. It is trivially core-selecting as
long as no bidder bids above her true valuation.

For this setting, the optimal envy quote scheme is to pro-
duce the quote for each losing bid, that is, the threshold
value at which the agent would go from losing to winning
the bundle in question. Any lower envy quote is not op-
timal, because an agent could bid higher without altering
the allocation-payment pair, and no envy quote can ever be
higher than a quote. Solving for these quotes is NP-hard
[Sandholm, 2002], but can usually be done fast in practice.

Conclusions
Core-selecting combinatorial auctions have recently
emerged as an important direction both in theory and
in practice. Core solutions avoid many pathologies of



VCG, including poor revenue, revenue non-monotonicity,
and vulnerability to bidding with multiple pseudonyms.
Prior models of core-selecting combinatorial auctions have
either been too slow to yield truly iterative auctions and/or
assumed agents know each others’ valuations.

In this paper, we expanded upon previous advances by
designing a truly iterative core-selecting combinatorial auc-
tion that does not make any assumptions about what agents
know about each others’ valuations. We showed that when
agents as a group follow envy-reducing strategies, the re-
sulting fixed point is in the core of true values. However, we
demonstrated that agents acting individually to reduce their
envy would be insufficient to arrive at a fixed point in the
core, because of the combinatorial nature of the auction.

To remedy this problem, we developed a system of
envy quotes, where agents are given estimates on their los-
ing bids of the prices at which those bundles are being won.
We proved that if agents act to reduce their envy of their
envy quotes, an outcome in the core of true values is reached.
Moreover, we discussed some of the safeguards our mech-
anism has for when agents do not behave this way: our
method may enhance revenue via agent mistakes and the
mechanism cannot reach an allocation-payment pair where
agents pay too little without some agent having a clear po-
tentially utility-increasing (and not merely envy-reducing)
bid.

Finally, we developed various techniques for generating
envy quotes. The trivial method of returning a losing agent’s
bid is valid for any core-selecting combinatorial auction, but
not optimal in the sense that it will generate unnecessary
iterations. This slowly-converging method is equivalent to
(the truly iterative version of) the ascending proxy auction
of Ausubel and Milgrom [2002]. We point out how binary
search can be used to produce optimal envy quotes in gen-
eral. However, that requires multiple rounds of optimization
for each quote. To address this shortcoming, we developed
ways in which an optimal envy quote can be generated in a
single optimization. Specifically, we developed an optimal
method for any bidder-optimal core-selecting combinatorial
auction, and another optimal method for the bidder-pessimal
core-selecting (first-price) combinatorial auction.
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